The structure of current speed and the variability of volume transports of the Kuroshio in the Tokara-kaikyo and Osumi-kaikyo are discussed on the basis of data of KER in the period from 1977 to 1984. The average geos...The structure of current speed and the variability of volume transports of the Kuroshio in the Tokara-kaikyo and Osumi-kaikyo are discussed on the basis of data of KER in the period from 1977 to 1984. The average geostrophic transport through these two straits is estimated to be 24. 5×106 m3/s and only 1/12 of the transport is through the Osumi-kaiky5. Countercurrents on both sides of the Kuroshio trunk are observed in the Tokara-kaikyo. Calculation indicates that the average geostrophic current speed is less than the GEK current speed, systematically. On the basis of the current measurements, the northward transports through the Taiwan Strait in winter and summer are estimated to be 1. 05×106and 3. 16×106m3/s, respectively. From Chu's data (1976) the average transport of the Kuroshio flowing into the East China Sea passing through the passage east of Taiwan is about 29. 3×106m3/s. From Miita and Ogawa's data (1984) the average transport through the Tsushima-kaikyo is 3. 6×106m3/s. Thus the volume transports through the above four straits are roughly in balance, the total outflowing transport is slightly larger than the total inflowing transport. The possible reasons resulting in the difference of transports are also discussed.展开更多
The objective of this work is to study the relation between humidity, density, porosity and shrinkage of the floodplain soil and riparian vegetation and their ability to store water. For this purpose, two locations fo...The objective of this work is to study the relation between humidity, density, porosity and shrinkage of the floodplain soil and riparian vegetation and their ability to store water. For this purpose, two locations for every type of soils were evaluated. Both were placed at the Agronomy University (Faculdade de Cidncias Agron6micas) in SAo Manuel, State of SAo Paulo, Brazil. The floodplain soil was vegetated with Southern Cattail (Typha domingensis). In both places, soil samples were collected from several depths: 0, 30, 60 and 100 cm. Results show that lower soil density values (0.15 g/cm3) with organic texture and high porosities values (up to 86.2%) were found in samples with the highest organic material content in the floodplain soil. For this field experiment, flood plains soils (characterised as basin gley soils) presented high volumetric instability with a retratibility of 67.49% and higher water storage capacities compared to riparian stands soils (characterised as fluvic neosoils).展开更多
Monitoring of variations in water for lakes and reservoirs is a requirement for meeting human needs and assessing ongoing climatic changes. However, regular gauging networks fail to provide the information needed for ...Monitoring of variations in water for lakes and reservoirs is a requirement for meeting human needs and assessing ongoing climatic changes. However, regular gauging networks fail to provide the information needed for water volume data. The aim of this study is to evaluate an approach to estimate water volume variation for the southern part of Lake Nasser in Egypt without in-situ gauge measurements and bathymetry maps. Combination of both Hydroweb satellite altimetry and Landsat 8 satellite imagery data was used. As compared to in-situ water levels, satellite altimetry provided accurate water levels variations for Lake Nasser;the RMSE was 0.28 m, with excellent agreement (R2 is 0.98). The lowest water level of altimetry database i.e. 174.57 m was used as a reference level for estimating water volumes variations for the study duration 8/2014-6/2015. All water altimetry levels were converted to differences of recorded water level above the lowest altimetry Level (ΔWL). Series of Landsat 8 imagery data were selected to extract surface areas corresponding to radar altimetry water levels dates. Areas-ΔWL relationship model was established as a polynomial function: A = f(ΔWL), and therefore, the relationship of the water volume above the lowest water level for the study time (ΔV) and ΔWL was obtained through the analytical integration of (Area-ΔWL) model. Another approach (Heron method) was also applied for estimating water volume variations. Validation of these two approaches showed that estimated water volume variations above reference water level using both methods i.e. integration and Heron agreed well with in-situ measurements of volume variation deduced from recent bathymetry map and in-situ water levels (R2 for both methods = 0.98). The RMSE for integration method is 323.89 MCM and for Heron method was 318.09 MCM, being approximately 13.2% of the mean volume variations above the lowest reference water level for mean surface area ≈658 km2. Another byproduct for these approaches was the modeling for a remote detecting water level. Once the F(L) relationship is set up for a given region, future Landsat images can be utilized to track water levels freely of radar altimetry. Finally it can be concluded that remote sensing resources (satellites radar altimeters and optical satellite images) that are openly accessible these days represent a great opportunity to remotely monitor reservoir water capacity and help in examining and observing hydrological and water driven procedures.展开更多
The mechanism of erosion of a riverbank is not easy to analyze and each sediment particle is under influence of number of forces. Among all these forces, force of cohesion between the particles plays a very dominant a...The mechanism of erosion of a riverbank is not easy to analyze and each sediment particle is under influence of number of forces. Among all these forces, force of cohesion between the particles plays a very dominant and significant role, and, till date, not much progress has been made to analyze this force in a deterministic manner. A particle is bound to its neighboring particles under this force of cohesion. In this paper, the analysis of forces acting on a particle on a riverbank has been made with a model called the Truncated Pyramid Model. A particle requires a certain velocity to escape from the riverbank and determination of the escape velocity can pave the way for finding out other parameters like entrainment rate, erosion coefficient and so on. Calculation and estimation of riverbank erosion rate is an important aspect of river basin management. In this paper it has been shown that the escape velocity is dependent on certain micro-level parameters like inter-particle distance and volume of the water bridge between two adjacent particles. Also, for saline water the particle requires less velocity to escape compared to the pure-water scenario. The findings of the present paper exactly fall in line with the results of another paper where the researchers showed that cohesive force between the particles decreases as water turns from pure to impure.展开更多
A combined method of wave superposition and finite element is proposed to solve the radiation noise of targets in shallow sea.Taking the sound propagation of spherical sound source in shallow sea as an example,the rad...A combined method of wave superposition and finite element is proposed to solve the radiation noise of targets in shallow sea.Taking the sound propagation of spherical sound source in shallow sea as an example,the radiation sound field of the spherical sound source is equivalent to the linear superposition of the radiation sound field of several internal point sound sources,and then the radiated noise induced by spherical sound source can be predicted quickly.The accuracy and efficiency of the method are verified by comparing with the numerical results of finite element method,and the rapid prediction of underwater radiated noise of cylindrical shell is carried out based on the method.The results show that compared with the finite element method,the relative error of the calculation results under different simulation conditions does not exceed 0.1%,and the calculation time is about 1/10 of the finite element method,so this method can be used to solve the radiated noise of shallow underwater targets.展开更多
Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by ...Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by single-atom catalysts(SACs),which exhibit unique and intricate interactions between atomically dispersed metal atoms and their supports.Recently,bimetallic SACs(bimSACs)have garnered significant attention for leveraging the synergistic functions of two metal ions coordinated on appropriately designed supports.BimSACs offer an avenue for rich metal–metal and metal–support cooperativity,potentially addressing current limitations of SACs in effectively furnishing transformations which involve synchronous proton–electron exchanges,substrate activation with reversible redox cycles,simultaneous multi-electron transfer,regulation of spin states,tuning of electronic properties,and cyclic transition states with low activation energies.This review aims to encapsulate the growing advancements in bimSACs,with an emphasis on their pivotal role in hydrogen generation via water splitting.We subsequently delve into advanced experimental methodologies for the elaborate characterization of SACs,elucidate their electronic properties,and discuss their local coordination environment.Overall,we present comprehensive discussion on the deployment of bimSACs in both hydrogen evolution reaction and oxygen evolution reaction,the two half-reactions of the water electrolysis process.展开更多
Intracellular water volume is an important parameter for expressing concentration of intracellular ions and diffusional water permeability of cells by nuclear magnetic resonance(NMR). Presented here, is a method using...Intracellular water volume is an important parameter for expressing concentration of intracellular ions and diffusional water permeability of cells by nuclear magnetic resonance(NMR). Presented here, is a method using 35 Cl and deuterium ( 2D) NMR spectra of cell free supernatant and cell suspension to get intracellular water volume. The volume of intracellular water as a fraction of the total cell volume, V i /V c , in isosmotic solution is 0 706±0 065.展开更多
A laboratory study was carried out on both natural and compacted specimens to investigate the complex soil-water interaction in an unsaturated expansive clay. The laboratory study includes the measurement of soil-wate...A laboratory study was carried out on both natural and compacted specimens to investigate the complex soil-water interaction in an unsaturated expansive clay. The laboratory study includes the measurement of soil-water characteristic curves, 1D free swelling tests, measurement of swelling pressure and shrinkage tests. The test results revealed that the air-entry value of the natural specimen was quite low due to cracks and fissures present. The hydraulic hysteresis of the natural specimen was relatively insignificant as compared with the compacted specimen. Within a suction range 0 to 500 kPa, a bilinear relationship between free swelling strain (or swelling pressure) and initial soil suction was observed for both the natural and compacted specimens. As a result of over-consolidation and secondary structures such as cementation and cracks, the natural specimens exhibited significant lower swelling (or swelling pressure) than the compacted specimen. The change of matric suction exerts a more significant effect on the water phase than on the soil skeleton for this expansive clay.展开更多
The strength and durability of concrete will be significantly reduced at high volume of mineral admixture,and the poor early strength of concrete also still needs to be solved.In this investigation,a highly active alk...The strength and durability of concrete will be significantly reduced at high volume of mineral admixture,and the poor early strength of concrete also still needs to be solved.In this investigation,a highly active alkaline electrolyzed waters was used as mixing water to improve the early strength and enhance the durability of green concrete with high volume mineral admixture,the influences of alkaline electrolyzed water(AEW)on hydration activity of mineral admixture and durability of concrete were determined.The results showed that compared with natural tap water,AEW can accelerate early hydration process of cement in concrete and produce comparatively more hydrated products,leading to a 13.6%higher compressive strength than that of ordinary concrete at early age,but the improvement effect of AEW concrete was relatively reduced at long-term age.Meanwhile,the activity of mineral admixtures could be stimulated by AEW to some extent,the strength and durability performance of AEW concrete after double doping 25%slag and 25%fly ash can still reach the level of ordinary cement concrete without mineral admixtures.The SEM micromorphology of 7 d hydrated natural tap water cement paste was observed to be flaky and tabular,but the AEW cement pastes present obvious cluster and granulation phenomenon.The SEM microstructure of AEW concrete with mineral admixtures is more developed and denser than ordinary tap water concrete with mineral admixtures.Therefore,the AEW probably could realize the effective utilization of about 50%mineral admixture amount of concrete without strength loss,the cement production cost and associated CO_(2) emission reduced,which has a good economic and environmental benefit.展开更多
Emulsion electrospinning as a novel process in spinning core-sheath fibers shows a promising potential in drug release control. The volume ratio of water phase to oily phase is one of the critical parameters in formin...Emulsion electrospinning as a novel process in spinning core-sheath fibers shows a promising potential in drug release control. The volume ratio of water phase to oily phase is one of the critical parameters in forming core-sheath fibers. In this study, water phase was presented by hydrophilic tetracycline hydrochloride and oily phase by hydrophobic poly (E-caprolactone) (PCL). The effects of volume ratios of water phase to oily phase on fiber morphology and in vitro drug release were investigated. Scanning electron microscopy ( SEM ), transmission electron microscopy ( TEM), and eonfoeal laser scanning microscopy(CLSM) were used to observe the morphology, core.sheath structure of the fibers and drug loading in the fibers, respectively. Samples of three different volume ratios of water phase to oily phase, 1: 25, 1:15, and 1:10, were prepared with the same concentration of drug solution. Experiment results showed that, with an increase in the volume ratios of water phase to oily phase, the fiber diameter increased and diameter distribution scattered. The drug entrapment efficiency of the fibers reduces with the increase in volume ratios, L e. , from 73.48 % in the ratio of 1 : 25, 62.23 % in 1 : 15, down to 45.63 % in 1:10. In vitro release tests showed that a higher volume ratio of water phase to oily phase would lead to a lower release rate resulted from thicker fiber sheath.展开更多
Cooling strength is one of the important factors affecting microstructure and properties of gas cylinders during quenching process,and reasonable water spray volume can effectively improve the quality of gas cylinders...Cooling strength is one of the important factors affecting microstructure and properties of gas cylinders during quenching process,and reasonable water spray volume can effectively improve the quality of gas cylinders and reduce production costs.To find the optimal water spray parameters,a fluid-solid coupling model with three-phase flow was established in consideration of water-vapor conversion.The inner and outer walls of gas cylinder with the dimensions of d914 mm×38 mm×12000 mm were quenched using multi-nozzle water spray system.The internal pressure,average heat transfer coefficient(have)and stress of the gas cylinder under different water spray volumes during quenching process were studied.Finally,the mathematical model was experimentally verified.The results show that both the internal pressure and have increase along with the increase of spray volume.The internal pressure increases slowly first and then rapidly,but have increases rapidly first and then slowly.To satisfy hardenability of gas cylinders,the minimum spray volume should not be less than 40 m^3/(h·m).The results of stress indicate that water spray quenching will not cause deformation of bottle body in the range of water volume from 40 to 290 m^3/(h·m).展开更多
