Desert riparian plants experience high variability in water availability due to hydrological fluctuations. How riparian plants can survive with low water availability has been well studied, however, little is known ab...Desert riparian plants experience high variability in water availability due to hydrological fluctuations. How riparian plants can survive with low water availability has been well studied, however, little is known about the effects of high water availability on plant community structuring. We conducted a mesocosm experiment to test whether seedling competition under simulated high groundwater availability can explain the shift of co-dominance of Populus euphratica and Tamarix ramosissima in early communities to P. euphratica dominance in mature ones along the Tarim River in northwestern China. Seedlings of these two plant species were grown in monoculture and mixture pools with high groundwater availability. Results indicated that the above-ground biomass and relative yield of T. ramosissima were higher than those of P. euphratica. The competitive advantages of T. ramosissima included its rapid response in growth to groundwater enrichment and its water spender strategy, as evidenced by the increased leaf biomass proportion and the inert stomatal response to leaf-to-air vapor pressure deficit (VPD). In comparison, P. euphratica showed a conservative strategy in water use, with a sensitive response to leaf-to-air VPD. Result of the short-term competition was inconsistent with the long-term competition in fields, suggesting that competition exclusion is not the mechanism structuring the desert riparian plant communities. Thus, our research highlights the importance of mediation by environmental fluctuations (such as lessening competition induced by disturbance) in structuring plant communities along the Tarim riparian zones.展开更多
【目的】探究马铃薯的叶气温差与环境因子的关系,进一步优化马铃薯水分胁迫指数模型。【方法】在河南农业大学林学院试验基地进行马铃薯盆栽试验,选择晴朗天气测定不同土壤含水率下马铃薯的叶气温差随太阳辐射和大气饱和水汽压差(VPD)...【目的】探究马铃薯的叶气温差与环境因子的关系,进一步优化马铃薯水分胁迫指数模型。【方法】在河南农业大学林学院试验基地进行马铃薯盆栽试验,选择晴朗天气测定不同土壤含水率下马铃薯的叶气温差随太阳辐射和大气饱和水汽压差(VPD)的变化规律,确定作物水分胁迫指数(crop water stress index,CWSI)的上下基线,进一步试验后得到优化后的马铃薯CWSI经验模型,并对相关模型进行验证。【结果】马铃薯的叶气温差随着土壤含水率的降低而升高;当土壤含水率较低(7.28%)时,马铃薯的叶气温差随太阳辐射的增大而增大,呈显著线性关系;当土壤含水率较高(15.85%)时,马铃薯的叶气温差随VPD的增大而减小,呈显著线性关系;构建出马铃薯CWSI的上基线为y=0.0098Q-0.68[Q为太阳辐射强度/(W·m^(-2))],下基线为y=-1.67V+3.75(V为大气饱和水汽压差/kPa);将优化的CWSI模型验证后得知,随着土壤含水率的减少,CWSI值增加,且CWSI同土壤含水量呈极显著负相关关系(p<0.01)。【结论】马铃薯的最大叶气温差与太阳辐射的线性关系作为马铃薯水分胁迫指数的上基线是可行的,该研究对传统CWSI经验模型进行改进,进一步优化了CWSI经验模型。展开更多
C4 plants possess better drought tolerance than C3 plants. However, Hedysarum scoparium, a C3 species, is dominant and widely distributed in the desert areas of northwestern China due to its strong drought tolerance. ...C4 plants possess better drought tolerance than C3 plants. However, Hedysarum scoparium, a C3 species, is dominant and widely distributed in the desert areas of northwestern China due to its strong drought tolerance. This study compared it with Haloxylon ammodendron, a C4 species, regarding the interactive effects of drought stress and different leaf–air vapor pressure deficits. Variables of interest included gas exchange, the activity levels of key C4 photosynthetic enzymes, and cellular anatomy. In both species, gas exchange parameters were more sensitive to high vapor pressure deficit than to strong water stress, and the net CO2 assimilation rate(A n) was enhanced as vapor pressure deficits increased. A close relationship between A n and stomatal conductance(g s) suggested that the species shared a similar response mechanism. In H. ammodendron, the activity levels of key C4 enzymes were higher, including those of phosphoenolpyruvate carboxylase(PEPC) and nicotinamide adenine dinucleotide phosphate-malate enzyme(NADP-ME), whereas in H. scoparium, the activity level of nicotinamide adenine dinucleotide-malate enzyme(NAD-ME) was higher.Meanwhile, H. scoparium utilized adaptive structural features, including a larger relative vessel area and a shorter distance from vein to stomata, which facilitated the movement of water. These findings implied that some C4 biochemical pathways were present in H. scoparium to respond to environmental challenges.展开更多
