Background Water deficit is an important problem in agricultural production in arid regions.With the advent of wholly mechanized technology for cotton planting in Xinjiang,it is important to determine which planting m...Background Water deficit is an important problem in agricultural production in arid regions.With the advent of wholly mechanized technology for cotton planting in Xinjiang,it is important to determine which planting mode could achieve high yield,fiber quality and water use efficiency(WUE).This study aimed to explore if chemical topping affected cotton yield,quality and water use in relation to row configuration and plant densities.Results Experiments were carried out in Xinjiang China,in 2020 and 2021 with two topping method,manual topping and chemical topping,two plant densities,low and high,and two row configurations,i.e.,76 cm equal rows and 10+66 cm narrow-wide rows,which were commonly applied in matching harvest machine.Chemical topping increased seed cotton yield,but did not affect cotton fiber quality comparing to traditional manual topping.Under equal row spacing,the WUE in higher density was 62.4%higher than in the lower one.However,under narrow-wide row spacing,the WUE in lower density was 53.3%higher than in higher one(farmers’practice).For machine-harvest cotton in Xinjiang,the optimal row configuration and plant density for chemical topping was narrow-wide rows with 15 plants m-2 or equal rows with 18 plants m-2.Conclusion The plant density recommended in narrow-wide rows was less than farmers’practice and the density in equal rows was moderate with local practice.Our results provide new knowledge on optimizing agronomic managements of machine-harvested cotton for both high yield and water efficient.展开更多
The amide A band of protein is sensitive to the hydrogen bands of amide groups of proteins. However, it is hard to distinguish the amide A band of aqueous protein in situ directly, since it overlaps with O-H stretchin...The amide A band of protein is sensitive to the hydrogen bands of amide groups of proteins. However, it is hard to distinguish the amide A band of aqueous protein in situ directly, since it overlaps with O-H stretching vibration of water. In this work, we presented a new analytical method of Raman ratio spectrum, which can extract the amide A band of proteins in water. To obtain the Raman ratio spectrum, the Raman spectrum of aqueous protein was divided by that of pure water. A mathematical simulation was employed to examine whether Raman ratio spectrum is effective. Two kinds of protein, lysozyme and (^-chymotrypsin were employed. The amide A bands of them in water were extracted from Raman ratio spectra. Additionally, the process of thermal denaturation of lysozyme was detected from Raman ratio spectrum. These results demonstrated the Raman ratio spectra could be employed to study the amide A modes of proteins in water.展开更多
Increasing atmospheric CO2 concentration is generally expected to enhance photosynthesis and growth of agricultural C3 vegetable crops, and therefore results in an increase in crop yield. However, little is known abou...Increasing atmospheric CO2 concentration is generally expected to enhance photosynthesis and growth of agricultural C3 vegetable crops, and therefore results in an increase in crop yield. However, little is known about the combined effect of elevated CO2 and N species on plant growth and development. Two growth-chamber experiments were conducted to determine the effects of NH4^+/NO3^- ratio and elevated CO2 concentration on the physiological development and water use of tomato seedlings. Tomato was grown for 45 d in containers with nutrient solutions varying in NH4^+/NO3^- ratios and CO2 concentrations in growth chambers. Results showed that plant height, stem thickness, total dry weight, dry weight of the leaves, stems and roots, G value (total plant dry weight/seedling days), chlorophyll content, photosynthetic rate, leaf-level and whole plant-level water use efficiency and cumulative water consumption of tomato seedlings were increased with increasing proportion of NO3- in nutrient solutions in the elevated CO2 treatment. Plant biomass, plant height, stem thickness and photosynthetic rate were 67%, 22%, 24% and 55% higher at elevated CO2 concentration than at ambient CO2 concentration, depending on the values of NH4^+/NO3^- ratio. These results indicated that elevating CO2 concentration did not mitigate the adverse effects of 100% NH4^+-N (in nutrient solution) on the tomato seedlings. At both CO2 levels, NH4^+/NO3^- ratios of nutrient solutions strongly influenced almost every measure of plant performance, and nitrate-fed plants attained a greater biomass production, as compared to ammonium-fed plants. These phenomena seem to be related to the coordinated regulation of photosynthetic rate and cumulative water consumption of tomato seedlings.展开更多