Formation water invasion is the most troublesome problem associated with air drilling. However, it is not economical to apply mist drilling when only a small amount of water flows into wellbore from formation during a...Formation water invasion is the most troublesome problem associated with air drilling. However, it is not economical to apply mist drilling when only a small amount of water flows into wellbore from formation during air drilling. Formation water could be circulated out of the wellbore through increasing the gas injection rate. In this paper, the Angel model was modified by introducing Nikurade friction factor for the flow in coarse open holes and translating formation water rate into equivalent penetration rate. Thus the distribution of annular pressure and the relationship between minimum air injection rate and formation water rate were obtained. Real data verification indicated that the modified model is more accurate than the Angel model and can provide useful information for air drilling.展开更多
Based on the observation data of rainfall,vegetation,runoff and sediment yield in the experimental plots located in Hetian Town,Changting County of Fujian Province during 2007-2010,the changing characteristics and int...Based on the observation data of rainfall,vegetation,runoff and sediment yield in the experimental plots located in Hetian Town,Changting County of Fujian Province during 2007-2010,the changing characteristics and interrelation of live vegetation volume of grass,rainfall parameters,and water(soil)conservation effect RE(SE)were analyzed at four time scales of rainfall event,month,season,and year.The results showed that with the increase of time scales,the rainfall and vegetation indicators increased or decreased more or less,and the variation range of RE was small,while SEslowly decreased.The mean REchanged by 10%-20% at different time scales,and the observed water conservation effect of the grassland was the best at season scale while the worst at year scale.The soil conservation effect of the grassland was the best at month scale and the worst at season scale.The water conservation effect of the grass was mainly controlled by rainfall factors,including rainfall duration and precipitation at rainfall event scale,and the maximum intensity of precipitation within 30 min at longer time scales.However,the soil conservation effect of the grass was mainly controlled by vegetation factors,including the contribution of the litter on soil surface at rainfall event scale,the interaction of rainfall and vegetation at month and season scales,and the live vegetation volume of the grass at year scale.Consequently,at different time scales,the factors influencing water and soil conservation changed and interacted,and the observed water and soil conservation effects were also different,indicating that the influence of time scales deserves attention in both research and management practices.展开更多
This present study develops a 2-D numerical scheme to simulate the velocity and depth on the actual terrain by using shallow water equations. The computational approach uses the HLL scheme as a basic building block, t...This present study develops a 2-D numerical scheme to simulate the velocity and depth on the actual terrain by using shallow water equations. The computational approach uses the HLL scheme as a basic building block, treats the bottom slope by lateralizing the momentum flux, then refines the scheme using the Strang splitting to deal with the frictional source term. Besides, a decoupled algorithm is also adopted to compute the aggradation and degradation of bed-level elevation by using the Manning-Strickler formula and Exner’s relationship. The main purpose is to set up the window interface of 2-D numerical model and increase the realization of engineers on these characteristics of hydraulic treatment and maintenance.展开更多
The development of modern agriculture requires the reduction of water and chemical N fertilizer inputs.Increasing the planting density can maintain higher yields,but also consumes more of these restrictive resources.H...The development of modern agriculture requires the reduction of water and chemical N fertilizer inputs.Increasing the planting density can maintain higher yields,but also consumes more of these restrictive resources.However,whether an increased maize density can compensate for the negative effects of reduced water and N supply on grain yield and N uptake in the arid irrigated areas remains unknown.This study is part of a long-term positioning trial that started in 2016.A split-split plot field experiment of maize was implemented in the arid irrigated area of northwestern China in 2020 to 2021.The treatments included two irrigation levels:local conventional irrigation reduced by 20%(W1,3,240 m^(3)ha^(-1))and local conventional irrigation(W2,4,050 m^(3)ha^(-1));two N application rates:local conventional N reduced by 25%(N1,270 kg ha^(-1))and local conventional N(360 kg ha^(-1));and three planting densities:local conventional density(D1,75,000 plants ha^(-1)),density increased by 30%(D2,97,500 plants ha-1),and density increased by 60%(D3,120,000 plants ha^(-1)).Our results showed that the grain yield and aboveground N accumulation of maize were lower under the reduced water and N inputs,but increasing the maize density by 30% can compensate for the reductions of grain yield and aboveground N accumulation caused by the reduced water and N supply.When water was reduced while the N application rate remained unchanged,increasing the planting density by 30% enhanced grain yield by 13.9% and aboveground N accumulation by 15.3%.Under reduced water and N inputs,increasing the maize density by 30% enhanced N uptake efficiency and N partial factor productivity,and it also compensated for the N harvest index and N metabolic related enzyme activities.Compared with W2N2D1,the N uptake efficiency and N partial factor productivity increased by 28.6 and 17.6%under W1N1D2.W1N2D2 had 8.4% higher N uptake efficiency and 13.9% higher N partial factor productivity than W2N2D1.W1N2D2 improved urease activity and nitrate reductase activity by 5.4% at the R2(blister)stage and 19.6% at the V6(6th leaf)stage,and increased net income and the benefit:cost ratio by 22.1 and 16.7%,respectively.W1N1D2 and W1N2D2 reduced the nitrate nitrogen and ammoniacal nitrogen contents at the R6 stage in the 40-100 cm soil layer,compared with W2N2D1.In summary,increasing the planting density by 30% can compensate for the loss of grain yield and aboveground N accumulation under reduced water and N inputs.Meanwhile,increasing the maize density by 30% improved grain yield and aboveground N accumulation when water was reduced by 20% while the N application rate remained constant in arid irrigation areas.展开更多
Conversion of solar energy into H_(2) by photoelectrochemical(PEC)water splitting is recognized as an ideal way to address the growing energy crisis and environmental issues.In a typical PEC cell,the construction of p...Conversion of solar energy into H_(2) by photoelectrochemical(PEC)water splitting is recognized as an ideal way to address the growing energy crisis and environmental issues.In a typical PEC cell,the construction of photoanodes is crucial to guarantee the high efficiency and stability of PEC reactions,which fundamentally rely on rationally designed semiconductors(as the active materials)and substrates(as the current collectors).In this review work,we start with a brief introduction of the roles of substrates in the PEC process.Then,we provide a systematic overview of representative strategies for the controlled fabrication of photoanodes on rationally designed substrates,including conductive glass,metal,sapphire,silicon,silicon carbide,and flexible substrates.Finally,some prospects concerning the challenges and research directions in this area are proposed.展开更多
