期刊文献+
共找到224篇文章
< 1 2 12 >
每页显示 20 50 100
Effects of thinning and understory removal on water use efficiency of Pinus massoniana:evidence from photosynthetic capacity and stable carbon isotope analyses
1
作者 Ting Wang Qing Xu +4 位作者 Beibei Zhang Deqiang Gao Ying Zhang Jing Jiang Haijun Zuo 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第2期42-53,共12页
Understanding the relationship between forest management and water use efficiency(WUE)is important for evaluating forest adaptability to climate change.However,the effects of thinning and understory removal on WUE and... Understanding the relationship between forest management and water use efficiency(WUE)is important for evaluating forest adaptability to climate change.However,the effects of thinning and understory removal on WUE and its key controlling processes are not well understood,which limits our comprehension of the physiological mechanisms of various management practices.In this study,four forest management measures(no thinning:NT;understory removal:UR;light thinning:LT;and heavy thinning:HT)were carried out in Pinus massoniana plantations in a subtropical region of China.Photosynthetic capacity and needle stable carbon isotope composition(δ^(13)C)were measured to assess instantaneous water use efficiency(WUE_(inst))and long-term water use efficiency(WUE_(i)).Multiple regression models and structural equation modelling(SEM)identified the effects of soil properties and physiological performances on WUE_(inst)and WUE_(i).The results show that WUE_(inst)values among the four treatments were insignificant.However,compared with the NT stand(35.8μmol·mol^(-1)),WUE_(i)values significantly increased to 41.7μmol·mol^(-1)in the UR,50.1μmol·mol^(-1)in the LT and 46.6μmol·mol^(-1)in HT treatments,largely explained by photosynthetic capacity and soil water content.Understory removal did not change physiological performance(needle water potential and photosynthetic capacity).Thinning increased the net photosynthetic rate(A_n)but not stomatal conductance(g_s)or predawn needle water potential(ψ_(pd)),implying that the improvement in water use efficiency for thinned stands was largely driven by radiation interception than by soil water availability.In general,thinning may be an appropriate management measure to promote P.massoniana WUE to cope with seasonal droughts under future extreme climates. 展开更多
关键词 Stable carbon isotope water use efficiency THINNING Understory removal Photosynthetic capacity Needle water potential
下载PDF
Yields,growth and water use under chemical topping in relations to row configuration and plant density in drip-irrigated cotton
2
作者 Wang Xuejiao Hu Yanping +10 位作者 Ji Chunrong Chen Yongfan Sun Shuai Zhang Zeshan Zhang Yutong Wang Sen Yang Mingfeng Ji Fen Guo Yanyun Li Jie Zhang Lizhen 《Journal of Cotton Research》 CAS 2024年第2期123-136,共14页
Background Water deficit is an important problem in agricultural production in arid regions.With the advent of wholly mechanized technology for cotton planting in Xinjiang,it is important to determine which planting m... Background Water deficit is an important problem in agricultural production in arid regions.With the advent of wholly mechanized technology for cotton planting in Xinjiang,it is important to determine which planting mode could achieve high yield,fiber quality and water use efficiency(WUE).This study aimed to explore if chemical topping affected cotton yield,quality and water use in relation to row configuration and plant densities.Results Experiments were carried out in Xinjiang China,in 2020 and 2021 with two topping method,manual topping and chemical topping,two plant densities,low and high,and two row configurations,i.e.,76 cm equal rows and 10+66 cm narrow-wide rows,which were commonly applied in matching harvest machine.Chemical topping increased seed cotton yield,but did not affect cotton fiber quality comparing to traditional manual topping.Under equal row spacing,the WUE in higher density was 62.4%higher than in the lower one.However,under narrow-wide row spacing,the WUE in lower density was 53.3%higher than in higher one(farmers’practice).For machine-harvest cotton in Xinjiang,the optimal row configuration and plant density for chemical topping was narrow-wide rows with 15 plants m-2 or equal rows with 18 plants m-2.Conclusion The plant density recommended in narrow-wide rows was less than farmers’practice and the density in equal rows was moderate with local practice.Our results provide new knowledge on optimizing agronomic managements of machine-harvested cotton for both high yield and water efficient. 展开更多
关键词 Yield components Fiber quality TRANSPIRATION water use efficiency Heat ratio method(HRM)
下载PDF
Changes in Water Use Efficiency Caused by Climate Change,CO_(2) Fertilization,and Land Use Changes on the Tibetan Plateau 被引量:2
3
作者 Binghao JIA Xin LUO +1 位作者 Longhuan WANG Xin LAI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第1期144-154,共11页
Terrestrial ecosystem water use efficiency(WUE)is an important indicator for coupling plant photosynthesis and transpiration,and is also a key factor linking the carbon and water cycles between the land and atmosphere... Terrestrial ecosystem water use efficiency(WUE)is an important indicator for coupling plant photosynthesis and transpiration,and is also a key factor linking the carbon and water cycles between the land and atmosphere.However,under the combination of climate change and human intervention,the change in WUE is still unclear,especially on the Tibetan Plateau(TP).Therefore,satellite remote sensing data and process-based terrestrial biosphere models(TBMs)are used in this study to investigate the spatiotemporal variations of WUE over the TP from 2001 to 2010.Then,the effects of land use and land cover change(LULCC)and CO_(2) fertilization on WUE from 1981-2010 are assessed using TBMs.Results show that climate change is the leading contributor to the change in WUE on the TP,and temperature is the most important factor.LULCC makes a negative contribution to WUE(-20.63%),which is greater than the positive contribution of CO_(2) fertilization(11.65%).In addition,CO_(2) fertilization can effectively improve ecosystem resilience on the TP.On the northwest plateau,the effects of LULCC and CO_(2) fertilization on WUE are more pronounced during the driest years than the annual average.These findings can help researchers understand the response of WUE to climate change and human activity and the coupling of the carbon and water cycles over the TP. 展开更多
