Effects of continuous negative pressure water supply on water consumption, growth and development, as well as physiological mechanism and quality of Capsicum annuum L. were investigated in this paper. Meanwhile, the o...Effects of continuous negative pressure water supply on water consumption, growth and development, as well as physiological mechanism and quality of Capsicum annuum L. were investigated in this paper. Meanwhile, the optimal negative pressure water supply conditions for growth of C. annuum L. were screened out to achieve the goals of water conservation, high yield and high quality, thus providing theoretical foundation for its field production. The pot experiment within the greenhouse was utilized; the continuous negative pressure water supply was adopted; the four treatments, artificial watering(CK), –5 k Pa(T1), –10 k Pa(T2), and –15 k Pa(T3) were set; and the daily water consumption, yield, as well as the biomass, nitrate reductase, root activity, vitamin C, capsaicin, and nutrient uptakes of nitrogen(N), phosphorus(P) and potassium(K) during various stages of its growth were determined. Compared with CK, when the water supply pressure was controlled at –5 to –15 k Pa in the experiment, the total water consumption of C. annuum L. reduced by 53.42 to 67.75%, the total water consumption intensity reduced by 54.29 to 67.14%, and the water use efficiency increased by 12.66 to 124.67%. The N accumulation in a single strain of C. annuum L. from the color turning stage to the red ripe stage increased by 15.99 to 100.55%, respectively, compared with that of CK; the P accumulation increased by 20.47 to 154.00% relative to that of CK, and the K accumulation increased by 64.92 to 144.9% compared with that of CK. Compared with CK, C. annuum L. yield was remarkably improved by 13.79% at T1, and contents of vitamin C, capsaicin as well as carotenoids at all growth stages were enhanced by 13.42–147.01%, 11.54–71.01%, and 41.1–568.06%, respectively. Nitrate reductase activity, root activity and chlorophyll(a+b) were markedly increased by 335.78–500%, 79.6–140.68% and 114.95–676.19%, respectively, from immature stage to full ripe stage. Adopting the continuous negative pressure water supply for C. annuum L. has a significant water-saving effect, and the water supply pressure being stable at –5 k Pa contributes to its growth and development, improves yield, enhances root activity, promotes nutrient uptake, and improves its quality, thus achieving the effects of water conservation, high yield, high quality and high efficiency.展开更多
Samarahan has transformed from a small village into education hub for the past 2 decades. Rapid development and population growth had led to speedy growth in water demand. The situation is getting worse as the pipes a...Samarahan has transformed from a small village into education hub for the past 2 decades. Rapid development and population growth had led to speedy growth in water demand. The situation is getting worse as the pipes are deteriorating due to pipe aging. Therefore, there is a need to study the adequacy of water supply and relationships among roughness coefficient (C) values in Hazen Williams’ Equation with head loss and water pressure due to pipe aging at Uni-Central, a residential area located at Samarahan Sarawak. Investigations were carried out with Ductile Iron, Abestos Cement and Cast Iron pipes at age categories of 0 - 10 years, 10 - 30 years, 30 - 50 years, 50 - 70 years and >70 years. Six critical nodes named as A, B, C, D, E and F were identified to study the water pressure and head loss. Model was developed with InfoWorks Water Supply (WS) Pro software. The impact of pipe aging and materials to water pressure and head loss was not significant at Nodes A, B, C and F. However, max water pressure at Nodes D and F were only reaching 6.30 m and 7.30 m, respectively for all investigations. Therefore, some improvement works are required. Results also show that Asbestos Cement pipe has the least impact on the head loss and water pressure, followed by Ductile Iron pipe and lastly Cast Iron pipe. Simulation results also revealed that older pipes have higher roughness coefficients, indicated with lower “C” values, thus increase the head loss and reduce the water pressure. In contrast, as “C” values increased, head loss will be reduced and water pressure will be increased.展开更多