Due to the dissimilarity among different producing layers,the influences of inter-layer interference on the production performance of a multi-layer gas reservoir are possible.However,systematic studies of inter-layer ...Due to the dissimilarity among different producing layers,the influences of inter-layer interference on the production performance of a multi-layer gas reservoir are possible.However,systematic studies of inter-layer interference for tight gas reservoirs are really limited,especially for those reservoirs in the presence of water.In this work,five types of possible inter-layer interferences,including both absence and presence of water,are identified for commingled production of tight gas reservoirs.Subsequently,a series of reservoir-scale and pore-scale numerical simulations are conducted to quantify the degree of influence of each type of interference.Consistent field evidence from the Yan'an tight gas reservoir(Ordos Basin,China)is found to support the simulation results.Additionally,suggestions are proposed to mitigate the potential inter-layer interferences.The results indicate that,in the absence of water,commingled production is favorable in two situations:when there is a difference in physical properties and when there is a difference in the pressure system of each layer.For reservoirs with a multi-pressure system,the backflow phenomenon,which significantly influences the production performance,only occurs under extreme conditions(such as very low production rates or well shut-in periods).When water is introduced into the multi-layer system,inter-layer interference becomes nearly inevitable.Perforating both the gas-rich layer and water-rich layer for commingled production is not desirable,as it can trigger water invasion from the water-rich layer into the gas-rich layer.The gas-rich layer might also be interfered with by water from the neighboring unperforated water-rich layer,where the water might break the barrier(eg weak joint surface,cement in fractures)between the two layers and migrate into the gas-rich layer.Additionally,the gas-rich layer could possibly be interfered with by water that accumulates at the bottom of the wellbore due to gravitational differentiation during shut-in operations.展开更多
Green hydrogen produced by water electrolysis combined with renewable energy is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.Among water electrolysis technologies,t...Green hydrogen produced by water electrolysis combined with renewable energy is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.Among water electrolysis technologies,the anion exchange membrane(AEM) water electrolysis has gained intensive attention and is considered as the next-generation emerging technology due to its potential advantages,such as the use of low-cost non-noble metal catalysts,the relatively mature stack assembly process,etc.However,the AEM water electrolyzer is still in the early development stage of the kW-level stack,which is mainly attributed to severe performance decay caused by the core component,i.e.,AEM.Here,the review comprehensively presents the recent progress of advanced AEM from the view of the performance of water electrolysis cells.Herein,fundamental principles and critical components of AEM water electrolyzers are introduced,and work conditions of AEM water electrolyzers and AEM performance improvement strategies are discussed.The challenges and perspectives are also analyzed.展开更多
This study investigates the impact of different water coupling coefficients on the blasting effect of red sandstone.The analysis is based on the theories of detonation wave and elastic wave,focusing on the variation i...This study investigates the impact of different water coupling coefficients on the blasting effect of red sandstone.The analysis is based on the theories of detonation wave and elastic wave,focusing on the variation in wall pressure of the blasting holes.Using DDNP explosive as the explosive load,blasting tests were conducted on red sandstone specimens with four different water coupling coefficients:1.20,1.33,1.50,and 2.00.The study examines the morphologies of the rock specimens after blasting under these different water coupling coefficients.Additionally,the fractal dimensions of the surface cracks resulting from the blasting were calculated to provide a quantitative evaluation of the extent of rock damage.CT scanning and 3D reconstruction were performed on the post-blasting specimens to visually depict the extent of damage and fractures within the rock.Additionally,the volume fractal dimension and damage degree of the post-blasting specimens are calculated.The findings are then combined with numerical simulation to facilitate auxiliary analysis.The results demonstrate that an increase in the water coupling coefficient leads to a reduction in the peak pressure on the hole wall and the crushing zone,enabling more of the explosion energy to be utilized for crack propagation following the explosion.The specimens exhibited distinct failure patterns,resulting in corresponding changes in fractal dimensions.The simulated pore wall pressure–time curve validated the derived theoretical results,whereas the stress cloud map and explosion energy-time curve demonstrated the buffering effect of the water medium.As the water coupling coefficient increases,the buffering effect of the water medium becomes increasingly prominent.展开更多
The alpine meadow ecosystem accounts for 27%of the total area of the Tibetan Plateau and is also one of the most important vegetation types.The Dangxiong alpine meadow ecosystem,located in the south-central part of th...The alpine meadow ecosystem accounts for 27%of the total area of the Tibetan Plateau and is also one of the most important vegetation types.The Dangxiong alpine meadow ecosystem,located in the south-central part of the Tibetan Plateau,is a typical example.To understand the carbon and water fluxes,water use efficiency(WUE),and their responses to future climate change for the alpine meadow ecosystem in the Dangxiong area,two parameter estimation methods,the Model-independent Parameter Estimation(PEST)and the Dynamic Dimensions Search(DDS),were used to optimize the Biome-BGC model.Then,the gross primary productivity(GPP)and evapotranspiration(ET)were simulated.The results show that the DDS parameter calibration method has a better performance.The annual GPP and ET show an increasing trend,while the WUE shows a decreasing trend.Meanwhile,ET and GPP reach their peaks in July and August,respectively,and WUE shows a“dual-peak”pattern,reaching peaks in May and November.Furthermore,according to the simulation results for the next nearly 100 years,the ensemble average GPP and ET exhibit a significant increasing trend,and the growth rate under the SSP5–8.5 scenario is greater than that under the SSP2–4.5 scenario.WUE shows an increasing trend under the SSP2–4.5 scenario and a significant increasing trend under the SSP5–8.5 scenario.This study has important scientific significance for carbon and water cycle prediction and vegetation ecological protection on the Tibetan Plateau.展开更多
文摘The structure of current speed and the variability of volume transports of the Kuroshio in the Tokara-kaikyo and Osumi-kaikyo are discussed on the basis of data of KER in the period from 1977 to 1984. The average geostrophic transport through these two straits is estimated to be 24. 5×106 m3/s and only 1/12 of the transport is through the Osumi-kaiky5. Countercurrents on both sides of the Kuroshio trunk are observed in the Tokara-kaikyo. Calculation indicates that the average geostrophic current speed is less than the GEK current speed, systematically. On the basis of the current measurements, the northward transports through the Taiwan Strait in winter and summer are estimated to be 1. 05×106and 3. 16×106m3/s, respectively. From Chu's data (1976) the average transport of the Kuroshio flowing into the East China Sea passing through the passage east of Taiwan is about 29. 3×106m3/s. From Miita and Ogawa's data (1984) the average transport through the Tsushima-kaikyo is 3. 6×106m3/s. Thus the volume transports through the above four straits are roughly in balance, the total outflowing transport is slightly larger than the total inflowing transport. The possible reasons resulting in the difference of transports are also discussed.