关键词 water use efficiency gross primary productivity EVAPOTRANSPIRATION Tibetan Plateau carbon and water cycle
下载PDF
Arbuscular mycorrhizal fungi improve biomass, photosynthesis, and water use efficiency of Opuntia ficus-indica (L.) Miller under different water levels
4
作者 Teame G KEBEDE Emiru BIRHANE +1 位作者 Kiros-Meles AYIMUT Yemane G EGZIABHER 《Journal of Arid Land》 SCIE CSCD 2023年第8期975-988,共14页
Opuntia ficus-indica(L.)Miller is a CAM(crassulacean acid metabolism)plant with an extraordinary capacity to adapt to drought stress by its ability to fix atmospheric CO_(2) at nighttime,store a significant amount of ... Opuntia ficus-indica(L.)Miller is a CAM(crassulacean acid metabolism)plant with an extraordinary capacity to adapt to drought stress by its ability to fix atmospheric CO_(2) at nighttime,store a significant amount of water in cladodes,and reduce root growth.Plants that grow in moisture-stress conditions with thick and less fine root hairs have a strong symbiosis with arbuscular mycorrhizal fungi(AMF)to adapt to drought stress.Water stress can limit plant growth and biomass production,which can be rehabilitated by AMF association through improved physiological performance.The objective of this study was to investigate the effects of AMF inoculations and variable soil water levels on the biomass,photosynthesis,and water use efficiency of the spiny and spineless O.ficus-indica.The experiment was conducted in a greenhouse with a full factorial experiment using O.ficus-indica type(spiny or spineless),AMF(presence or absence),and four soil water available(SWA)treatments through seven replications.Water treatments applied were 0%–25%SWA(T1),25%–50%SWA(T2),50%–75%SWA(T3),and 75%–100%SWA(T4).Drought stress reduced biomass and cladode growth,while AMF colonization significantly increased the biomass production with significant changes in the physiological performance of O.ficus-indica.AMF presence significantly increased biomass of both O.ficus-indica plant types through improved growth,photosynthetic water use efficiency,and photosynthesis.The presence of spines on the surface of cladodes significantly reduced the rate of photosynthesis and photosynthetic water use efficiency.Net photosynthesis,photosynthetic water use efficiency,transpiration,and stomatal conductance rate significantly decreased with increased drought stress.Under drought stress,some planted mother cladodes with the absence of AMF have not established daughter cladodes,whereas AMF-inoculated mother cladodes fully established daughter cladodes.AMF root colonization significantly increased with the decrease of SWA.AMF caused an increase in biomass production,increased tolerance to drought stress,and improved photosynthesis and water use efficiency performance of O.ficus-indica.The potential of O.ficus-indica to adapt to drought stress is controlled by the morpho-physiological performance related to AMF association. 展开更多
关键词 BIOMASS cactus pear cladode growth PHOTOSYNTHESIS water stress water use efficiency
下载PDF
Seasonality of PSII thermostability and water use e ffi ciency of in situ mountainous Norway spruce(Picea abies)
5
作者 Peter Petrik Anja Petek-Petrik +4 位作者 Alena Konopkova Peter Fleischer Srdjan Stojnic Ina Zavadilova Daniel Kurjak 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第1期197-208,共12页
The stability of monocultural,even-aged spruce forests at lower altitudes in Central Europe is seriously threatened by the prospects of global climate change.The thermostability and water use efficiency of their photo... The stability of monocultural,even-aged spruce forests at lower altitudes in Central Europe is seriously threatened by the prospects of global climate change.The thermostability and water use efficiency of their photo synthetic apparatus might play a vital role in their successful acclimation.In this study,photo systemⅡ(PSⅡ)performance(OJIP transient,rapid light curves)and thermostability were analyzed in Norway spruce(Picea abies(L.)Karst.)throughout the growing season of the exceptionally warm year 2018(May-September)in the Western Carpathians,Slovakia.These measurements were accompanied by analysis of pigment concentrations in the needles.In addition,gas-exchange temperature curves were produced weekly from June until September to obtain intrinsic water use efficiencies.At the beginning of the growing season,needles exposed to heat stress showed significantly higher basal fluorescence and lower quantum yield,performance index,critical temperature thresholds of PSII inactivation and nonphotochemical yield in comparison to other months.The overall thermostability(heat-resistance)of PSII peaked in July and August,reflected in the lowest basal fluorescence and the highest quantum yield of PSII,critical temperature thresholds and yield of non-photochemical quenching under heat stress.Additionally,the ratio between chlorophyll and carotenoids was the highest in August and had a positive impact on PSII thermostability.Moreover,the high-temperature intrinsic water use efficiency was significantly higher during July and August than in June.Results show that15-year-old trees of Picea abies at 840 m a.s.l.exhibited acclimative seasonal responses of PSII thermostability and intrinsic water use efficiency during an exceptionally warm year.Our results suggest that mountainous P.abies at lower altitudes can acclimate their photosynthetic apparatus to higher temperatures during summer. 展开更多