Riparian vegetation belts in arid regions of Central Asia are endangered to lose their ecosystem services due to intensified land use.For the development of sustained land use,management knowledge of plant performance...Riparian vegetation belts in arid regions of Central Asia are endangered to lose their ecosystem services due to intensified land use.For the development of sustained land use,management knowledge of plant performance in relation to resource supply is needed.We estimated productivity related functional traits at the edges of the habitat of Populus euphratica Oliv.Specific leaf area (SLA) and carbon/nitrogen (C/N) ratio of P.euphratica leaves growing near a former river bank and close to moving sand dunes in the Ebinur Lake National Nature Reserve in Xinjiang,Northwest China (near Kazakhstan) were determined and daily courses of CO2 net assimilation (PN),transpiration (E),and stomatal conductance (gs) of two consecutive seasons were measured during July-August 2007 and June-July 2008.Groundwater level was high (1.5-2.5 m below ground) throughout the years and no flooding occurred at the two tree stands.SLA was slightly lower near the desert than at the former river bank and leaves contained less N in relation to C.Highest E and gs of P.euphratica were reached in the morning before noon on both stands and a second low maximum occurred in the afternoon despite of the unchanged high levels of air to leaf water vapor pressure deficit (ALVPD).Decline of gs in P.euphratica was followed by decrease of E.Water use efficiency (WUE) of leaves near the desert were higher in the morning and the evening,in contrast to leaves from the former river bank that maintained an almost stable level throughout the day.High light compensation points and high light saturation levels of PN indicated the characteristics of leaves well-adapted to intensive irradiation at both stands.In general,leaves of P.euphratica decreased their gs beyond 20 Pa/kPa ALVPD in order to limit water losses.Decrease of E did not occur in both stands until 40 Pa/kPa ALVPD was reached.Full stomatal closure of P.euphratica was achieved at 60 Pa/kPa ALVPD in both stands.E through the leaf surface amounted up to 30% of the highest E rates,indicating dependence on water recharge from the ground despite of obviously closed stomata.A distinct leaf surface temperature (Tleaf) threshold of around 30℃ also existed before stomata started to close.Generally,the differences in gas exchange between both stands were small,which led to the conclusion that micro-climatic constraints to E and photosynthesis were not the major factors for declining tree density with increasing distance from the river.展开更多
Vapor pressure deficit(VPD) is a widely used measure of atmospheric water demand. It is closely related to crop evapotranspiration and consequently has major impacts on crop growth and yields. Most previous studies ...Vapor pressure deficit(VPD) is a widely used measure of atmospheric water demand. It is closely related to crop evapotranspiration and consequently has major impacts on crop growth and yields. Most previous studies have focused on the impacts of temperature, precipitation, and solar radiation on crop yields, but the impact of VPD is poorly understood. Here, we investigated the spatial and temporal changes in VPD and their impacts on yields of major crops in China from 1980 to 2008. The results showed that VPD during the growing period of rice, maize, and soybean increased by more than 0.10kPa(10 yr)^–1 in northeastern and southeastern China, although it increased the least during the wheat growing period. Increases in VPD had different impacts on yields for different crops and in different regions. Crop yields generally decreased due to increased VPD, except for wheat in southeastern China. Maize yield was sensitive to VPD in more counties than other crops. Soybean was the most sensitive and rice was the least sensitive to VPD among the major crops. In the past three decades, due to the rising trend in VPD, wheat, maize, and soybean yields declined by more than 10.0% in parts of northeastern China and the North China Plain, while rice yields were little affected. For China as a whole, the trend in VPD during 1980–2008 increased rice yields by 1.32%,but reduced wheat, maize, and soybean yields by 6.02%, 3.19%, and 7.07%, respectively. Maize and soybean in the arid and semi-arid regions in northern China were more sensitive to the increase in VPD. These findings highlight that climate change can affect crop growth and yield through increasing VPD, and water-saving technologies and agronomic management need to be strongly encouraged to adapt to ongoing climate change.展开更多