The serviceability of water supply networks(WSNs)under seismic loads has significant importance for estimating the probable losses and the impact of diminished functionality on affected communities.The innovation pres...The serviceability of water supply networks(WSNs)under seismic loads has significant importance for estimating the probable losses and the impact of diminished functionality on affected communities.The innovation presented in this paper is suggesting a new strategy to evaluate the seismic serviceability of WSNs,utilizing their operational physical mechanism.On one hand,this method can obtain the seismic serviceability of each node as well as entire WSNs.On the other hand,this method can dynamically reflect the propagation of randomness from ground motions to WSNs.First,a finite element model is established to capture the seismic response of buried pipe networks,and a leakage model is suggested to obtain the leakage area of WSNs.Second,the transient flow analysis of WSNs with or without leakage is derived to obtain dynamic water flow and pressure.Third,the seismic serviceability of WSNs is analyzed based on the probability density evolution method(PDEM).Finally,the seismic serviceability of a real WSN in Mianzhu city is assessed to illustrate the method.The case study shows that randomness from the ground motions can obviously affect the leakage state and the probability density of the nodal head during earthquakes.展开更多
An urban water supply network(WSN)is a crucial lifeline system that helps to maintain the normal functioning of modern society.However,the hydraulic analysis of a significantly damaged WSN that suffers from pipe break...An urban water supply network(WSN)is a crucial lifeline system that helps to maintain the normal functioning of modern society.However,the hydraulic analysis of a significantly damaged WSN that suffers from pipe breaks or leaks remains challenging.In this paper,a probability-based framework is proposed to assess the functionality of WSNs in the aftermath of powerful earthquakes.The serviceability of the WSN is quantified by using a comprehensive index that considers nodal water flow and nodal pressure.This index includes a coefficient that reflects the relative importance of these two parameters.The demand reduction(DR)method,which reduces the water flow of nodes while preventing the negative pressure of nodes,is proposed.The difference between the negative pressure elimination(NPE)method and the DR method is discussed by using the example of a WSN in a medium-sized city in China.The functionality values of the WSN are 0.76 and 0.99 when nodal pressure and nodal demands are used respectively as the index of system serviceability at an intensity level that would pertain to an earthquake considered to occur at a maximum level.When the intensity of ground motion is as high as 0.4 g,the DR method requires fewer samples than the NPE method to obtain accurate results.The NPE method eliminates most of the pipes,which may be unrealistic.展开更多
基金supported by the National High-Technology Research and Development Program of China (863 Program, 2013AA102900-3)
文摘Effects of continuous negative pressure water supply on water consumption, growth and development, as well as physiological mechanism and quality of Capsicum annuum L. were investigated in this paper. Meanwhile, the optimal negative pressure water supply conditions for growth of C. annuum L. were screened out to achieve the goals of water conservation, high yield and high quality, thus providing theoretical foundation for its field production. The pot experiment within the greenhouse was utilized; the continuous negative pressure water supply was adopted; the four treatments, artificial watering(CK), –5 k Pa(T1), –10 k Pa(T2), and –15 k Pa(T3) were set; and the daily water consumption, yield, as well as the biomass, nitrate reductase, root activity, vitamin C, capsaicin, and nutrient uptakes of nitrogen(N), phosphorus(P) and potassium(K) during various stages of its growth were determined. Compared with CK, when the water supply pressure was controlled at –5 to –15 k Pa in the experiment, the total water consumption of C. annuum L. reduced by 53.42 to 67.75%, the total water consumption intensity reduced by 54.29 to 67.14%, and the water use efficiency increased by 12.66 to 124.67%. The N accumulation in a single strain of C. annuum L. from the color turning stage to the red ripe stage increased by 15.99 to 100.55%, respectively, compared with that of CK; the P accumulation increased by 20.47 to 154.00% relative to that of CK, and the K accumulation increased by 64.92 to 144.9% compared with that of CK. Compared with CK, C. annuum L. yield was remarkably improved by 13.79% at T1, and contents of vitamin C, capsaicin as well as carotenoids at all growth stages were enhanced by 13.42–147.01%, 11.54–71.01%, and 41.1–568.06%, respectively. Nitrate reductase activity, root activity and chlorophyll(a+b) were markedly increased by 335.78–500%, 79.6–140.68% and 114.95–676.19%, respectively, from immature stage to full ripe stage. Adopting the continuous negative pressure water supply for C. annuum L. has a significant water-saving effect, and the water supply pressure being stable at –5 k Pa contributes to its growth and development, improves yield, enhances root activity, promotes nutrient uptake, and improves its quality, thus achieving the effects of water conservation, high yield, high quality and high efficiency.