关键词 Heat stress PHOTOSYNTHESIS Non-photochemical quenching PIGMENTS Intrinsic water use efficiency
下载PDF
Controlled drainage in the Nile River delta of Egypt:a promising approach for decreasing drainage off-site effects and enhancing yield and water use efficiency of wheat
6
作者 Mohamed K EL-GHANNAM Fatma WASSAR +4 位作者 Sabah MORSY Mohamed HAFEZ Chiter M PARIHAR Kent O BURKEY Ahmed M ABDALLAH 《Journal of Arid Land》 SCIE CSCD 2023年第4期460-476,共17页
North Africa is one of the most regions impacted by water shortage.The implementation of controlled drainage(CD)in the northern Nile River delta of Egypt is one strategy to decrease irrigation,thus alleviating the neg... North Africa is one of the most regions impacted by water shortage.The implementation of controlled drainage(CD)in the northern Nile River delta of Egypt is one strategy to decrease irrigation,thus alleviating the negative impact of water shortage.This study investigated the impacts of CD at different levels on drainage outflow,water table level,nitrate loss,grain yield,and water use efficiency(WUE)of various wheat cultivars.Two levels of CD,i.e.,0.4 m below the soil surface(CD-0.4)and 0.8 m below the soil surface(CD-0.8),were compared with subsurface free drainage(SFD)at 1.2 m below the soil surface(SFD-1.2).Under each drainage treatment,four wheat cultivars were grown for two growing seasons(November 2018–April 2019 and November 2019–April 2020).Compared with SFD-1.2,CD-0.4 and CD-0.8 decreased irrigation water by 42.0%and 19.9%,drainage outflow by 40.3%and 27.3%,and nitrate loss by 35.3%and 20.8%,respectively.Under CD treatments,plants absorbed a significant portion of their evapotranspiration from shallow groundwater(22.0%and 8.0%for CD-0.4 and CD-0.8,respectively).All wheat cultivars positively responded to CD treatments,and the highest grain yield and straw yield were obtained under CD-0.4 treatment.Using the initial soil salinity as a reference,the soil salinity under CD-0.4 treatment increased two-fold by the end of the second growing season without negative impacts on wheat yield.Modifying the drainage system by raising the outlet elevation and considering shallow groundwater contribution to crop evapotranspiration promoted water-saving and WUE.Different responses could be obtained based on the different plant tolerance to salinity and water stress,crop characteristics,and growth stage.Site-specific soil salinity management practices will be required to avoid soil salinization due to the adoption of long-term shallow groundwater in Egypt and other similar agroecosystems. 展开更多
关键词 drainage ratio nitrate loss water use efficiency YIELD soil salinity Nile River delta
下载PDF
Comparison of Methods for Estimating Crop Water Use: Sap Flow, FAO-56 Penman-Monteith, and Weather Parameters
7
作者 Younsuk Dong Hunter Hansen 《Agricultural Sciences》 CAS 2023年第5期617-628,共12页
Knowing crop water uptake each day is useful for developing irrigation scheduling. Many technologies have been used to estimate daily crop water use. Sap flow is one of the technologies that measure water flow through... Knowing crop water uptake each day is useful for developing irrigation scheduling. Many technologies have been used to estimate daily crop water use. Sap flow is one of the technologies that measure water flow through the stem of a plant and estimate daily crop water uptake. Sap flow sensor is an effective direct method for measuring crop water use, but it is relatively expensive and requires frequent maintenance. Therefore, alternative methods, such as evapotranspiration based on FAO 56 Penman-Monteith equation and other weather parameters were evaluated to find the correlation with sap flow. In this study, Dynamax Flow 32-1K sap flow system was utilized to monitor potato water use. The results show sap flow has a strong correlation with evapotranspiration (RMSE = 1.34, IA = 0.89, MBE = -0.83), solar radiation (RMSE = 2.25, IA = 0.72, MBE = -1.80), but not with air temperature, relative humidity, wind speed, and vapor pressure. It is worth noting that the R<sup>2</sup> between sap flow and relative humidity was 0.55. This study has concluded that daily evapotranspiration and solar radiation can be used as alternative methods to estimate sap flow. 展开更多
关键词 Crop water use IRRIGATION Sap Flow EVAPOTRANSPIRATION Weather Parameter
下载PDF
Effects of Non-flooded Cultivation with Straw Mulching on Rice Agronomic Traits and Water Use Efficiency 被引量:5
8
作者 QIN Jiang-tao HU Feng +3 位作者 LI Hui-xin WANG Yi-ping HUANG Fa-quan HUANG Hua-xiang 《Rice science》 SCIE 2006年第1期59-66,共8页
A field experiment was conducted to study water use efficiency and agronomic traits in rice cultivated in flooded soil and non-flooded soils with and without straw mulching. The total amount of water used by rice unde... A field experiment was conducted to study water use efficiency and agronomic traits in rice cultivated in flooded soil and non-flooded soils with and without straw mulching. The total amount of water used by rice under flooded cultivation (FC) was 2.42 and 3.31 times as much as that by rice under the non-flooded cultivation with and without straw mulching, respectively. The average water seepage was 13 560 m^3/ha under the flooded cultivation, 4 750 m^3/ha under the non-flooded cultivation without straw mulching (ZM) and 4 680 m^3/ha under non-flooded cultivation with straw mulching (SM). The evapotranspiration in the SM treatment was only 38.2% and 63.6% of the FC treatment and ZM treatment, respectively. Compared with the ZM treatment, straw mulching significantly increased leaf area per plant, main root length, gross root length and root dry weight per plant of rice. The highest grain yield under the SM treatment (6 747 kg/ha) was close to the rice cultivated in flooded soil (6 811.5 kg / ha). However, the yield under the ZM treatment (4 716 kg/ha) was much lower than that under the FS treatment and SM treatment. The order of water use efficiency and irrigation water use efficiency were both as follows: SM〉 ZM〉 FC. 展开更多
