期刊文献+
共找到29篇文章
< 1 2 >
每页显示 20 50 100
Numerical modeling of water yield of mine in Yangzhuang Iron Mine, Anhui Province of China 被引量:1
1
作者 YANG Yun WU Jian-feng LIU De-peng 《Journal of Groundwater Science and Engineering》 2015年第4期352-362,共11页
This study develops a three-dimensional heterogeneous numerical model to simulate the water inrush process and predict the water yield for mineral exploration in Yangzhuang Iron Mine in Anhui Province. To identify the... This study develops a three-dimensional heterogeneous numerical model to simulate the water inrush process and predict the water yield for mineral exploration in Yangzhuang Iron Mine in Anhui Province. To identify the hydrogeological parameters of the aquifer in the study area, the model was calibrated and validated using the observed heads through the integrated trial-and-error and automated techniques. Also, the sensitivity analysis of the model was performed to evaluate the uncertainty associated with the calibrated model. According to the mine construction plan at different mining levels of-500 m,-600 m, and-700 m, the calibrated model was then applied to predict the water yields dependent on the different mining levels. As indicated by the prediction results, the numerical simulation model can systematically describe the groundwater system in the mining area and determine the source of water inrush in this iron mine. In conclusion, numerical analyses carried out in this study can provide guidance to decision-makers in balancing the iron ore mining and mine dewatering in the future. 展开更多
关键词 Fracture-karst aquifer Numerical simulation Sensitivity analysis water yield of mine mine dewatering Yangzhuang Iron mine
下载PDF
Temporal and spatial variation and prediction of water yield and water conservation in the Bosten Lake Basin based on the PLUS-InVEST model
2
作者 CHEN Jiazhen KASIMU Alimujiang +3 位作者 REHEMAN Rukeya WEI Bohao HAN Fuqiang ZHANG Yan 《Journal of Arid Land》 SCIE CSCD 2024年第6期852-874,共23页
To comprehensively evaluate the alterations in water ecosystem service functions within arid watersheds,this study focused on the Bosten Lake Basin,which is situated in the arid region of Northwest China.The research ... To comprehensively evaluate the alterations in water ecosystem service functions within arid watersheds,this study focused on the Bosten Lake Basin,which is situated in the arid region of Northwest China.The research was based on land use/land cover(LULC),natural,socioeconomic,and accessibility data,utilizing the Patch-level Land Use Simulation(PLUS)and Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)models to dynamically assess LULC change and associated variations in water yield and water conservation.The analyses included the evaluation of contribution indices of various land use types and the investigation of driving factors that influence water yield and water conservation.The results showed that the change of LULC in the Bosten Lake Basin from 2000 to 2020 showed a trend of increasing in cultivated land and construction land,and decreasing in grassland,forest,and unused land.The unused land of all the three predicted scenarios of 2030(S1,a natural development scenario;S2,an ecological protection scenario;and S3,a cultivated land protection scenario)showed a decreasing trend.The scenarios S1 and S3 showed a trend of decreasing in grassland and increasing in cultivated land;while the scenario S2 showed a trend of decreasing in cultivated land and increasing in grassland.The water yield of the Bosten Lake Basin exhibited an initial decline followed by a slight increase from 2000 to 2020.The areas with higher water yield values were primarily located in the northern section of the basin,which is characterized by higher altitude.Water conservation demonstrated a pattern of initial decrease followed by stabilization,with the northeastern region demonstrating higher water conservation values.In the projected LULC scenarios of 2030,the estimated water yield under scenarios S1 and S3 was marginally greater than that under scenario S2;while the level of water conservation across all three scenarios remained rather consistent.The results showed that Hejing County is an important water conservation function zone,and the eastern part of the Xiaoyouledusi Basin is particularly important and should be protected.The findings of this study offer a scientific foundation for advancing sustainable development in arid watersheds and facilitating efficient water resource management. 展开更多
关键词 PLUS model InVEST model Bosten Lake Basin water yield water conservation land-use simulation Geodetector
下载PDF
Evaluation and Quantitative Attribution Analysis of Water Yield Services in the Peak-cluster Depression Basins in Southwest of Guangxi,China
3
作者 WANG Donghua TIAN Yichao +5 位作者 ZHANG Yali HUANG Liangliang TAO Jin YANG Yongwei LIN Junliang ZHANG Qiang 《Chinese Geographical Science》 SCIE CSCD 2023年第1期116-130,共15页
Karst environmental issues have become one of the hot spots in contemporary international geological research. The same problem of water shortage is one of the hot spots of global concern. The peak-cluster depression ... Karst environmental issues have become one of the hot spots in contemporary international geological research. The same problem of water shortage is one of the hot spots of global concern. The peak-cluster depression basins in southwest of Guangxi is an important water connotation and ecological barrier areas in the Pearl River Basin of China. Thus, studying the spatial and temporal variations and the influencing factors of its water yield services is critical to achieve the sustainable development of water resources and ecological environmental protection in this region. As such, this paper uses the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST) model to assess the spatial and temporal variabilities of water yield services and its trends in the peak-cluster depression basins in southwest of Guangxi from 2000 to 2020. This work also integrates precipitation(Pre), reference evapotranspiration(ET), temperature(Tem), digital