文摘The objective of this work is to study the relation between humidity, density, porosity and shrinkage of the floodplain soil and riparian vegetation and their ability to store water. For this purpose, two locations for every type of soils were evaluated. Both were placed at the Agronomy University (Faculdade de Cidncias Agron6micas) in SAo Manuel, State of SAo Paulo, Brazil. The floodplain soil was vegetated with Southern Cattail (Typha domingensis). In both places, soil samples were collected from several depths: 0, 30, 60 and 100 cm. Results show that lower soil density values (0.15 g/cm3) with organic texture and high porosities values (up to 86.2%) were found in samples with the highest organic material content in the floodplain soil. For this field experiment, flood plains soils (characterised as basin gley soils) presented high volumetric instability with a retratibility of 67.49% and higher water storage capacities compared to riparian stands soils (characterised as fluvic neosoils).
文摘Monitoring of variations in water for lakes and reservoirs is a requirement for meeting human needs and assessing ongoing climatic changes. However, regular gauging networks fail to provide the information needed for water volume data. The aim of this study is to evaluate an approach to estimate water volume variation for the southern part of Lake Nasser in Egypt without in-situ gauge measurements and bathymetry maps. Combination of both Hydroweb satellite altimetry and Landsat 8 satellite imagery data was used. As compared to in-situ water levels, satellite altimetry provided accurate water levels variations for Lake Nasser;the RMSE was 0.28 m, with excellent agreement (R2 is 0.98). The lowest water level of altimetry database i.e. 174.57 m was used as a reference level for estimating water volumes variations for the study duration 8/2014-6/2015. All water altimetry levels were converted to differences of recorded water level above the lowest altimetry Level (ΔWL). Series of Landsat 8 imagery data were selected to extract surface areas corresponding to radar altimetry water levels dates. Areas-ΔWL relationship model was established as a polynomial function: A = f(ΔWL), and therefore, the relationship of the water volume above the lowest water level for the study time (ΔV) and ΔWL was obtained through the analytical integration of (Area-ΔWL) model. Another approach (Heron method) was also applied for estimating water volume variations. Validation of these two approaches showed that estimated water volume variations above reference water level using both methods i.e. integration and Heron agreed well with in-situ measurements of volume variation deduced from recent bathymetry map and in-situ water levels (R2 for both methods = 0.98). The RMSE for integration method is 323.89 MCM and for Heron method was 318.09 MCM, being approximately 13.2% of the mean volume variations above the lowest reference water level for mean surface area ≈658 km2. Another byproduct for these approaches was the modeling for a remote detecting water level. Once the F(L) relationship is set up for a given region, future Landsat images can be utilized to track water levels freely of radar altimetry. Finally it can be concluded that remote sensing resources (satellites radar altimeters and optical satellite images) that are openly accessible these days represent a great opportunity to remotely monitor reservoir water capacity and help in examining and observing hydrological and water driven procedures.
文摘The mechanism of erosion of a riverbank is not easy to analyze and each sediment particle is under influence of number of forces. Among all these forces, force of cohesion between the particles plays a very dominant and significant role, and, till date, not much progress has been made to analyze this force in a deterministic manner. A particle is bound to its neighboring particles under this force of cohesion. In this paper, the analysis of forces acting on a particle on a riverbank has been made with a model called the Truncated Pyramid Model. A particle requires a certain velocity to escape from the riverbank and determination of the escape velocity can pave the way for finding out other parameters like entrainment rate, erosion coefficient and so on. Calculation and estimation of riverbank erosion rate is an important aspect of river basin management. In this paper it has been shown that the escape velocity is dependent on certain micro-level parameters like inter-particle distance and volume of the water bridge between two adjacent particles. Also, for saline water the particle requires less velocity to escape compared to the pure-water scenario. The findings of the present paper exactly fall in line with the results of another paper where the researchers showed that cohesive force between the particles decreases as water turns from pure to impure.
基金Foundation item:This study was financially supported by the National Natural Science Foundation of China(Grant No.52101351)。
文摘A combined method of wave superposition and finite element is proposed to solve the radiation noise of targets in shallow sea.Taking the sound propagation of spherical sound source in shallow sea as an example,the radiation sound field of the spherical sound source is equivalent to the linear superposition of the radiation sound field of several internal point sound sources,and then the radiated noise induced by spherical sound source can be predicted quickly.The accuracy and efficiency of the method are verified by comparing with the numerical results of finite element method,and the rapid prediction of underwater radiated noise of cylindrical shell is carried out based on the method.The results show that compared with the finite element method,the relative error of the calculation results under different simulation conditions does not exceed 0.1%,and the calculation time is about 1/10 of the finite element method,so this method can be used to solve the radiated noise of shallow underwater targets.
基金support from the Czech Science Foundation,project EXPRO,No 19-27454Xsupport by the European Union under the REFRESH—Research Excellence For Region Sustainability and High-tech Industries project number CZ.10.03.01/00/22_003/0000048 via the Operational Programme Just Transition from the Ministry of the Environment of the Czech Republic+1 种基金Horizon Europe project EIC Pathfinder Open 2023,“GlaS-A-Fuels”(No.101130717)supported from ERDF/ESF,project TECHSCALE No.CZ.02.01.01/00/22_008/0004587).