关键词 RICE non-flooded cultivation straw mulching water use efficiency irrigation water use efficiency agronomic traits
下载PDF
Effects of Different Tillage Systems on Soil Properties,Root Growth,Grain Yield,and Water Use Efficiency of Winter Wheat (Triticum aestivum L.) in Arid Northwest China 被引量:29
9
作者 HUANG Gao-bao CHAI Qiang +1 位作者 FENG Fu-xue YU Ai-zhong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2012年第8期1286-1296,共11页
Studies on root development, soil physical properties, grain yield, and water-use efficiency are important for identifying suitable soil management practices for sustainable crop production. A field experiment was con... Studies on root development, soil physical properties, grain yield, and water-use efficiency are important for identifying suitable soil management practices for sustainable crop production. A field experiment was conducted from 2006 through 2008 in arid northwestern China to determine the effects of four tillage systems on soil properties, root development, water-use efficiency, and grain yield of winter wheat (Triticum aestivum L.). The cultivar Fan 13 was grown under four tillage systems:conventional tillage (CT) without wheat stubble, no-tillage without wheat stubble mulching (NT), no-tillage with wheat stubble standing (NTSS), and no-tillage with wheat stubble mulching (NTS). The soil bulk density (BD) under CT system increased gradually from sowing to harvest, but that in NT, NTSS, and NTS systems had little change. Compared to the CT system, the NTSS and NTS systems improved total soil water storage (0-150 cm) by 6.1-9.6 and 10.5- 15.3% before sowing, and by 2.2-8.9 and 13.0-15.1% after harvest, respectively. The NTSS and NTS systems also increased mean dry root weight density (DRWD) as compared to CT system. The NTS system significantly improved water-use efficiency by 17.2-17.5% and crop yield by 15.6-16.8%, and the NTSS system improved that by 7.8-9.6 and 7.0-12.8%, respectively, compared with the CT system. Our results suggested that Chinese farmers should consider adopting conservation tillage practices in arid northwestern China because of benefits to soil bulk density, water storage, root system, and winter wheat yield. 展开更多
关键词 conservation tillage soil water storage bulk density water use efficiency winter wheat (Triticum aestivumL.) root system grain yield
下载PDF
Grain yield and water use efficiency of super rice under soil water deficit and alternate wetting and drying irrigation 被引量:25
10
作者 ZHOU Qun JU Cheng-xin +4 位作者 WANG Zhi-qin ZHANG Hao LIU Li-jun YANG Jian-chang ZHANG Jian-hua 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第5期1028-1043,共16页
This study investigated if super rice could better cope with soil water deficit and if it could have better yield performance and water use efficiency (WUE) under alternate wetting and drying (AWD) irrigation than... This study investigated if super rice could better cope with soil water deficit and if it could have better yield performance and water use efficiency (WUE) under alternate wetting and drying (AWD) irrigation than check rice. Two super rice cultivars and two elite check rice cultivars were grown in pots with three soil moisture levels, well watered (WW), moderate water deficit (MWD) and severe water deficit (SWD). Two cultivars, each for super rice and check rice, were grown in field with three irrigation regimes, alternate wetting and moderate drying (AWMD), alternate wetting and severe drying (AWSD) and conventional irrigation (CI). Compared with that under WW, grain yield was significantly decreased under MWD and SWD treatments, with less reduction for super rice than for check rice. Super rice had higher percentage of productive tillers, deeper root distribution, higher root oxidation activity, and greater aboveground biomass production at mid and late growth stages than check rice, especially under WMD and WSD. Compared with CI,AWMD increased, whereasAWSD decreased grain yield, with more increase or less decrease for super rice than for check rice. Both MWD and SWD treatments and eitherAWMD orAWSD regime significantly increased WUE compared with WW treatment or CI regime, with more increase for super rice than for check rice. The results suggest that super rice has a stronger ability to cope with soil water deficit and holds greater promising to increase both grain yield and WUE by adoption of moderate AWD irrigation. 展开更多
关键词 super rice soil water deficit alternate wetting and drying (AWD) grain yield water use efficiency
下载PDF
Moderate wetting and drying increases rice yield and reduces water use, grain arsenic level, and methane emission 被引量:17
11
作者 Jianchang Yang Qun Zhou jianhua Zhang 《The Crop Journal》 SCIE CAS CSCD 2017年第2期151-158,共8页