elevation model(DEM), slope, normalized difference vegetation index(NDVI), land use/land cover(LULC) and soil type to reveal the main factors that influence water yield services with the help of Geodetector. Results show that: 1) in time scale,the total annual water yield in the study area show a fluctuating and increasing trend from 2000 to 2020, with a growth rate of 7.3753 × 10^(8)m^(3)/yr, and its multi-year average water yield was 538.07 mm;2) in spatial pattern, with high yield areas mainly distributed in the south of the study area(mainly including Shangsi County, Pingxiang City, Ningming County, Longzhou County and Jingxi County), and low yield areas mainly distributed in Baise City and Nanning City;3) the dominant factor of water yield within karst and non-karst landforms is not necessarily controlled by precipitation, and the explanation degree of DEM factors in karst areas is significantly higher than that in non-karst areas;4) amongst the climatic factors, Pre, ET and Tem are dominant in the spatial pattern of region water yield capacity. among which Pre has the highest explanatory power for the spatial heterogeneity of annual water production, with q values above0.8, and each driver showed a significant interaction on the spatial distribution of water yield, with Pre exhibiting the strongest interaction with LULC. 展开更多
关键词 water yield Integrated Valuation of Ecosystem Services and Trade-offs(InVEST) Geodetector peak-cluster depression basins in southwest of Guangxi China
下载PDF
Forecasting of water yield of deep-buried iron mine in Yanzhou, Shandong
4
作者 WANG Ye ZHANG Qiu-lan +1 位作者 WANG Shi-chang SHAO Jing-li 《Journal of Groundwater Science and Engineering》 2015年第4期342-351,共10页
This paper compares analytical and numerical methods by taking the forecasting of water yield of deep-buried iron mine in Yanzhou, Shandong as an example. Regarding the analytical method, the equation of infinite and ... This paper compares analytical and numerical methods by taking the forecasting of water yield of deep-buried iron mine in Yanzhou, Shandong as an example. Regarding the analytical method, the equation of infinite and bilateral water inflow boundary is used to forecast the water yield, and in the case of numerical simulation, we employed the GMS software to establish a model and further to forecast the water yield. On the one hand, through applying the analytical method, the maximum water yield of mine 1 500 m deep below the surface was calculated to be 13 645.17 m3/d; on the other hand, through adopting the numerical method, we obtained the predicted result of 3 816.16 m3/d. Meanwhile, by using the boundary generalization in the above-mentioned two methods, and through a comparative analysis of the actual hydro-geological conditions in this deep-buried mine, which also concerns the advantages and disadvantages of the two methods respectively, this paper draws the conclusion that the analytical method is only applicable in ideal conditions, but numerical method is eligible to be used in complex hydro-geological conditions. Therefore, it is more applicable to employ the numerical method to forecast water yield of deep-buried iron mine in Yanzhou, Shandong. 展开更多
关键词 Analytical method Numerical simulation Forecasting of water yield Yanzhou deep-buried iron mine
下载PDF
Evaluation of the water conservation function in the Ili River Delta of Central Asia based on the InVEST model 被引量:1
5
作者 CAO Yijie MA Yonggang +2 位作者 BAO Anming CHANG Cun LIU Tie 《Journal of Arid Land》 SCIE CSCD 2023年第12期1455-1473,共19页
The Ili River Delta(IRD)is an ecological security barrier for the Lake Balkhash and an important water conservation area in Central Asia.In this study,we selected the IRD as a typical research area,and simulated the w... The Ili River Delta(IRD)is an ecological security barrier for the Lake Balkhash and an important water conservation area in Central Asia.In this study,we selected the IRD as a typical research area,and simulated the water yield and water conservation from 1975 to 2020 using the water yield module of the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model.We further analyzed the temporal and spatial variations in the water yield and water conservation in the IRD from 1975 to 2020,and investigated the main driving factors(precipitation,potential evapotranspiration,land use/land cover change,and inflow from the Ili River)of the water conservation variation based on the linear regression,piecewise linear regression,and Pearson's correlation coefficient analyses.The results indicated that from 1975 to 2020,the water yield and water conservation in the IRD showed a decreasing trend,and the spatial distribution pattern was"high in the east and low in the west";overall,the water conservation of all land use types decreased slightly.The water conservation volume of grassland was the most reduced,although the area of grassland increased owing to the increased inflow from the Ili River.At the same time,the increased inflow has led to the expansion of wetland areas,the improvement of vegetation growth,and the increase of regional evapotranspiration,thus resulting in an overall reduction in the water conservation.The water conservation depth and precipitation had similar spatial distribution patterns;the change in climate factors was the main reason for the decline in the water conservation function in the delta.The reservoir in the upper reaches of the IRD regulated runoff into the Lake Balkhash,promoted vegetation restoration,and had a positive effect on the water conservation;however,this positive effect cannot offset the negative effect of enhanced evapotranspiration.These results provide a reference for the rational allocation of water resources and ecosystem protection in the IRD. 展开更多
关键词 water conservation function water yield Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model climate change land use/land cover change(LUCC) Ili River Delta Lake Balkhash
下载PDF
Application of the InVEST model for assessing water yield and its response to precipitation and land use in the Weihe River Basin, China 被引量:4