We studied the flood, ebb and tidal averaged along (net) water diversion ratio (WDR) during dry season in the Changjiang (Yangtze) estuary, China, along with the effects of northerly wind, river discharge, tide and th...We studied the flood, ebb and tidal averaged along (net) water diversion ratio (WDR) during dry season in the Changjiang (Yangtze) estuary, China, along with the effects of northerly wind, river discharge, tide and their interactions on WDR using the improved version of three-dimensional numerical model ECOM. Using data for annual mean wind speed and river discharge during January, we determined that the flood, ebb, net WDR values in the North Branch of the estuary were 3.48%, 1.68%,-4.06% during spring tide, and 4.82%, 2.34%,-2.79% during neap tide, respectively. Negative net WDR values denote the transport of water from the North Branch into the South Branch. Using the same data, the corresponding ratios were 50.09%, 50.92%, 54.97%, and 52.33%, 50.15%, 43.86% in the North Channel and 38.56%, 44.78%, 103.96%, and 36.92%, 43.17%, 60.97% in the North Passage, respectively. When northerly wind speed increased, landward Ekman transport was enhanced in the North Branch, increasing the flood WDR, while the ebb WDR declined and the net WDR exhibited a significant decrease. Similarly, in the North Channel, the flood WDR is increased, the ebb WDR reduced, and the net WDR showed a marked decrease. In the North Passage, the flood WDR also increased while the ebb and net WDR declined. As the river discharge increased, the flood and ebb WDR of the North Branch increased slightly and the net WDR increased markedly. In the North Channel the flood and ebb WDR changed very slightly, while the net WDR declined during spring tides and increased during neap tides. The WDR in the North Passage changed slightly during flood and ebb tides while the net WDR showed a marked increase. The WDR values of different bifurcations and the responses to northerly wind, river discharge, and tide are discussed in comparison with variations in river topography, horizontal wind-induced circulation, and tidal-induced residual current.展开更多
Biofloc technology has been applied successfully in the intensive aquaculture of several fish and shrimp species. The growth of heterotrophic microorganisms can be stimulated through adding extra carbon, which reduces...Biofloc technology has been applied successfully in the intensive aquaculture of several fish and shrimp species. The growth of heterotrophic microorganisms can be stimulated through adding extra carbon, which reduces the nitrogen level in the water and provides microbial protein to the animals. However, most of the studies and practical applications have been conducted in freshwater and marine environment. This paper focused on brine shrimp Artemia that lives in high salinity environment together with other halophilic or halotolerant microorganisms. The effect of carbon supplementation on Artemia growth, water quality, and microbial diversity of biofl ocs was studied in the closed culture condition without any water exchange. The salinity of the culture medium was 100. A 24-d culture trial was conducted through supplementing sucrose at carbon/nitrogen (C/N) ratio of 5, 15, and 30 (Su5, Su15, and Su30), respectively. The culture without adding sucrose was used as a control. Artemia was fed formulated feed at a feeding ration of 60% recommended feeding level. The results showed that sucrose supplementation at higher C/N ratio (15 and 30) signifi cantly improved the Artemia survival, growth and water quality ( P <0.05). Addition of sucrose at C/N ratio of 15 and 30 significantly increased biofloc volume (BFV)( P <0.05). The Illumina MiSeq sequencing analysis showed that supplementing carbon at C/N ratio of 15 had a better total bacterial diversity and richness, and shaped the microbial composition at genera level. This study should provide information for studying the mechanism of biofloc technology and its application in high salinity culture conditions.展开更多
In order to study the durability of sprayed concrete (shotcrete), effects of different hydration aging and water-binder ratio (w/b) on the microstructure of cement paste and basic mechanical properties of test spe...In order to study the durability of sprayed concrete (shotcrete), effects of different hydration aging and water-binder ratio (w/b) on the microstructure of cement paste and basic mechanical properties of test specimens were investigated. The phase composition, mass percentage of ettringite and portland in hydration production and microstructure were characterized by X-ray diffraction (XRD), thermo gravimetry-differential scanning calorimetry (TG-DSC) and scanning electron microscopy (SEM), respectively. The experimental results showed that changes in phase composition was more significant than those of water-binder ratio. With hydration aging and water-binder ratio increased, the mass percentage of ettringite and portland was decreased from 4.42%, 1.49% to 3.31%, 1.35%, respectively and the microstructure of paste was significantly compacted. Likewise, the mechanical properties including cubic compressive strength and splitting tensile strength were rised obviously.展开更多