To meet the major challenge of increasing rice production to feed a growing population under increasing water scarcity,many water-saving regimes have been introduced in irrigated rice,such as an aerobic rice system,no... To meet the major challenge of increasing rice production to feed a growing population under increasing water scarcity,many water-saving regimes have been introduced in irrigated rice,such as an aerobic rice system,non-flooded mulching cultivation,and alternate wetting and drying(AWD).These regimes could substantially enhance water use efficiency(WUE) by reducing irrigation water.However,such enhancements greatly compromise grain yield.Recent work has shown that moderate AWD,in which photosynthesis is not severely inhibited and plants can rehydrate overnight during the soil drying period,or plants are rewatered at a soil water potential of-10 to-15 k Pa,or midday leaf potential is approximately-0.60 to-0.80 MPa,or the water table is maintained at 10 to 15 cm below the soil surface,could increase not only WUE but also grain yield.Increases in grain yield WUE under moderate AWD are due mainly to reduced redundant vegetative growth;improved canopy structure and root growth;elevated hormonal levels,in particular increases in abscisic acid levels during soil drying and cytokinin levels during rewatering;and enhanced carbon remobilization from vegetative tissues to grain.Moderate AWD could also improve rice quality,including reductions in grain arsenic accumulation,and reduce methane emissions from paddies.Adoption of moderate AWD with an appropriate nitrogen application rate may exert a synergistic effect on grain yield and result in higher WUE and nitrogen use efficiency.Further research is needed to understand root–soil interaction and evaluate the long-term effects of moderate AWD on sustainable agriculture. 展开更多
关键词 Alternate wetting and drying(AWD) Grain yield Nitrogen use efficiency Rice water use efficiency
下载PDF
Improving Water Use Efficiency of Wheat Crop Varieties in the North China Plain: Review and Analysis 被引量:11
12
作者 MEI Xu-rong ZHONG Xiu-li +1 位作者 Vadez Vincent LIU Xiao-ying 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第7期1243-1250,共8页
The North China Plain (NCP), one of the most important agricultural regions in China, is facing a major water-resource crisis evoked by excessive exploitation of groundwater. To reduce water use while maintaining hi... The North China Plain (NCP), one of the most important agricultural regions in China, is facing a major water-resource crisis evoked by excessive exploitation of groundwater. To reduce water use while maintaining high crop production level, improving variety water use efficiency (WUE) is an urgent need, especially because other water-saving measures such as water delivery, irrigation, and agricultural practices have already achieved most possible progresses. Evaluation of variety WUE can be performed accurately at the individual plant level (WUEp). Reviewing the studies on physiological factors affecting WUE p performed up to date, stomatal conductance was considered to be an important trait associating closely with WUE p . The trait showed a large degree of varietal variability under well-watered conditions. Crop varieties differ highly in sensitivity of stomata to soil and air drying, with some varieties strongly reducing their stomatal conductance in contrast with those lightly regulating their stomata. As a result, difference among varieties in WUE p was enlarged under water deficit conditions in contrast with those under well-watered conditions. The relationship between stomatal conductance and yield depends on water availability of whole growing period in local areas. Usually, large stomatal conductance results in a high yield under good irrigation system, whereas a low stomatal conductance can lead to yield benefit under limited stored soil moisture conditions. In the NCP, winter wheat is the largest consumer of irrigation water, improvement strategies for high WUE aiming at wheat crops are in urgent need. We suggest, for the well-irrigated areas with excessive exploitation of groundwater, the wheat breeding program need to combine medium stomatal conductance (0.35 mmol H2O m-2 s-1 or so), high carboxylation efficiency, and high harvest index. Areas with partial/full access to irrigation, or infrequent drought, should target wheat varieties with high stomatal conductance under no water stress and low sensitivity of stomata to soil water deficit. Drought-prone rain-fed areas characterized by frequent and long terminal drought should target wheat varieties with low stomatal conductance under no water stress and high stomata sensitivity to soil drying to make water available during grain filling. 展开更多
关键词 water use efficiency YIELD stomatal conductance water deficit
下载PDF
Effects of Tillage Practices on Water Consumption, Water Use Efficiency and Grain Yield in Wheat Field 被引量:9
13
作者 ZHENG Cheng-yan YU Zhen-wen +4 位作者 SHI Yu CUI Shi-ming WANG Dong ZHANG Yong-li ZHAO Jun-ye 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第11期2378-2388,共11页
Water shortage is a serious issue threatening the sustainable development of agriculture in the North China Plain, with the winter wheat (Triticum aestivum L.) as its largest water-consuming crop. The effects of til... Water shortage is a serious issue threatening the sustainable development of agriculture in the North China Plain, with the winter wheat (Triticum aestivum L.) as its largest water-consuming crop. The effects of tillage practices on the water consumption and water use efifciency (WUE) of wheat under high-yield conditions using supplemental irrigation based on testing soil moisture dynamic change were examined in this study. This experiment was conducted from 2007 to 2010, with ifve tillage practice treatments, namely, strip rotary tillage (SR), strip rotary tillage after subsoiling (SRS), rotary tillage (R), rotary tillage after subsoiling (RS), and plowing tillage (P). The results showed that in the SRS and RS treatments the total water and soil water consumptions were 11.81, 25.18%and 12.16, 14.75%higher than those in SR and R treatments, respectively. The lowest ratio of irrigation consumption to total water consumption in the SRS treatment was 18.53 and 21.88%for the 2008-2009 and 2009-2010 growing seasons, respectively. However, the highest percentage of water consumption was found in the SRS treatment from anthesis to maturity. No signiifcant difference was found between the WUE of the lfag leaf at the later iflling stage in the SRS and RS treatments, but the lfag leaf WUE at these stages were higher than those of other treatments. The SRS and RS treatments exhibited the highest grain yield (9 573.76 and 9 507.49 kg ha-1 for 3-yr average) with no signiifcant difference between the two treatments, followed by P, R and SR treatments. But the SRS treatment had the highest WUE. Thus, the 1-yr subsoiling tillage, plus 2 yr of strip rotary planting operation may be an efifcient measure to increase wheat yield and WUE. 展开更多