6
作者 WU Changxue QIU Dexun +2 位作者 GAO Peng MU Xingmin ZHAO Guangju 《Journal of Arid Land》 SCIE CSCD 2022年第4期426-440,共15页
With realizing the importance of ecosystem services to society, the efforts to evaluate the ecosystem services have increased. As the largest tributary of the Yellow River, the Weihe River has been endowed with many e... With realizing the importance of ecosystem services to society, the efforts to evaluate the ecosystem services have increased. As the largest tributary of the Yellow River, the Weihe River has been endowed with many ecological service functions. Among which, water yield can be a measure of local availability of water and an index for evaluating the conservation function of the region. This study aimed to explore the temporal and spatial variation of water yield and its influencing factors in the Weihe River Basin(WRB), and provide basis for formulating reasonable water resources utilization schemes. Based on the InVEST(integrated valuation of ecosystem services and tradeoffs) model, this study simulated the water yield in the WRB from 1985 to 2019, and discussed the impacts of climatic factors and land use change on water yield by spatial autocorrelation analysis and scenario analysis methods. The results showed that there was a slight increasing trend in water yield in the WRB over the study period with the increasing rate of 4.84 mm/10a and an average depth of 83.14 mm. The main water-producing areas were concentrated along the mainstream of the Weihe River and in the southern basin. Changes in water yield were comprehensively affected by climate and underlying surface factors. Precipitation was the main factor affecting water yield, which was consistent with water yield in time. And there existed significant spatial agglomeration between water yield and precipitation. Land use had little impact on the amount of water yield, but had an impact on its spatial distribution. Water yield was higher in areas with wide distribution of construction land and grassland. Water yield of different land use types were different. Unused land showed the largest water yield capacity, whereas grassland and farmland contributed most to the total water yield. The increasing water yield in the basin indicates an enhanced water supply service function of the ecosystem. These results are of great significance to the water resources management of the WRB. 展开更多
关键词 water yield InVEST model Weihe River Basin Geoda model scenario analysis
下载PDF
Effect of reforestation on annual water yield in a large watershed in northeast China 被引量:2
7
作者 Yuefeng Yao Tijiu Cai +1 位作者 Cunyong Ju Chengxin He 《Journal of Forestry Research》 SCIE CAS CSCD 2015年第3期697-702,共6页
A simplified water balance model in conjunc- tion with an evapotranspiration (ET) model and cumulative forest cover data were used to quantify the changes in annual water yield in response to reforestation in a larg... A simplified water balance model in conjunc- tion with an evapotranspiration (ET) model and cumulative forest cover data were used to quantify the changes in annual water yield in response to reforestation in a large watershed, northeast China. Cumulative forest cover increased by 22 %, leading to a significant decrease in estimated annual water yield. Reforestation increased ET (P = 0.0144), resulting in a remarkable decrease (P = 0.0001) in estimated annual water yield according to the water balance model. Reforestation increased ET by 33 mm and decreased annual water yield by 38 mm per decade. The effect of reforestation on annual water yield can be quantified using a simplified water balance model in a large watershed, although our reforestation area was small (about 20 %) in relation to the total watershed area. 展开更多
关键词 Annual water yield Cumulative forestcover Evapotranspiration (ET) REFORESTATION water balance model
下载PDF
Spatiotemporal variation and driving factors of water yield services on the Qingzang Plateau 被引量:3
8
作者 Xiaofeng Wang Bingyang Chu +4 位作者 Xiaoming Feng Yuehao Li Bojie Fu Shirong Liu Jiming Jin 《Geography and Sustainability》 2021年第1期31-39,共9页
Water resources are a basic need for social sustainable development and human existence.As an important national strategy for water resources security,spatial and temporal patterns and driving mechanisms of water yiel... Water resources are a basic need for social sustainable development and human existence.As an important national strategy for water resources security,spatial and temporal patterns and driving mechanisms of water yield ecosystem services on the Qingzang Plateau(QP)are critical for water resources management,optimal water allocation and the improvement of ecological water protection efficiency.However,only a few relevant studies are currently available.In this study,we simulated the water yield(WY)of the QP over 34 years,from 1982 to 2015,using the InVEST model and analyzed the spatiotemporal dynamic relationships between WY and climate change as well as between WY and vegetation change,using geographically weighted regression(GWR)models.The results showed that:1)from 1982 to 2015,the WY of the QP increased at an average rate of 3.8 mm/yr;2)WY presented a reduced spatial pattern from southeast to northwest;and 3)the WY driving factors have individual and spatial differences.In terms of the area percentage in promoting WY when analyzing each driving factor,precipitation(99.8%)and air pressure(53.3%)played the major roles in promoting WY,while temperature(71.9%),wind speed(57.2%),net primary productivity(87.2%),radiation(68.3%)and lake(87.7%)played negative roles.The areas where WY are dominated by temperature are the largest(41.1%),and followed by areas dominated by pressure(19.7%)and precipitation(18.5%).The results of this study provide scientific support for formulating regional water resources policy,social and economic development planning and other macro decisions for the QP. 展开更多
关键词 Qingzang Plateau water yield GWR models
下载PDF
Yield and water use responses of winter wheat to irrigation and nitrogen application in the North China Plain 被引量:14