Soybean (Glycine max. (L.) Merr.) sap flow during the growth stages in relation to soil moisture, nutrition, and weather conditions determine the plant development. Modeling this process helps to better understand the...Soybean (Glycine max. (L.) Merr.) sap flow during the growth stages in relation to soil moisture, nutrition, and weather conditions determine the plant development. Modeling this process helps to better understand the plant water-nutrition uptake and improve the decisions of efficient irrigation management and other inputs for effective soybean production. Field studies of soybean sap flow took place in 2017-2021 at Marianna, Arkansas using heat balance stem flow gauges to measure the sap flow during the reproductive growth stages R3-R7. Plant water uptake was measured using the lysimeter-container method. The uniform sap flow-based hydraulic system in the soil-root-stem-leaf pathway created negative water tensions with osmotic processes and water surface tensions in stomata cells as water evaporation layers increase are the mechanism of the plant water uptake. Any changes the factors like soil water tension, solar radiation, or air relative humidity immediately, within a few seconds, affect the system’s balance and cause simultaneously appropriate reactions in different parts of the system. The plant water use model was created from plant emergence, vegetative to final reproductive growth stages depending on soil-weather conditions, plant morphology, and biomass. The main factors of the model include solar radiation, air temperature, and air relative humidity. The effective sap flow uptake occurs around 0.8 KPa VPD. Further research is needed to optimize the model’s factors to increase the plant growth dynamics and yield productivity.展开更多
基金funded by the National Basic Research Program of China(2013CB429903)the National Natural Science Foundation of China(4117103741171095)
文摘Desert riparian plants experience high variability in water availability due to hydrological fluctuations. How riparian plants can survive with low water availability has been well studied, however, little is known about the effects of high water availability on plant community structuring. We conducted a mesocosm experiment to test whether seedling competition under simulated high groundwater availability can explain the shift of co-dominance of Populus euphratica and Tamarix ramosissima in early communities to P. euphratica dominance in mature ones along the Tarim River in northwestern China. Seedlings of these two plant species were grown in monoculture and mixture pools with high groundwater availability. Results indicated that the above-ground biomass and relative yield of T. ramosissima were higher than those of P. euphratica. The competitive advantages of T. ramosissima included its rapid response in growth to groundwater enrichment and its water spender strategy, as evidenced by the increased leaf biomass proportion and the inert stomatal response to leaf-to-air vapor pressure deficit (VPD). In comparison, P. euphratica showed a conservative strategy in water use, with a sensitive response to leaf-to-air VPD. Result of the short-term competition was inconsistent with the long-term competition in fields, suggesting that competition exclusion is not the mechanism structuring the desert riparian plant communities. Thus, our research highlights the importance of mediation by environmental fluctuations (such as lessening competition induced by disturbance) in structuring plant communities along the Tarim riparian zones.