关键词 winter wheat tillage practice water consumption characteristics YIELD water use efifciency supplemental irrigation
下载PDF
Effects of Water-Collecting and -Retaining Techniques on Photosynthetic Rates, Yield, and Water Use Efficiency of Millet Grown in a Semiarid Region 被引量:10
14
作者 WEN Xiao-xia ZHANG De-qi +2 位作者 LIAO Yun-cheng JIA Zhi-kuan JI Shu-qin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2012年第7期1119-1128,共10页
Field experiments were conducted in 2003 and 2004 to study the effects of plastic ridges and furrow film mulching (plastic film on sowing, as well as plastic film on flat soil and hole sowing) and chemicals (a drou... Field experiments were conducted in 2003 and 2004 to study the effects of plastic ridges and furrow film mulching (plastic film on sowing, as well as plastic film on flat soil and hole sowing) and chemicals (a drought resistant agent and a water- retaining agent) on growth, photosynthetic rate, yield, and water use efficiency (WUE) of spring millet (Setaria italica L.). The experimental results showed that water-collecting and -retaining techniques can effectively increase soil moisture content, the leaf photosynthetic rate and crop growth. Due to increased soil moisture under the plastic-covered ridge and furrow water-collecting in July and August, dry matter and plant height had a increase at the booting stage (late growth advantage). However, the plastic-covered flat soil and hole sowing reduced soil evaporation during early growth, the increase of dry matter and plant height appeared at the seedling stage (early growth advantage). Plastic-covered ridge and furrow sowing supplemented with chemical reagents had significant positive effects on water collection and soil moisture retention. Improvement of soil moisture resulted into the increase of the photosynthetic rate, dry matter accumulation yield and WUE. The water-collecting and -retaining techniques can improve WUE and enhance crop yield. Correlation analysis demonstrated that the photosynthetic rate under the water-collecting and -retaining techniques was significantly associated with the soil moisture, but had no significant relationship with leaf chlorophyll content. Plastic- covered ridge and furrow sowing supplemented with chemical reagents increased the yield and WUE by 114% and 8.16 kg ha-1 mm-1, respectively, compared with the control; while without the chemical reagents the yield and WUE were 95% and 7.42 kg ha-1 mm-1 higher, respectively, than those of the control. 展开更多
关键词 water use efficiency Loess Plateau of China plastic film mulch drought-resistant agent water-retaining agent
下载PDF
Effects of grazing on net primary productivity,evapotranspiration and water use efficiency in the grasslands of Xinjiang,China 被引量:10
15
作者 HUANG Xiaotao LUO Geping +1 位作者 YE Feipeng HAN Qifei 《Journal of Arid Land》 SCIE CSCD 2018年第4期588-600,共13页
Grazing is a main human activity in the grasslands of Xinjiang, China. It is vital to identify the effects of grazing on the sustainable utilization of local grasslands. However, the effects of grazing on net primary ... Grazing is a main human activity in the grasslands of Xinjiang, China. It is vital to identify the effects of grazing on the sustainable utilization of local grasslands. However, the effects of grazing on net primary productivity (NPP), evapotranspiration (ET) and water use efficiency (WUE) in this region remain unclear. Using the spatial Biome-BGC grazing model, we explored the effects of grazing on NPP, ET and WUE across the different regions and grassland types in Xinjiang during 1979-2012. NPP, ET and WUE under the grazed scenario were generally lower than those under the ungrazed scenario, and the differences showed increasing trends over time. The decreases in NPP, ET and WUE varied significantly among the regions and grassland types. NPP decreased as follows: among the regions, Northern Xinjiang (16.60 g C/(m2·a)), Tianshan Mountains (15.94 g C/(m2·a)) and Southern Xinjiang (-3.54 g C/(m2·a)); and among the grassland types, typical grasslands (25.70 g C/(m2·a)), swamp meadows (25.26 g C/(m2·a)), mid-mountain meadows (23.39 g C/(m2·a)), alpine meadows (6.33 g C/(m2·a)), desert grasslands (5.82 g C/(m2·a)) and saline meadows (2.90 g C/(me.a)). ET decreased as follows: among the regions, Tianshan Mountains (28.95 mm/a), Northern Xinjiang (8.11 mm/a) and Southern Xinjiang (7.57 mm/a); and among the grassland types, mid-mountain meadows (29.30 mm/a), swamp meadows (25.07 mm·a), typical grasslands (24.56 mm/a), alpine meadows (20.69 mm/a), desert grasslands (11.06 mm/a) and saline meadows (3.44 mm/a). WUE decreased as follows: among the regions, Northern Xinjiang (0.053 g C/kg H2O), Tianshan Mountains (0.034 g C/kg H2O) and Southern Xinjiang (0.012 g C/kg H2O); and among the grassland types, typical grasslands (0.0609 g C/kg H2O), swamp meadows (0.0548 g C/kg H2O), mid-mountain meadows (0.0501 g C/kg H2O), desert grasslands (0.0172 g C/kg H2O), alpine meadows (0.0121 g C/kg H2O) and saline meadows (0.0067 g C/kg H2O). In general, the decreases in NPP and WUE were more significant in the regions with relatively high levels of vegetation growth because of the high grazing intensity in these regions. The decreases in ET were significant in mountainous areas due to the terrain and high grazing intensity. 展开更多
关键词 grazing effect grassland type net primary productivity EVAPOTRANSPIRATION water use efficiency BiomeBGC grazing model
下载PDF
Grain yield and water use of winter wheat as affected by water and sulfur supply in the North China Plain 被引量:7
16