9
作者 ZHANG Ming-ming DONG Bao-di +4 位作者 QIAO Yun-zhou SHI Chang-hai YANG Hong WANG Ya-kai LIU Meng-yu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第5期1194-1206,共13页
With increasing water shortage resources and extravagant nitrogen application, there is an urgent need to optimize irrigation regimes and nitrogen management for winter wheat(Triticum aestivum L.) in the North China... With increasing water shortage resources and extravagant nitrogen application, there is an urgent need to optimize irrigation regimes and nitrogen management for winter wheat(Triticum aestivum L.) in the North China Plain(NCP). A 4-year field experiment was conducted to evaluate the effect of three irrigation levels(W1, irrigation once at jointing stage; W2, irrigation once at jointing and once at heading stage; W3, irrigation once at jointing, once at heading, and once at filling stage; 60 mm each irrigation) and four N fertilizer rates(N0, 0; N1, 100 kg N ha-(-1); N2, 200 kg N ha-(-1); N3, 300 kg N ha-(-1)) on wheat yield, water use efficiency, fertilizer agronomic efficiency, and economic benefits. The results showed that wheat yield under W2 condition was similar to that under W3, and greater than that under W1 at the same nitrogen level. Yield with the N1 treatment was higher than that with the N0 treatment, but not significantly different from that obtained with the N2 and N3 treatments. The W2 N1 treatment resulted in the highest water use and fertilizer agronomic efficiencies. Compared with local traditional practice(W3 N3), the net income and output-input ratio of W2 N1 were greater by 12.3 and 19.5%, respectively. These findings suggest that two irrigation events of 60 mm each coupled with application of 100 kg N ha-(–1) is sufficient to provide a high wheat yield during drought growing seasons in the NCP. 展开更多
关键词 winter wheat irrigation regime nitrogen application grain yield water use efficiency
下载PDF
Field performance of alternate wetting and drying furrow irrigation on tomato crop growth, yield, water use efficiency, quality and profitability 被引量:7
10
作者 Khokan Kumer Sarker M.A.R.Akanda +3 位作者 S.K.Biswas D.K.Roy A.Khatun M.A.Goffar 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第10期2380-2392,共13页
Sustainable irrigation method is now essential for adaptation and adoption in the areas where water resources are limited. Therefore, a field experiment was conducted to test the performance of alternate wetting and d... Sustainable irrigation method is now essential for adaptation and adoption in the areas where water resources are limited. Therefore, a field experiment was conducted to test the performance of alternate wetting and drying furrow irrigation(AWDFI) on crop growth, yield, water use efficiency(WUE), fruit quality and profitability analysis of tomato. The experiment was laid out in randomized complete block design with six treatments replicated thrice during the dry seasons of 2013-2014 and 2014-2015. Irrigation water was applied through three ways of furrow: AWDFI, fixed wetting and drying furrow irrigation(FWDFI) and traditional(every) furrow irrigation(TFI). Each irrigation method was divided into two levels: irrigation up to 100 and 80% field capacity(FC). Results showed that plant biomass(dry matter) and marketable fruit yield of tomato did not differ significantly between the treatments of AWDFI and TFI, but significant difference was observed in AWDFI and in TFI compared to FWDFI at same irrigation level. AWDFI saved irrigation water by 35 to 38% for the irrigation levels up to 80 and 100% FC, compared to the TFI, respectively. AWDFI improved WUE by around 37 to 40% compared to TFI when irrigated with 100 and 80% FC, respectively. Fruit quality(total soluble solids and pulp) was found greater in AWDFI than in TFI. Net return from AWDFI technique was found nearly similar compared to TFI and more than FWDFI. The benefit cost ratio was viewed higher in AWDFI than in TFI and FWDFI by 2.8, 8.7 and 11, 10.4% when irrigation water was applied up to 100 and 80% FC, respectively. Unit production cost was obtained lower in AWDFI compared to TFI and FWDFI. However, AWDFI is a useful water-saving furrow irrigation technique which may resolve as an alternative choice compared with TFI in the areas where available water and supply methods are limited to irrigation. 展开更多
关键词 alternate furrow irrigation alternate drying process tomato yield quality water use efficiency net return
下载PDF
Trade-offs and synergies between ecosystem services in Yutian County along the Keriya River Basin,Northwest China
11
作者 ZUBAIDA Muyibul 《Journal of Arid Land》 SCIE CSCD 2024年第7期943-962,共20页
The Keriya River Basin is located in an extremely arid climate zone on the southern edge of the Tarim Basin of Northwest China,exhibiting typical mountain-oasis-desert distribution characteristics.In recent decades,cl... The Keriya River Basin is located in an extremely arid climate zone on the southern edge of the Tarim Basin of Northwest China,exhibiting typical mountain-oasis-desert distribution characteristics.In recent decades,climate change and human activities have exerted significant impacts on the service functions of watershed ecosystems.However,the trade-offs and synergies between ecosystem services(ESs)have not been thoroughly examined.This study aims to reveal the spatiotemporal changes in ESs within the Keriya River Basin from 1995 to 2020 as well as the trade-offs and synergies between ESs.Leveraging the Integrated Valuation of Ecosystem Services and Trade-offs(InVEST)and Revised Wind Erosion Equation(RWEQ)using land use/land cover(LULC),climate,vegetation,soil,and hydrological data,we quantified the spatiotemporal changes in the five principal ESs(carbon storage,water yield,food production,wind and sand prevention,and habitat quality)of the watershed from 1995 to 2020.Spearman correlation coefficients were used to analyze the trade-offs and synergies between ES pairs.The findings reveal that water yield,carbon storage,and habitat quality exhibited relatively high levels in the upstream,while food production and wind and sand