文摘【目的】探究马铃薯的叶气温差与环境因子的关系,进一步优化马铃薯水分胁迫指数模型。【方法】在河南农业大学林学院试验基地进行马铃薯盆栽试验,选择晴朗天气测定不同土壤含水率下马铃薯的叶气温差随太阳辐射和大气饱和水汽压差(VPD)的变化规律,确定作物水分胁迫指数(crop water stress index,CWSI)的上下基线,进一步试验后得到优化后的马铃薯CWSI经验模型,并对相关模型进行验证。【结果】马铃薯的叶气温差随着土壤含水率的降低而升高;当土壤含水率较低(7.28%)时,马铃薯的叶气温差随太阳辐射的增大而增大,呈显著线性关系;当土壤含水率较高(15.85%)时,马铃薯的叶气温差随VPD的增大而减小,呈显著线性关系;构建出马铃薯CWSI的上基线为y=0.0098Q-0.68[Q为太阳辐射强度/(W·m^(-2))],下基线为y=-1.67V+3.75(V为大气饱和水汽压差/kPa);将优化的CWSI模型验证后得知,随着土壤含水率的减少,CWSI值增加,且CWSI同土壤含水量呈极显著负相关关系(p<0.01)。【结论】马铃薯的最大叶气温差与太阳辐射的线性关系作为马铃薯水分胁迫指数的上基线是可行的,该研究对传统CWSI经验模型进行改进,进一步优化了CWSI经验模型。
基金supported by the National Natural Science Foundation of China (No.31070538 and No.31370599)the Fundamental Research Funds for the Central Universities (No.: QN2011026)
文摘C4 plants possess better drought tolerance than C3 plants. However, Hedysarum scoparium, a C3 species, is dominant and widely distributed in the desert areas of northwestern China due to its strong drought tolerance. This study compared it with Haloxylon ammodendron, a C4 species, regarding the interactive effects of drought stress and different leaf–air vapor pressure deficits. Variables of interest included gas exchange, the activity levels of key C4 photosynthetic enzymes, and cellular anatomy. In both species, gas exchange parameters were more sensitive to high vapor pressure deficit than to strong water stress, and the net CO2 assimilation rate(A n) was enhanced as vapor pressure deficits increased. A close relationship between A n and stomatal conductance(g s) suggested that the species shared a similar response mechanism. In H. ammodendron, the activity levels of key C4 enzymes were higher, including those of phosphoenolpyruvate carboxylase(PEPC) and nicotinamide adenine dinucleotide phosphate-malate enzyme(NADP-ME), whereas in H. scoparium, the activity level of nicotinamide adenine dinucleotide-malate enzyme(NAD-ME) was higher.Meanwhile, H. scoparium utilized adaptive structural features, including a larger relative vessel area and a shorter distance from vein to stomata, which facilitated the movement of water. These findings implied that some C4 biochemical pathways were present in H. scoparium to respond to environmental challenges.
基金funded by the German Academic Exchange Service,PPP-China(D/06/00362)
文摘Riparian vegetation belts in arid regions of Central Asia are endangered to lose their ecosystem services due to intensified land use.For the development of sustained land use,management knowledge of plant performance in relation to resource supply is needed.We estimated productivity related functional traits at the edges of the habitat of Populus euphratica Oliv.Specific leaf area (SLA) and carbon/nitrogen (C/N) ratio of P.euphratica leaves growing near a former river bank and close to moving sand dunes in the Ebinur Lake National Nature Reserve in Xinjiang,Northwest China (near Kazakhstan) were determined and daily courses of CO2 net assimilation (PN),transpiration (E),and stomatal conductance (gs) of two consecutive seasons were measured during July-August 2007 and June-July 2008.Groundwater level was high (1.5-2.5 m below ground) throughout the years and no flooding occurred at the two tree stands.SLA was slightly lower near the desert than at the former river bank and leaves contained less N in relation to C.Highest E and gs of P.euphratica were reached in the morning before noon on both stands and a second low maximum occurred in the afternoon despite of the unchanged high levels of air to leaf water vapor pressure deficit (ALVPD).Decline of gs in P.euphratica was followed by decrease of E.Water use efficiency (WUE) of leaves near the desert were higher in the morning and the evening,in contrast to leaves from the former river bank that maintained an almost stable level throughout the day.High light compensation points and high light saturation levels of PN indicated the characteristics of leaves well-adapted to intensive irradiation at both stands.In general,leaves of P.euphratica decreased their gs beyond 20 Pa/kPa ALVPD in order to limit water losses.Decrease of E did not occur in both stands until 40 Pa/kPa ALVPD was reached.Full stomatal closure of P.euphratica was achieved at 60 Pa/kPa ALVPD in both stands.E through the leaf surface amounted up to 30% of the highest E rates,indicating dependence on water recharge from the ground despite of obviously closed stomata.A distinct leaf surface temperature (Tleaf) threshold of around 30℃ also existed before stomata started to close.Generally,the differences in gas exchange between both stands were small,which led to the conclusion that micro-climatic constraints to E and photosynthesis were not the major factors for declining tree density with increasing distance from the river.