作者 XIE Ying-xin ZHANG Hui +6 位作者 ZHU Yun-ji ZHAO Li YANG Jia-heng CHA Fei-na LIU Cao WANG Chen-yang GUO Tian-cai 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第3期614-625,共12页
Water shortage has threatened sustainable development of agriculture globally as well as in the North China Plain(NCP).Irrigation,as the most effective way to increase food production in dry land,may not be readily ... Water shortage has threatened sustainable development of agriculture globally as well as in the North China Plain(NCP).Irrigation,as the most effective way to increase food production in dry land,may not be readily available in the situation of drought.One of the alternatives is to supply plants with enough nutrients so that they can be more sustainable to the water stress.The objective of this study was to explore effects of irrigation and sulphur(S)application on water consumption,dry matter accumulation(DMA),and grain yield of winter wheat in NCP.Three irrigation regimes including no irrigation(rainfed,I0)during the whole growth period,once irrigation only at jointing stage(90 mm,I1),and twice respective irrigation at jointing and anthesis stages(90 mm plus 90 mm,I2),and two levels of S application including 0S0and 60 kg ha^–1(S60)were designed in the field experiment in NCP.Results showed that increasing irrigation times significantly increased mean grain yield of wheat by 12.5–23.7%and nitrogen partial factor productivity(NPFP)by 21.2–45.0%in two wheat seasons,but markedly decreased crop water use efficiency(YWUE).Furthermore,S supply 60 kg ha^–1 significantly increased mean grain yield,YWUE,IWUE and NPFP by 5.6,6.1,23.2,and 5.6%(across two wheat seasons),respectively.However,we also found that role of soil moisture prior to S application was one of important greater factors on improving the absorption and utilization of storage water and nutrients of soil.Thus,water supply is still the most important factor to restrict the growth of wheat in the present case of NCP,supplying 60 kg ha^–1 S with once irrigation 90 mm at the jointing stage is a relatively appropriate recommended combination to improve grain yield and WUE of wheat when saving water resources is be considered in irrigated wheat farmlands of NCP. 展开更多
关键词 SULPHUR irrigation winter wheat grain yield water use efficiency 1
下载PDF
Mulching mode and planting density affect canopy interception loss of rainfall and water use efficiency of dryland maize on the Loess Plateau of China 被引量:7
17
作者 ZHENG Jing FAN Junliang +4 位作者 ZHANG Fucang YAN Shicheng GUO Jinjin CHEN Dongfeng LI Zhijun 《Journal of Arid Land》 SCIE CSCD 2018年第5期794-808,共15页
High and efficient use of limited rainwater resources is of crucial importance for the crop production in arid and semi-arid areas. To investigate the effects of different soil and crop management practices(i.e., mul... High and efficient use of limited rainwater resources is of crucial importance for the crop production in arid and semi-arid areas. To investigate the effects of different soil and crop management practices(i.e., mulching mode treatments: flat cultivation with non-mulching, flat cultivation with straw mulching, plastic-covered ridge with bare furrow and plastic-covered ridge with straw-covered furrow; and planting density treatments: low planting density of 45,000 plants/hm^2, medium planting density of 67,500 plants/hm^2 and high planting density of 90,000 plants/hm^2) on rainfall partitioning by dryland maize canopy, especially the resulted net rainfall input beneath the maize canopy, we measured the gross rainfall, throughfall and stemflow at different growth stages of dryland maize in 2015 and 2016 on the Loess Plateau of China. The canopy interception loss was estimated by the water balance method. Soil water storage, leaf area index, grain yield(as well as it components) and water use efficiency of dryland maize were measured or calculated. Results showed that the cumulative throughfall, cumulative stemflow and cumulative canopy interception loss during the whole growing season accounted for 42.3%–77.5%, 15.1%–36.3% and 7.4%–21.4% of the total gross rainfall under different treatments, respectively. Soil mulching could promote the growth and development of dryland maize and enhance the capability of stemflow production and canopy interception loss, thereby increasing the relative stemflow and relative canopy interception loss and reducing the relative throughfall. The relative stemflow and relative canopy interception loss generally increased with increasing planting density, while the relative throughfall decreased with increasing planting density. During the two experimental years, mulching mode had no significant influence on net rainfall due to the compensation between throughfall and stemflow, whereas planting density significantly affected net rainfall. The highest grain yield and water use efficiency of dryland maize were obtained under the combination of medium planting density of 67,500 plants/hm^2 and mulching mode of plastic-covered ridge with straw-covered furrow. Soil mulching can reduce soil evaporation and retain more soil water for dryland maize without reducing the net rainfall input beneath the maize canopy, which may alleviate the contradiction between high soil water consumption and insufficient rainfall input of the soil. In conclusion, the application of medium planting density(67,500 plants/hm^2) under plastic-covered ridge with bare furrow is recommended for increasing dryland maize production on the Loess Plateau of China. 展开更多
关键词 dryland maize THROUGHFALL STEMFLOW canopy interception loss yield water use efficiency Loess Plateau
下载PDF
Statistical Analysis of Leaf Water Use Efficiency and Physiology Traits of Winter Wheat Under Drought Condition 被引量:7
18
作者 WU Xiao-li BAO Wei-kai 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2012年第1期82-89,共8页