prevention dominated the midstream and downstream,respectively.Furthermore,carbon storage,food production,wind and sand prevention,and habitat quality demonstrated an increase at the watershed scale while water yield exhibited a decline from 1995 to 2020.Specifically,carbon storage,wind and sand prevention,and habitat quality presented an upward trend in the upstream but downward trend in the midstream and downstream.Food production in the midstream showed a continuously increasing trend during the study period.Trade-off relationships were identified between water yield and wind and sand prevention,water yield and carbon storage,food production and water yield,and habitat quality and wind and sand prevention.Prominent temporal and spatial synergistic relationships were observed between different ESs,notably between carbon storage and habitat quality,carbon storage and food production,food production and wind and sand prevention,and food production and habitat quality.Water resources emerged as a decisive factor for the sustainable development of the basin,thus highlighting the intricate trade-offs and synergies between water yield and the other four services,particularly the relationship with food production,which warrants further attention.This research is of great significance for the protection and sustainable development of river basins in arid areas. 展开更多
关键词 ecosystem services trade-offs SYNERGIES water yield food production habitat quality wind and sand prevention Tarim Basin
下载PDF
Spatiotemporal variations of ecosystem services and driving factors in the Tianchi Bogda Peak Natural Reserve of Xinjiang,China
12
作者 ZHU Haiqiang WANG Jinlong +2 位作者 TANG Junhu DING Zhaolong GONG Lu 《Journal of Arid Land》 SCIE CSCD 2024年第6期816-833,共18页
Nature reserves play a significant role in providing ecosystem services and are key sites for biodiversity conservation.The Tianchi Bogda Peak Natural Reserve(TBPNR),located in Xinjiang Uygur Autonomous Region,China,i... Nature reserves play a significant role in providing ecosystem services and are key sites for biodiversity conservation.The Tianchi Bogda Peak Natural Reserve(TBPNR),located in Xinjiang Uygur Autonomous Region,China,is an important ecological barrier area in the temperate arid zone.The evaluation of its important ecosystem services is of great significance to improve the management level and ecological protection efficiency of the reserve.In the present study,we assessed the spatiotemporal variations of four ecosystem services(including net primary productivity(NPP),water yield,soil conservation,and habitat quality)in the TBPNR from 2000 to 2020 based on the environmental and social data using the Integrated Valuation of Ecosystem Services and Trade-offs(InVEST)model.In addition,the coldspot and hotspot areas of ecosystem services were identified by hotspot analysis,and the trade-off and synergistic relationships between ecosystem services were analyzed using factor analysis in a geographic detector.During the study period,NPP and soil conservation values in the reserve increased by 48.20%and 25.56%,respectively;conversely,water yield decreased by 16.56%,and there was no significant change in habitat quality.Spatially,both NPP and habitat quality values were higher in the northern part and lower in the southern part,whereas water yield showed an opposite trend.Correlation analysis revealed that NPP showed a synergistic relationship with habitat quality and soil conservation,and exhibited a trade-off relationship with water yield.Water yield and habitat quality also had a trade-off relationship.NPP and habitat quality were affected by annual average temperature and Normalized Difference Vegetation Index(NDVI),respectively,while water yield and soil conservation were more affected by digital elevation model(DEM).Therefore,attention should be paid to the spatial distribution and dynamics of trade-off and synergistic relationships between ecosystem services in future ecological management.The findings of the present study provide a reference that could facilitate the sustainable utilization of ecosystem services in the typical fragile areas of Northwest China. 展开更多
关键词 net primary productivity(NPP) water yield soil conservation habitat quality Integrated Valuation of Ecosystem Services and Trade-offs(InVEST)model geographic detector Tianchi Bogda Peak Natural Reserve
下载PDF
The effect of different irrigation patterns on rice yield and water consumption
13
作者 CHEN Guolin and WANG Renmin, Agro Dept, Zhejiang Agri Univ, Hangzhou 310029, China 《Chinese Rice Research Newsletter》 1998年第1期11-12,共2页
The ecological and physiological water require-ment of rice and rice yield was studied underthree irrigation patterns, which were A: moistirrigation, remains 70-90% of saturated soilwater content except 3-4 cm deep wa... The ecological and physiological water require-ment of rice and rice yield was studied underthree irrigation patterns, which were A: moistirrigation, remains 70-90% of saturated soilwater content except 3-4 cm deep water layerin tillering stage in paddy; B: flood irrigation,remains 4-5 cm deep water layer except 80%relative water content in the late tillering stage 展开更多
关键词 BE The effect of different irrigation patterns on rice yield and water consumption
下载PDF
Stability of water yield in watersheds
14
作者 Yu YAN Zhiyong LIU +1 位作者 Xiaohong CHEN Liyan HUANG 《Science China Earth Sciences》 SCIE EI CAS CSCD 2024年第2期483-496,共14页