文摘Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by single-atom catalysts(SACs),which exhibit unique and intricate interactions between atomically dispersed metal atoms and their supports.Recently,bimetallic SACs(bimSACs)have garnered significant attention for leveraging the synergistic functions of two metal ions coordinated on appropriately designed supports.BimSACs offer an avenue for rich metal–metal and metal–support cooperativity,potentially addressing current limitations of SACs in effectively furnishing transformations which involve synchronous proton–electron exchanges,substrate activation with reversible redox cycles,simultaneous multi-electron transfer,regulation of spin states,tuning of electronic properties,and cyclic transition states with low activation energies.This review aims to encapsulate the growing advancements in bimSACs,with an emphasis on their pivotal role in hydrogen generation via water splitting.We subsequently delve into advanced experimental methodologies for the elaborate characterization of SACs,elucidate their electronic properties,and discuss their local coordination environment.Overall,we present comprehensive discussion on the deployment of bimSACs in both hydrogen evolution reaction and oxygen evolution reaction,the two half-reactions of the water electrolysis process.
文摘Intracellular water volume is an important parameter for expressing concentration of intracellular ions and diffusional water permeability of cells by nuclear magnetic resonance(NMR). Presented here, is a method using 35 Cl and deuterium ( 2D) NMR spectra of cell free supernatant and cell suspension to get intracellular water volume. The volume of intracellular water as a fraction of the total cell volume, V i /V c , in isosmotic solution is 0 706±0 065.
基金Project (No. 50408023) supported by National Natural ScienceFoundation of China
文摘A laboratory study was carried out on both natural and compacted specimens to investigate the complex soil-water interaction in an unsaturated expansive clay. The laboratory study includes the measurement of soil-water characteristic curves, 1D free swelling tests, measurement of swelling pressure and shrinkage tests. The test results revealed that the air-entry value of the natural specimen was quite low due to cracks and fissures present. The hydraulic hysteresis of the natural specimen was relatively insignificant as compared with the compacted specimen. Within a suction range 0 to 500 kPa, a bilinear relationship between free swelling strain (or swelling pressure) and initial soil suction was observed for both the natural and compacted specimens. As a result of over-consolidation and secondary structures such as cementation and cracks, the natural specimens exhibited significant lower swelling (or swelling pressure) than the compacted specimen. The change of matric suction exerts a more significant effect on the water phase than on the soil skeleton for this expansive clay.
基金funded by National Natural Science Foundation of China(Grant Nos.51808310,51878366)Natural Science Foundation of Shandong Province(Grant Nos.ZR2019PEE007,ZR2020ME036)High-level Scientific Research Foundation for the introduction of talent of Qingdao Agricultural University(Grant No.1118034).
文摘The strength and durability of concrete will be significantly reduced at high volume of mineral admixture,and the poor early strength of concrete also still needs to be solved.In this investigation,a highly active alkaline electrolyzed waters was used as mixing water to improve the early strength and enhance the durability of green concrete with high volume mineral admixture,the influences of alkaline electrolyzed water(AEW)on hydration activity of mineral admixture and durability of concrete were determined.The results showed that compared with natural tap water,AEW can accelerate early hydration process of cement in concrete and produce comparatively more hydrated products,leading to a 13.6%higher compressive strength than that of ordinary concrete at early age,but the improvement effect of AEW concrete was relatively reduced at long-term age.Meanwhile,the activity of mineral admixtures could be stimulated by AEW to some extent,the strength and durability performance of AEW concrete after double doping 25%slag and 25%fly ash can still reach the level of ordinary cement concrete without mineral admixtures.The SEM micromorphology of 7 d hydrated natural tap water cement paste was observed to be flaky and tabular,but the AEW cement pastes present obvious cluster and granulation phenomenon.The SEM microstructure of AEW concrete with mineral admixtures is more developed and denser than ordinary tap water concrete with mineral admixtures.Therefore,the AEW probably could realize the effective utilization of about 50%mineral admixture amount of concrete without strength loss,the cement production cost and associated CO_(2) emission reduced,which has a good economic and environmental benefit.
基金"111 Project" Biomedical Textile Materials Science and Technology,China
文摘Emulsion electrospinning as a novel process in spinning core-sheath fibers shows a promising potential in drug release control. The volume ratio of water phase to oily phase is one of the critical parameters in forming core-sheath fibers. In this study, water phase was presented by hydrophilic tetracycline hydrochloride and oily phase by hydrophobic poly (E-caprolactone) (PCL). The effects of volume ratios of water phase to oily phase on fiber morphology and in vitro drug release were investigated. Scanning electron microscopy ( SEM ), transmission electron microscopy ( TEM), and eonfoeal laser scanning microscopy(CLSM) were used to observe the morphology, core.sheath structure of the fibers and drug loading in the fibers, respectively. Samples of three different volume ratios of water phase to oily phase, 1: 25, 1:15, and 1:10, were prepared with the same concentration of drug solution. Experiment results showed that, with an increase in the volume ratios of water phase to oily phase, the fiber diameter increased and diameter distribution scattered. The drug entrapment efficiency of the fibers reduces with the increase in volume ratios, L e. , from 73.48 % in the ratio of 1 : 25, 62.23 % in 1 : 15, down to 45.63 % in 1:10. In vitro release tests showed that a higher volume ratio of water phase to oily phase would lead to a lower release rate resulted from thicker fiber sheath.
基金Project(51674096)supported by the National Natural Science Foundation of ChinaProject(E2016203119)supported by Hebei Natural Science Foundation of ChinaProject(18211045)supported by the Key Research and Development Foundation in Hebei Province of China
文摘Cooling strength is one of the important factors affecting microstructure and properties of gas cylinders during quenching process,and reasonable water spray volume can effectively improve the quality of gas cylinders and reduce production costs.To find the optimal water spray parameters,a fluid-solid coupling model with three-phase flow was established in consideration of water-vapor conversion.The inner and outer walls of gas cylinder with the dimensions of d914 mm×38 mm×12000 mm were quenched using multi-nozzle water spray system.The internal pressure,average heat transfer coefficient(have)and stress of the gas cylinder under different water spray volumes during quenching process were studied.Finally,the mathematical model was experimentally verified.The results show that both the internal pressure and have increase along with the increase of spray volume.The internal pressure increases slowly first and then rapidly,but have increases rapidly first and then slowly.To satisfy hardenability of gas cylinders,the minimum spray volume should not be less than 40 m^3/(h·m).The results of stress indicate that water spray quenching will not cause deformation of bottle body in the range of water volume from 40 to 290 m^3/(h·m).