文摘Samarahan has transformed from a small village into education hub for the past 2 decades. Rapid development and population growth had led to speedy growth in water demand. The situation is getting worse as the pipes are deteriorating due to pipe aging. Therefore, there is a need to study the adequacy of water supply and relationships among roughness coefficient (C) values in Hazen Williams’ Equation with head loss and water pressure due to pipe aging at Uni-Central, a residential area located at Samarahan Sarawak. Investigations were carried out with Ductile Iron, Abestos Cement and Cast Iron pipes at age categories of 0 - 10 years, 10 - 30 years, 30 - 50 years, 50 - 70 years and >70 years. Six critical nodes named as A, B, C, D, E and F were identified to study the water pressure and head loss. Model was developed with InfoWorks Water Supply (WS) Pro software. The impact of pipe aging and materials to water pressure and head loss was not significant at Nodes A, B, C and F. However, max water pressure at Nodes D and F were only reaching 6.30 m and 7.30 m, respectively for all investigations. Therefore, some improvement works are required. Results also show that Asbestos Cement pipe has the least impact on the head loss and water pressure, followed by Ductile Iron pipe and lastly Cast Iron pipe. Simulation results also revealed that older pipes have higher roughness coefficients, indicated with lower “C” values, thus increase the head loss and reduce the water pressure. In contrast, as “C” values increased, head loss will be reduced and water pressure will be increased.
基金National Natural Science Foundation of China under Grant No.5210082055China Postdoctoral Science Foundation under Grant No.2021M690278。
文摘The serviceability of water supply networks(WSNs)under seismic loads has significant importance for estimating the probable losses and the impact of diminished functionality on affected communities.The innovation presented in this paper is suggesting a new strategy to evaluate the seismic serviceability of WSNs,utilizing their operational physical mechanism.On one hand,this method can obtain the seismic serviceability of each node as well as entire WSNs.On the other hand,this method can dynamically reflect the propagation of randomness from ground motions to WSNs.First,a finite element model is established to capture the seismic response of buried pipe networks,and a leakage model is suggested to obtain the leakage area of WSNs.Second,the transient flow analysis of WSNs with or without leakage is derived to obtain dynamic water flow and pressure.Third,the seismic serviceability of WSNs is analyzed based on the probability density evolution method(PDEM).Finally,the seismic serviceability of a real WSN in Mianzhu city is assessed to illustrate the method.The case study shows that randomness from the ground motions can obviously affect the leakage state and the probability density of the nodal head during earthquakes.
基金the Institute of Engineering Mechanics(IEM),China Earthquake Administration(CEA)under Grant No.2019EEEVL0505the National Natural Science Foundation of China under Grant No.51908519and the Scientific Research Fund of the IEM,CEA under Grant No.2019B02。
文摘An urban water supply network(WSN)is a crucial lifeline system that helps to maintain the normal functioning of modern society.However,the hydraulic analysis of a significantly damaged WSN that suffers from pipe breaks or leaks remains challenging.In this paper,a probability-based framework is proposed to assess the functionality of WSNs in the aftermath of powerful earthquakes.The serviceability of the WSN is quantified by using a comprehensive index that considers nodal water flow and nodal pressure.This index includes a coefficient that reflects the relative importance of these two parameters.The demand reduction(DR)method,which reduces the water flow of nodes while preventing the negative pressure of nodes,is proposed.The difference between the negative pressure elimination(NPE)method and the DR method is discussed by using the example of a WSN in a medium-sized city in China.The functionality values of the WSN are 0.76 and 0.99 when nodal pressure and nodal demands are used respectively as the index of system serviceability at an intensity level that would pertain to an earthquake considered to occur at a maximum level.When the intensity of ground motion is as high as 0.4 g,the DR method requires fewer samples than the NPE method to obtain accurate results.The NPE method eliminates most of the pipes,which may be unrealistic.