The hydrological system of a watershed is intricately influenced by both underlying characteristics and climate conditions.Understanding the variability in water yield is essential for effective water resources manage... The hydrological system of a watershed is intricately influenced by both underlying characteristics and climate conditions.Understanding the variability in water yield is essential for effective water resources management and water security in the context of changing environments.In this study,we adopted the Budyko framework and leveraged simulations from the CMIP6 model to investigate the compensation effects of climate and underlying characteristics on watershed water yield.Based on Taylor expansion and Budyko framework,we estimated the sensitivity of watershed water yield to climate and underlying characteristics(the first-and second-order partial derivatives).By combining external watershed characteristics(e.g.,water yield ratios and underlying characteristics)with internal sensitivity coefficients,this study further used vine copula and principal component analysis to quantify the stability of watershed water yield.Our findings show:(1)Water-yield changes related to underlying characteristics could be offset by climate-related water-yield changes across all climate zones,maintaining the water yield ratio steady(i.e.,the compensation effects).(2)However,global watersheds will turn more sensitive to underlying characteristics and less sensitive to climate variation in the future.Both climate-and underlying-related sensitivities increase in watersheds with arid climates.(3)The stability of watershed water yield will gradually diminish in the future.From 1901–1950to 2051–2100,the global stability of 280 watersheds drops from 0.054 to 0.021(i.e.,stability index identified by the joint probability).Particularly,the largest change in stability of water yield reaches-0.347±0.18 in arid regions.In semi-arid,semihumid,and humid regions,the changes are-0.039±0.010,-0.028±0.005,and-0.005±0.002,respectively.The findings provide a reference for the future sustainable water resources development under climate change,highlighting the vulnerability of the water resources in arid and semi-arid watersheds. 展开更多
关键词 Hydrological system stability Compensation effects on water yield SENSITIVITIES Budyko-Fu decomposition framework Global watersheds
原文传递
Scenario simulation of water retention services under land use/cover and climate changes: a case study of the Loess Plateau, China 被引量:3
15
作者 SUN Dingzhao LIANG Youjia PENG Shouzhang 《Journal of Arid Land》 SCIE CSCD 2022年第4期390-410,共21页
Comprehensive assessments of ecosystem services in environments under the influences of human activities and climate change are critical for sustainable regional ecosystem management. Therefore,integrated interdiscipl... Comprehensive assessments of ecosystem services in environments under the influences of human activities and climate change are critical for sustainable regional ecosystem management. Therefore,integrated interdisciplinary modelling has become a major focus of ecosystem service assessment. In this study, we established a model that integrates land use/cover change(LUCC), climate change, and water retention services to evaluate the spatial and temporal variations of water retention services in the Loess Plateau of China in the historical period(2000–2015) and in the future(2020–2050). An improved Markov-Cellular Automata(Markov-CA) model was used to simulate land use/land cover patterns, and ArcGIS 10.2 software was used to simulate and assess water retention services from 2000 to 2050 under six combined scenarios, including three land use/land cover scenarios(historical scenario(HS), ecological protection scenario(EPS), and urban expansion scenario(UES)) and two climate change scenarios(RCP4.5 and RCP8.5, where RCP is the representative concentration pathway). LUCCs in the historical period(2000–2015) and in the future(2020–2050) are dominated by transformations among agricultural land, urban land and grassland. Urban land under UES increased significantly by 0.63×10^(3) km^(2)/a, which was higher than the increase of urban land under HS and EPS. In the Loess Plateau, water yield decreased by 17.20×10^(6) mm and water retention increased by 0.09×10^(6) mm in the historical period(2000–2015),especially in the Interior drainage zone and its surrounding areas. In the future(2020–2050), the pixel means of water yield is higher under RCP4.5 scenario(96.63 mm) than under RCP8.5 scenario(95.46mm), and the pixel means of water retention is higher under RCP4.5 scenario(1.95 mm) than under RCP8.5 scenario(1.38 mm). RCP4.5-EPS shows the highest total water retention capacity on the plateau scale among the six combined scenarios, with the value of 1.27×10^(6) mm. Ecological restoration projects in the Loess Plateau have enhanced soil and water retention. However, more attention needs to be paid not only to the simultaneous increase in water retention services and evapotranspiration but also to the type and layout of restored vegetation. Furthermore, urbanization needs to be controlled to prevent uncontrollable LUCCs and climate change. Our findings provide reference data for the regional water and land resources management and the sustainable development of socio-ecological systems in the Loess Plateau under LUCC and climate change scenarios. 展开更多
关键词 water retention water yield land use/cover change climate change representative concentration pathway Markov-Cellular Automata model Loess Plateau
下载PDF
Responses of water productivity to irrigation and N supply for hybrid maize seed production in an arid region of Northwest China 被引量:4
16
作者 RAN Hui KANG Shaozhong +4 位作者 LI Fusheng DU Taisheng DING Risheng LI Sien TONG Ling 《Journal of Arid Land》 SCIE CSCD 2017年第4期504-514,共11页