文摘Formation water invasion is the most troublesome problem associated with air drilling. However, it is not economical to apply mist drilling when only a small amount of water flows into wellbore from formation during air drilling. Formation water could be circulated out of the wellbore through increasing the gas injection rate. In this paper, the Angel model was modified by introducing Nikurade friction factor for the flow in coarse open holes and translating formation water rate into equivalent penetration rate. Thus the distribution of annular pressure and the relationship between minimum air injection rate and formation water rate were obtained. Real data verification indicated that the modified model is more accurate than the Angel model and can provide useful information for air drilling.
基金Supported by the National Natural Science Foundation of China(41571415,41071281)Natural Science Foundation of Jiangsu Province(BK20131078)Planning Project for Cultivation of Young Academic Leaders in"Qinglan Project"of Education Department of Jiangsu Province
文摘Based on the observation data of rainfall,vegetation,runoff and sediment yield in the experimental plots located in Hetian Town,Changting County of Fujian Province during 2007-2010,the changing characteristics and interrelation of live vegetation volume of grass,rainfall parameters,and water(soil)conservation effect RE(SE)were analyzed at four time scales of rainfall event,month,season,and year.The results showed that with the increase of time scales,the rainfall and vegetation indicators increased or decreased more or less,and the variation range of RE was small,while SEslowly decreased.The mean REchanged by 10%-20% at different time scales,and the observed water conservation effect of the grassland was the best at season scale while the worst at year scale.The soil conservation effect of the grassland was the best at month scale and the worst at season scale.The water conservation effect of the grass was mainly controlled by rainfall factors,including rainfall duration and precipitation at rainfall event scale,and the maximum intensity of precipitation within 30 min at longer time scales.However,the soil conservation effect of the grass was mainly controlled by vegetation factors,including the contribution of the litter on soil surface at rainfall event scale,the interaction of rainfall and vegetation at month and season scales,and the live vegetation volume of the grass at year scale.Consequently,at different time scales,the factors influencing water and soil conservation changed and interacted,and the observed water and soil conservation effects were also different,indicating that the influence of time scales deserves attention in both research and management practices.
文摘This present study develops a 2-D numerical scheme to simulate the velocity and depth on the actual terrain by using shallow water equations. The computational approach uses the HLL scheme as a basic building block, treats the bottom slope by lateralizing the momentum flux, then refines the scheme using the Strang splitting to deal with the frictional source term. Besides, a decoupled algorithm is also adopted to compute the aggradation and degradation of bed-level elevation by using the Manning-Strickler formula and Exner’s relationship. The main purpose is to set up the window interface of 2-D numerical model and increase the realization of engineers on these characteristics of hydraulic treatment and maintenance.
基金financial support of the National Natural Science Foundation of China(U21A20218 and 32101857)the‘Double First-Class’Key Scientific Research Project of Education Department in Gansu Province,China(GSSYLXM-02)+1 种基金the Fuxi Young Talents Fund of Gansu Agricultural University,China(Gaufx03Y10)the“Innovation Star”Program of Graduate Students in 2023 of Gansu Province,China(2023CXZX681)。
文摘The development of modern agriculture requires the reduction of water and chemical N fertilizer inputs.Increasing the planting density can maintain higher yields,but also consumes more of these restrictive resources.However,whether an increased maize density can compensate for the negative effects of reduced water and N supply on grain yield and N uptake in the arid irrigated areas remains unknown.This study is part of a long-term positioning trial that started in 2016.A split-split plot field experiment of maize was implemented in the arid irrigated area of northwestern China in 2020 to 2021.The treatments included two irrigation levels:local conventional irrigation reduced by 20%(W1,3,240 m^(3)ha^(-1))and local conventional irrigation(W2,4,050 m^(3)ha^(-1));two N application rates:local conventional N reduced by 25%(N1,270 kg ha^(-1))and local conventional N(360 kg ha^(-1));and three planting densities:local conventional density(D1,75,000 plants ha^(-1)),density increased by 30%(D2,97,500 plants ha-1),and density increased by 60%(D3,120,000 plants ha^(-1)).Our results showed that the grain yield and aboveground N accumulation of maize were lower under the reduced water and N inputs,but increasing the maize density by 30% can compensate for the reductions of grain yield and aboveground N accumulation caused by the reduced water and N supply.When water was reduced while the N application rate remained unchanged,increasing the planting density by 30% enhanced grain yield by 13.9% and aboveground N accumulation by 15.3%.Under reduced water and N inputs,increasing the maize density by 30% enhanced N uptake efficiency and N partial factor productivity,and it also compensated for the N harvest index and N metabolic related enzyme activities.Compared with W2N2D1,the N uptake efficiency and N partial factor productivity increased by 28.6 and 17.6%under W1N1D2.W1N2D2 had 8.4% higher N uptake efficiency and 13.9% higher N partial factor productivity than W2N2D1.W1N2D2 improved urease activity and nitrate reductase activity by 5.4% at the R2(blister)stage and 19.6% at the V6(6th leaf)stage,and increased net income and the benefit:cost ratio by 22.1 and 16.7%,respectively.W1N1D2 and W1N2D2 reduced the nitrate nitrogen and ammoniacal nitrogen contents at the R6 stage in the 40-100 cm soil layer,compared with W2N2D1.In summary,increasing the planting density by 30% can compensate for the loss of grain yield and aboveground N accumulation under reduced water and N inputs.Meanwhile,increasing the maize density by 30% improved grain yield and aboveground N accumulation when water was reduced by 20% while the N application rate remained constant in arid irrigation areas.
基金Natural Science Foundation of Zhejiang Province,Grant/Award Number:LY23E020002National Natural Science Foundation of China,Grant/Award Number:52272085 and 51972178+1 种基金Natural Science Foundation of Ningbo,Grant/Award Number:2021J145China Postdoctoral Science Foundation,Grant/Award Number:2020M681966。
文摘Conversion of solar energy into H_(2) by photoelectrochemical(PEC)water splitting is recognized as an ideal way to address the growing energy crisis and environmental issues.In a typical PEC cell,the construction of photoanodes is crucial to guarantee the high efficiency and stability of PEC reactions,which fundamentally rely on rationally designed semiconductors(as the active materials)and substrates(as the current collectors).In this review work,we start with a brief introduction of the roles of substrates in the PEC process.Then,we provide a systematic overview of representative strategies for the controlled fabrication of photoanodes on rationally designed substrates,including conductive glass,metal,sapphire,silicon,silicon carbide,and flexible substrates.Finally,some prospects concerning the challenges and research directions in this area are proposed.