基金National Key Research and Development Program of China(2016YFD0300201 and 2017YFD0300301)National Natural Science Foundation of China(41571088,31561143003,and 41571493)
文摘Vapor pressure deficit(VPD) is a widely used measure of atmospheric water demand. It is closely related to crop evapotranspiration and consequently has major impacts on crop growth and yields. Most previous studies have focused on the impacts of temperature, precipitation, and solar radiation on crop yields, but the impact of VPD is poorly understood. Here, we investigated the spatial and temporal changes in VPD and their impacts on yields of major crops in China from 1980 to 2008. The results showed that VPD during the growing period of rice, maize, and soybean increased by more than 0.10kPa(10 yr)^–1 in northeastern and southeastern China, although it increased the least during the wheat growing period. Increases in VPD had different impacts on yields for different crops and in different regions. Crop yields generally decreased due to increased VPD, except for wheat in southeastern China. Maize yield was sensitive to VPD in more counties than other crops. Soybean was the most sensitive and rice was the least sensitive to VPD among the major crops. In the past three decades, due to the rising trend in VPD, wheat, maize, and soybean yields declined by more than 10.0% in parts of northeastern China and the North China Plain, while rice yields were little affected. For China as a whole, the trend in VPD during 1980–2008 increased rice yields by 1.32%,but reduced wheat, maize, and soybean yields by 6.02%, 3.19%, and 7.07%, respectively. Maize and soybean in the arid and semi-arid regions in northern China were more sensitive to the increase in VPD. These findings highlight that climate change can affect crop growth and yield through increasing VPD, and water-saving technologies and agronomic management need to be strongly encouraged to adapt to ongoing climate change.
文摘Soybean (Glycine max. (L.) Merr.) sap flow during the growth stages in relation to soil moisture, nutrition, and weather conditions determine the plant development. Modeling this process helps to better understand the plant water-nutrition uptake and improve the decisions of efficient irrigation management and other inputs for effective soybean production. Field studies of soybean sap flow took place in 2017-2021 at Marianna, Arkansas using heat balance stem flow gauges to measure the sap flow during the reproductive growth stages R3-R7. Plant water uptake was measured using the lysimeter-container method. The uniform sap flow-based hydraulic system in the soil-root-stem-leaf pathway created negative water tensions with osmotic processes and water surface tensions in stomata cells as water evaporation layers increase are the mechanism of the plant water uptake. Any changes the factors like soil water tension, solar radiation, or air relative humidity immediately, within a few seconds, affect the system’s balance and cause simultaneously appropriate reactions in different parts of the system. The plant water use model was created from plant emergence, vegetative to final reproductive growth stages depending on soil-weather conditions, plant morphology, and biomass. The main factors of the model include solar radiation, air temperature, and air relative humidity. The effective sap flow uptake occurs around 0.8 KPa VPD. Further research is needed to optimize the model’s factors to increase the plant growth dynamics and yield productivity.