Water and nitrogen(N) are generally two of the most important factors in determining the crop productivity. Proper water and N managements are prerequisites for agriculture sustainable development in arid areas. Fie... Water and nitrogen(N) are generally two of the most important factors in determining the crop productivity. Proper water and N managements are prerequisites for agriculture sustainable development in arid areas. Field experiments were conducted to study the responses of water productivity for crop yield(WP_(Y-ET)) and final biomass(WP_(B-ET)) of film-mulched hybrid maize seed production to different irrigation and N treatments in the Hexi Corridor, Northwest China during April to September in 2013 and also during April to September in 2014. Three irrigation levels(70%–65%, 60%–55%, and 50%–45% of the field capacity) combined with three N rates(500, 400, and 300 kg N/hm^2) were tested in 2013. The N treatments were adjusted to 500, 300, and 100 kg N/hm^2 in 2014. Results showed that the responses of WP_(Y-ET) and WP_(B-ET) to different irrigation amounts were different. WP_(Y-ET) was significantly reduced by lowering irrigation amounts while WP_(B-ET) stayed relatively insensitive to irrigation amounts. However, WP_(Y-ET) and WP_(B-ET) behaved consistently when subjected to different N treatments. There was a slight effect of reducing N input from 500 to 300 kg/hm^2 on the WP_(Y-ET) and WP_(B-ET), however, when reducing N input to 100 kg/hm^2, the values of WP_(Y-ET) and WP_(B-ET) were significantly reduced. Water is the primary factor and N is the secondary factor in determining both yield(Y) and final biomass(B). Partial factor productivity from applied N(PFP_N) was the maximum under the higher irrigation level and in lower N rate(100–300 kg N/hm^2) in both years(2013 and 2014). Lowering the irrigation amount significantly reduced evapotranspiration(ET), but ET did not vary with different N rates(100–500 kg N/hm^2). Both Y and B had robust linear relationships with ET, but the correlation between B and ET(R^2=0.8588) was much better than that between Y and ET(R^2=0.6062). When ET increased, WP_(Y-ET) linearly increased and WP_(B-ET) decreased. Taking the indices of Y, B, WP_(Y-ET), WP_(B-ET) and PFP_N into account, a higher irrigation level(70%–65% of the field capacity) and a lower N rate(100–300 kg N/hm^2) are recommended to be a proper irrigation and N application strategy for plastic film-mulched hybrid maize seed production in arid Northwest China. 展开更多
关键词 water use efficiency water stress nitrogen use efficiency evapotranspiration water productivity for yield water productivity for biomass arid region
下载PDF
Experimental study on water-saving and emission-reduction effects of controlled drainage technology 被引量:4
17
作者 Meng-hua Xiao Xiu-jun Hu Lin-lin Chu 《Water Science and Engineering》 EI CAS CSCD 2015年第2期114-120,共7页
Field experiments and laboratory analysis were carried out to determine the effects of controlled drainage(CTD) and conventional drainage(CVD) technologies on drainage volume, concentrations of NH4^+ -N, NO3^-N, ... Field experiments and laboratory analysis were carried out to determine the effects of controlled drainage(CTD) and conventional drainage(CVD) technologies on drainage volume, concentrations of NH4^+ -N, NO3^-N, and total phosphorus(TP), nitrogen and phosphorus losses, rice yield,and water utilization efficiency. Results show that CTD technology can effectively reduce drainage times and volume; NH4^+ -N, NO3^-N, and TP concentrations, from the first to the fourth day after four rainstorms decreased by 28.7%e46.7%, 37.5%e47.5%, and 22.7e31.2%, respectively,with CTD. These are significantly higher rates of decrease than those observed with CVD. CTD can significantly reduce nitrogen and phosphorus losses in field drainage, compared with CVD; the reduction rates observed in this study were, respectively, 66.72%, 55.56%, and 42.81% for NH4^+ -N, NO3^-N, and TP. Furthermore, in the CTD mode, the rice yield was cut slightly. In the CVD mode, the water production efficiencies in unit irrigation water quantity, unit field water consumption, and unit evapotranspiration were, respectively, 0.85, 0.48, and 1.22 kg/m^3, while in the CTD mode they were 2.91, 0.84, and 1.61 kg/m^3 din other words, 3.42, 1.75, and 1.32 times those of CVD. Furthermore, the results of analysis of variance(ANOVA) show that the indicators in both the CVD and CTD modes, including the concentrations of NH4^+ -N, NO3^-N, and TP, the losses of NH4^+ -N, NO3^-N, and TP, irrigation water quantity, and water consumption, showed extremely significant differences between the modes, but the rice yield showed no significant difference. 展开更多
关键词 Controlled drainage Nitrogen Phosphorus Rice yield Drainage volume water utilization efficiency
下载PDF
Effect of continuous negative pressure water supply on the growth, development and physiological mechanism of Capsicum annuum L. 被引量:8
18
作者 LI Di LONG Huai-yu +3 位作者 ZHANG Shu-xiang WU Xue-ping SHAO Hong-ying WANG Peng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第9期1978-1989,共12页
Effects of continuous negative pressure water supply on water consumption, growth and development, as well as physiological mechanism and quality of Capsicum annuum L. were investigated in this paper. Meanwhile, the o... Effects of continuous negative pressure water supply on water consumption, growth and development, as well as physiological mechanism and quality of Capsicum annuum L. were investigated in this paper. Meanwhile, the optimal negative pressure water supply conditions for growth of C. annuum L. were screened out to achieve the goals of water conservation, high yield and high quality, thus providing theoretical foundation for its field production. The pot experiment within the greenhouse was utilized; the continuous negative pressure water supply was adopted; the four treatments, artificial watering(CK), –5 k Pa(T1), –10 k Pa(T2), and –15 k Pa(T3) were set; and the daily water consumption, yield, as well as the biomass, nitrate reductase, root activity, vitamin C, capsaicin, and nutrient uptakes of nitrogen(N), phosphorus(P) and potassium(K) during various stages of its growth were determined. Compared with CK, when the water supply pressure was controlled at –5 to –15 k Pa in the experiment, the total water consumption of C. annuum L. reduced by 53.42 to 67.75%, the total water consumption intensity reduced by 54.29 to 67.14%, and the water use efficiency increased by 12.66 to 124.67%. The N accumulation in a single strain of C. annuum L. from the color turning stage to the red ripe stage increased by 15.99 to 100.55%, respectively, compared with that of CK; the P accumulation increased by 20.47 to 154.00% relative to that of CK, and the K accumulation increased by 64.92 to 144.9% compared with that of CK. Compared with CK, C. annuum L. yield was remarkably improved by 13.79% at T1, and contents of vitamin C, capsaicin as well as carotenoids at all growth stages were enhanced by 13.42–147.01%, 11.54–71.01%, and 41.1–568.06%, respectively. Nitrate reductase activity, root activity and chlorophyll(a+b) were markedly increased by 335.78–500%, 79.6–140.68% and 114.95–676.19%, respectively, from immature stage to full ripe stage. Adopting the continuous negative pressure water supply for C. annuum L. has a significant water-saving effect, and the water supply pressure being stable at –5 k Pa contributes to its growth and development, improves yield, enhances root activity, promotes nutrient uptake, and improves its quality, thus achieving the effects of water conservation, high yield, high quality and high efficiency. 展开更多