A study was conducted at Akron, CO, USA, on a Weld silt loam in 2004 to quantify the effects of water deficit stress on corn (Zea mays, L.) root and shoot biomass. Corn plants were grown under a range of soil bulk den...A study was conducted at Akron, CO, USA, on a Weld silt loam in 2004 to quantify the effects of water deficit stress on corn (Zea mays, L.) root and shoot biomass. Corn plants were grown under a range of soil bulk density and water conditions caused by previous tillage, crop rotation, and irrigation management. Water deficit stress (Dstress) was quantified by the number of days when the water content in the surface 0.3 m deviated from the water content range determined by the Least Limiting Water Range (LLWR). Root and shoot samples were collected at the V6, V12, and R1 growth stages. There was no significant correlation between Dstress and shoot or root biomass at the V6 growth stage. At the V12 and R1 growth stages, there were negative, linear correlations among Dstress and both root biomass and shoot biomass. The proportional decrease of shoot biomass was greater than the proportional decrease in root biomass, leading to an increase in the root:shoot ratio as water deficit stress increased at all growth stages. Determining restrictive soil conditions using the LLWR may be useful for evaluating improvement or degradation of the soil physical environment caused by soil management.展开更多
Emulsion electrospinning as a novel process in spinning core-sheath fibers shows a promising potential in drug release control. The volume ratio of water phase to oily phase is one of the critical parameters in formin...Emulsion electrospinning as a novel process in spinning core-sheath fibers shows a promising potential in drug release control. The volume ratio of water phase to oily phase is one of the critical parameters in forming core-sheath fibers. In this study, water phase was presented by hydrophilic tetracycline hydrochloride and oily phase by hydrophobic poly (E-caprolactone) (PCL). The effects of volume ratios of water phase to oily phase on fiber morphology and in vitro drug release were investigated. Scanning electron microscopy ( SEM ), transmission electron microscopy ( TEM), and eonfoeal laser scanning microscopy(CLSM) were used to observe the morphology, core.sheath structure of the fibers and drug loading in the fibers, respectively. Samples of three different volume ratios of water phase to oily phase, 1: 25, 1:15, and 1:10, were prepared with the same concentration of drug solution. Experiment results showed that, with an increase in the volume ratios of water phase to oily phase, the fiber diameter increased and diameter distribution scattered. The drug entrapment efficiency of the fibers reduces with the increase in volume ratios, L e. , from 73.48 % in the ratio of 1 : 25, 62.23 % in 1 : 15, down to 45.63 % in 1:10. In vitro release tests showed that a higher volume ratio of water phase to oily phase would lead to a lower release rate resulted from thicker fiber sheath.展开更多
The effects of water/binder ratio (w/b) on the toughness behavior, compressive strength and flexural strength of engineered cementitious composites (ECC) were investigated. The w/b ratios of 0.25, 0.31, 0.33 and 0...The effects of water/binder ratio (w/b) on the toughness behavior, compressive strength and flexural strength of engineered cementitious composites (ECC) were investigated. The w/b ratios of 0.25, 0.31, 0.33 and 0.37 were selected and the specimens were tested at the ages of 7 d and 28 d. The experimental results showed that there was a corresponding increase in first cracking strength, modulus of rupture, compressive strength and flexural strength with the decrease of w/b. Within the w/b range of 0.25-0.37, higher w/b was found to have improved effects on deflection, strain hardening index and toughness index of ECC. In the permission of meeting the requirement of compressive strength grade, selecting higher w/b in mix design will help to obtain robust ECC.展开更多