Five statistical methods including simple correlation, multiple linear regression, stepwise regression, principal components, and path analysis were used to explore the relationship between leaf water use efficiency ... Five statistical methods including simple correlation, multiple linear regression, stepwise regression, principal components, and path analysis were used to explore the relationship between leaf water use efficiency (WUE) and physiological traits (photosynthesis rate, stomatal conductance, transpiration rate, intercellular CO2 concentration, etc.) of 29 wheat cultivars. The results showed that photosynthesis rate, stomatal conductance, and transpiration rate were the most important leaf WUE parameters under drought condition. Based on the results of statistical analyses, principal component analysis could be the most suitable method to ascertain the relationship between leaf WUE and relative physiological traits. It is reasonable to assume that high leaf WUE wheat could be obtained by selecting breeding materials with high photosynthesis rate, low transpiration rate, and stomatal conductance under dry area. 展开更多
关键词 leaf water use efficiency multiple linear regression path analysis principal components simple correlation stepwise regression wheat genotype
下载PDF
Alternate Furrow Irrigation: A Practical Way to Improve Grape Quality and Water Use Efficiency in Arid Northwest China 被引量:6
19
作者 DU Tai-sheng KANG Shao-zhong +1 位作者 YAN Bo-yuan ZHANG Jian-hua 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第3期509-519,共11页
Field experiments were conducted for two years to investigate the benefits of alternate furrow irrigation on fruit yield, quality and water use efficiency of grape (Vitis vinifera L. cv. Rizamat) in the arid region ... Field experiments were conducted for two years to investigate the benefits of alternate furrow irrigation on fruit yield, quality and water use efficiency of grape (Vitis vinifera L. cv. Rizamat) in the arid region of Northwest China. Two irrigation treatments were included, i.e., conventional furrow irrigation (CFI, two root-zones were simultaneously irrigated during the consecutive irrigation) and alternate partial root-zone furrow irrigation (AFI, two root-zones were alternatively irrigated during the consecutive irrigation). Results indicate that AFI maintained similar photosynthetic rate (Pn) but with a reduced transpiration rate when compared to CFI. As a consequence, AFI improved water use efficiency based on evapotranspiration (WUEEr, fruit yield over water consumed) and irrigation (WUE~, fruit yield over water irrigated) by 30.0 and 34.5%, respectively in 2005, and by 12.7 and 17.7%, respectively in 2006. AFI also increased the edible percentage of berry by 2.91-4.79% significantly in both years. Vitamin C (Vc) content content of berry was increased by 25.6-37.5%, and tritrated acidity (TA) was reduced by 9.5-18.1% in AFI. This resulted in an increased total soluble solid content (TSS) to TA ratio (TSS/TA) by 11.5-16.7% when compared to CFI in both years. Our results indicate that alternate furrow irrigation is a practical way to improve grape fruit quality and water use efficiency for irrigated crops in arid areas. 展开更多
关键词 alternate furrow irrigation partial root-zone irrigation fruit yield water use efficiency fruit quality grape(Fitis vinifera L.
下载PDF
Fruit Yield and Quality, and Irrigation Water Use Efficiency of Summer Squash Drip-Irrigated with Different Irrigation Quantities in a Semi-Arid Agricultural Area 被引量:5
20
作者 Yasemin Kuslu Ustun Sahin +1 位作者 Fatih M Kiziloglu Selcuk Memis 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第11期2518-2526,共9页
Fruit yield, yield components, fruit mineral content, total phenolic content, antioxidant activity and irrigation water use efifciency (IWUE) of summer squash responses to different irrigation quantities were evalua... Fruit yield, yield components, fruit mineral content, total phenolic content, antioxidant activity and irrigation water use efifciency (IWUE) of summer squash responses to different irrigation quantities were evaluated with a ifeld study. Irrigations were done when the total evaporated water from a Class A pan was about 30 mm. Different irrigation quantities were adjusted using three different plant-pan coefifcients (Kcp, 100% (Kcp1), 85% (Kcp2) and 70% (Kcp3)). Results indicated that lower irrigation quantities provided statistically lower yield and yield components. The highest seasonal fruit yield (80.0 t ha-1) was determined in the Kcp1 treatment, which applied the highest volume of irrigation water (452.9 mm). The highest early fruit yield, average fruit weight and fruit diameter, length and number per plant were also determined in the Kcp1 treatment, with values of 7.25 t ha-1, 264.1 g, 5.49 cm, 19.95 cm and 10.92, respectively. Although the IWUE value was the highest in the Kcp1 treatment (176.6 kg ha-1 mm-1), it was statistically similar to the value for Kcp3 treatment (157.1 kg ha-1 mm-1). Total phenolic content and antioxidant activity of fruits was higher in the Kcp1 (44.27 μg gallic acid equivalents (GAE) mg-1 fresh sample) and in the Kcp2 (84.75%) treatments, respectively. Major (Na, N, P, K, Ca, Mg and S) and trace (Fe, Cu, Mn, Zn and B) mineral contents of squash fruits were the highest in the Kcp2 treatment, with the exception of P, Ca and Cu. Mineral contents and total phenolic content were signiifcantly affected by irrigation quantities, but antioxidant activity was not affected. It can be concluded that the Kcp1 treatment was the most suitable for achieving higher yield and IWUE. However, the Kcp2 treatment will be the most suitable due to the high fruit quality and relatively high yield in water shortage conditions. 展开更多
关键词 summer squash drip irrigation irrigation water use efifciency total phenolic content antioxidant activity fruit mineral content
下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部