关键词 negative pressure water supply Capsicum annuum L. physiological indexes yield quality
下载PDF
Spatiotemporal characteristics and influencing factors of ecosystem services in Central Asia 被引量:1
19
作者 YAN Xue LI Lanhai 《Journal of Arid Land》 SCIE CSCD 2023年第1期1-19,共19页
Land use/land cover(LULC)change and climate change are two major factors affecting the provision of ecosystem services which are closely related to human well-being.However,a clear understanding of the relationships b... Land use/land cover(LULC)change and climate change are two major factors affecting the provision of ecosystem services which are closely related to human well-being.However,a clear understanding of the relationships between these two factors and ecosystem services in Central Asia is still lacking.This study aimed to comprehensively assess ecosystem services in Central Asia and analyze how they are impacted by changes in LULC and climate.The spatiotemporal patterns of three ecosystem services during the period of 2000-2015,namely the net primary productivity(NPP),water yield,and soil retention,were quantified and mapped by the Carnegie-Ames-Stanford Approach(CASA)model,Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model,and Revised Universal Soil Loss Equation(RUSLE).Scenarios were used to determine the relative importance and combined effect of LULC change and climate change on ecosystem services.Then,the relationships between climate factors(precipitation and temperature)and ecosystem services,as well as between LULC change and ecosystem services,were further discussed.The results showed that the high values of ecosystem services appeared in the southeast of Central Asia.Among the six biomes(alpine forest region(AFR),alpine meadow region(AMR),typical steppe region(TSR),desert steppe region(DSR),desert region(DR),and lake region(LR)),the values of ecosystem services followed the order of AFR>AMR>TSR>DSR>DR>LR.In addition,the values of ecosystem services fluctuated during the period of 2000-2015,with the most significant decreases observed in the southeast mountainous area and northwest of Central Asia.LULC change had a greater impact on the NPP,while climate change had a stronger influence on the water yield and soil retention.The combined LULC change and climate change exhibited a significant synergistic effect on ecosystem services in most of Central Asia.Moreover,ecosystem services were more strongly and positively correlated with precipitation than with temperature.The greening of desert areas and forest land expansion could improve ecosystem services,but unreasonable development of cropland and urbanization have had an adverse impact on ecosystem services.According to the results,ecological stability in Central Asia can be achieved through the natural vegetation protection,reasonable urbanization,and ecological agriculture development. 展开更多
关键词 ecosystem services land use/land cover change climate change net primary productivity water yield soil retention Central Asia
下载PDF
Comparative Evaluation of the Performance of SWAT, SWAT+, and APEX Models in Simulating Edge of Field Hydrological Processes
20
作者 Duncan Kikoyo Tobias Oker 《Open Journal of Modelling and Simulation》 2023年第2期37-49,共13页
Hydrologic and water quality models are often used in assessing the response of environmental processes to human activities and climatic change. However, these models differ in terms of their complexity, requirements,... Hydrologic and water quality models are often used in assessing the response of environmental processes to human activities and climatic change. However, these models differ in terms of their complexity, requirements, underlying equations, and assumptions, and as such their performance in simulating landscape processes varies. Consequently, a key question that has to be addressed is to select the most suitable model that gives results closest to reality for an intended purpose. In this study, the performance of the basin-wide older version of SWAT is compared with that of the small watershed model APEX to assess the performance of both models at a field scale level. The new restructured version of SWAT (SWAT+) is compared with the older version to determine whether the new changes incorporated in SWAT+ have improved model performance, particularly for small watersheds. The three models were used to simulate the edge of field processes for a 6.6 ha plot located at the USDA-Agricultural Research Station near Riesel, Texas, and to predict water yield, soil, and mineral phosphorous loss from the micro watershed. Results showed that all the uncalibrated models over-predict soil and phosphorous loss in a micro watershed. Uncalibrated SWAT and SWAT+ models simulated water yield satisfactory albeit with low-performance metrics. The calibrated versions simulated water yield with indices close to optimal values. PBIAS as a performance assessment metric was determined to be overly sensitive and prone to numerical errors. SWAT+ will be helpful in the understanding of hydrological and water quality processes at micro watersheds considering that it addresses structural flaws associated with the older version, and the manually calibrated version matches the performance of both APEX and SWAT, despite the latter two undergoing rigorous automatic calibration. 展开更多
关键词 EROSION Modelling Phosphorous Loss Riesel water yield
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部