基金supported by the National Natural Science Foundation of China(Grant Nos.52304044,52222402,52234003,52174036)Sichuan Science and Technology Program(Nos.2022JDJQ0009,2023NSFSC0934)+2 种基金Key Technology R&D Program of Shaanxi Province(2023-YBGY-30)the Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance(Grant No.2020CX030202)the China Postdoctoral Science Foundation(Grant No.2022M722638)。
文摘Due to the dissimilarity among different producing layers,the influences of inter-layer interference on the production performance of a multi-layer gas reservoir are possible.However,systematic studies of inter-layer interference for tight gas reservoirs are really limited,especially for those reservoirs in the presence of water.In this work,five types of possible inter-layer interferences,including both absence and presence of water,are identified for commingled production of tight gas reservoirs.Subsequently,a series of reservoir-scale and pore-scale numerical simulations are conducted to quantify the degree of influence of each type of interference.Consistent field evidence from the Yan'an tight gas reservoir(Ordos Basin,China)is found to support the simulation results.Additionally,suggestions are proposed to mitigate the potential inter-layer interferences.The results indicate that,in the absence of water,commingled production is favorable in two situations:when there is a difference in physical properties and when there is a difference in the pressure system of each layer.For reservoirs with a multi-pressure system,the backflow phenomenon,which significantly influences the production performance,only occurs under extreme conditions(such as very low production rates or well shut-in periods).When water is introduced into the multi-layer system,inter-layer interference becomes nearly inevitable.Perforating both the gas-rich layer and water-rich layer for commingled production is not desirable,as it can trigger water invasion from the water-rich layer into the gas-rich layer.The gas-rich layer might also be interfered with by water from the neighboring unperforated water-rich layer,where the water might break the barrier(eg weak joint surface,cement in fractures)between the two layers and migrate into the gas-rich layer.Additionally,the gas-rich layer could possibly be interfered with by water that accumulates at the bottom of the wellbore due to gravitational differentiation during shut-in operations.
基金supported by the National Key Research and Development Program(2022YFB4202200)the Fundamental Research Funds for the Central Universities and sponsored by Shanghai Pujiang Program(22PJ1413100)。
文摘Green hydrogen produced by water electrolysis combined with renewable energy is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.Among water electrolysis technologies,the anion exchange membrane(AEM) water electrolysis has gained intensive attention and is considered as the next-generation emerging technology due to its potential advantages,such as the use of low-cost non-noble metal catalysts,the relatively mature stack assembly process,etc.However,the AEM water electrolyzer is still in the early development stage of the kW-level stack,which is mainly attributed to severe performance decay caused by the core component,i.e.,AEM.Here,the review comprehensively presents the recent progress of advanced AEM from the view of the performance of water electrolysis cells.Herein,fundamental principles and critical components of AEM water electrolyzers are introduced,and work conditions of AEM water electrolyzers and AEM performance improvement strategies are discussed.The challenges and perspectives are also analyzed.
基金National Key Research and Development Program of China(2021YFC2902103)National Natural Science Foundation of China(51934001)Fundamental Research Funds for the Central Universities(2023JCCXLJ02).
文摘This study investigates the impact of different water coupling coefficients on the blasting effect of red sandstone.The analysis is based on the theories of detonation wave and elastic wave,focusing on the variation in wall pressure of the blasting holes.Using DDNP explosive as the explosive load,blasting tests were conducted on red sandstone specimens with four different water coupling coefficients:1.20,1.33,1.50,and 2.00.The study examines the morphologies of the rock specimens after blasting under these different water coupling coefficients.Additionally,the fractal dimensions of the surface cracks resulting from the blasting were calculated to provide a quantitative evaluation of the extent of rock damage.CT scanning and 3D reconstruction were performed on the post-blasting specimens to visually depict the extent of damage and fractures within the rock.Additionally,the volume fractal dimension and damage degree of the post-blasting specimens are calculated.The findings are then combined with numerical simulation to facilitate auxiliary analysis.The results demonstrate that an increase in the water coupling coefficient leads to a reduction in the peak pressure on the hole wall and the crushing zone,enabling more of the explosion energy to be utilized for crack propagation following the explosion.The specimens exhibited distinct failure patterns,resulting in corresponding changes in fractal dimensions.The simulated pore wall pressure–time curve validated the derived theoretical results,whereas the stress cloud map and explosion energy-time curve demonstrated the buffering effect of the water medium.As the water coupling coefficient increases,the buffering effect of the water medium becomes increasingly prominent.
基金supported by the Second Comprehensive Scientific Research Survey on the Tibetan Plateau[grant number 2019QZKK0103]the National Natural Science Foundation of China[grant numbers 42375071 and 42230610].
文摘The alpine meadow ecosystem accounts for 27%of the total area of the Tibetan Plateau and is also one of the most important vegetation types.The Dangxiong alpine meadow ecosystem,located in the south-central part of the Tibetan Plateau,is a typical example.To understand the carbon and water fluxes,water use efficiency(WUE),and their responses to future climate change for the alpine meadow ecosystem in the Dangxiong area,two parameter estimation methods,the Model-independent Parameter Estimation(PEST)and the Dynamic Dimensions Search(DDS),were used to optimize the Biome-BGC model.Then,the gross primary productivity(GPP)and evapotranspiration(ET)were simulated.The results show that the DDS parameter calibration method has a better performance.The annual GPP and ET show an increasing trend,while the WUE shows a decreasing trend.Meanwhile,ET and GPP reach their peaks in July and August,respectively,and WUE shows a“dual-peak”pattern,reaching peaks in May and November.Furthermore,according to the simulation results for the next nearly 100 years,the ensemble average GPP and ET exhibit a significant increasing trend,and the growth rate under the SSP5–8.5 scenario is greater than that under the SSP2–4.5 scenario.WUE shows an increasing trend under the SSP2–4.5 scenario and a significant increasing trend under the SSP5–8.5 scenario.This study has important scientific significance for carbon and water cycle prediction and vegetation ecological protection on the Tibetan Plateau.