The water equivalent ratio(WER) was calculated for polypropylene(PP), paraffin, polyethylene(PE), polystyrene(PS), polymethyl methacrylate(PMMA), and polycarbonate materials with potential applications in dosimetry an...The water equivalent ratio(WER) was calculated for polypropylene(PP), paraffin, polyethylene(PE), polystyrene(PS), polymethyl methacrylate(PMMA), and polycarbonate materials with potential applications in dosimetry and medical physics. This was performed using the Monte Carlo simulation code, MCNPX, at different proton energies. The calculated WER values were compared with National Institute of Standards and Technology(NIST) data, available experimental and analytical results,as well as the FLUKA, SRIM, and SEICS codes. PP and PMMA were associated with the minimum and maximum WER values, respectively. Good agreement was observed between the MCNPX and NIST data. The biggest difference was 0.71% for PS at 150 MeV proton energy. In addition, a relatively large positive correlation between the WER values and the electron density of the dosimetric materials was observed. Finally, it was noted that PE presented the most analogous Depth Dose Characteristics to liquid water.展开更多
Brazilian disc tests were undertaken on a number of red sandstone samples with different water absorption ratios.The tensile strength of the red sandstone decreases as the water absorption ratio increases.The fracture...Brazilian disc tests were undertaken on a number of red sandstone samples with different water absorption ratios.The tensile strength of the red sandstone decreases as the water absorption ratio increases.The fracture surfaces of failed red sandstone discs were scanned by Talysurf CLI 2000.With the aid of Talymap Gold software,based on ISO25178,a set of statistical parameters was obtained for the fracture surfaces.The maximum peak height(S_p),maximum pit height(S_v) and maximum height(S_z) of the fracture surfaces exhibited the same decreasing trend with increasing water absorption.Sa and Sku values for the fracture surfaces showed a downward trend as the water absorption ratio increased.The fractal dimensions of fracture surfaces were calculated and found to decrease as the water absorption ratio increased.Through analysis of PSD curves,the smallest dominant wavelength was observed to reflect the roughness of the fracture surfaces.Additionally,the results suggest that the roughness of fracture surfaces becomes small as the water absorption ratio increases.展开更多
With a new apparatus designed and assembled by ourselves, the matrix potential of non-saturated loess was firstly measured and studied during methane hydrate formation processes. The experimental results showed that d...With a new apparatus designed and assembled by ourselves, the matrix potential of non-saturated loess was firstly measured and studied during methane hydrate formation processes. The experimental results showed that during two formation processes, the matrix potential changes of the loess all presented a good linear relationship with water conversion ratios. In addition, although it was well known that the secondary gas hydrate formation was easier than the initial, our experimental results showed that the initial hydrate formation efficiency in non-saturated loess was higher than that of the secondary.展开更多
This paper analyzed the consistency of some parameters of soils in the literature and experimental results from fall cone test and its application to soil plasticity classification.Over 500 data from both literatures ...This paper analyzed the consistency of some parameters of soils in the literature and experimental results from fall cone test and its application to soil plasticity classification.Over 500 data from both literatures and experiments using fall cone and Casagrande methods were compiled to assess the relationships among specified water content,cone penetration index ebT,and plasticity angle eaT of finegrained soils.The results indicate that no unique correlation exists among b,liquid limit of the fall cone test(LLc)and a.The water content at 1 mm cone penetration eC0T correlates well with b,plasticity ratio eRpT(i.e.the ratio of plastic limit to liquid limit),and a.Finally,the potential of using the btan a diagram to classify soil plasticity was also discussed.展开更多
To investigate the influence of sodium to potassium (Na/IO ratios on the growth performance and physiological response of the Pacific white shrimp (Litopenaeus vananmei), various concentrations of KC1 were added to...To investigate the influence of sodium to potassium (Na/IO ratios on the growth performance and physiological response of the Pacific white shrimp (Litopenaeus vananmei), various concentrations of KC1 were added to low-salinity well water (salinity 4) in an 8-week culture trial. Six treatments with NWK ratios of 60:1, 42:1, 33:1, 23:1, 17:1, and 14:1 were replicated in triplicate. The highest weight-gain rate (3 506±48)% and survival rate (89.38±0.88)% was observed in well water with Na/K ratios of 23:1 and 42:1, respectively, while the feed conversion ratio (1.02~0.01), oxygen consumption, and ammonia-N excretion rate was the lowest in the medium with a Na/K ratio of 23:1. Gill Na+-K+-ATPase activity, as an indicator of osmoregulation, peaked in the treatment where the Na/K ratio was 17:1. The total hemocyte count, respiratory burst, and immune-related enzyme activities (ALP, LSZ, PO, and SOD) ofL. vananmei were affected significantly by Na/K ratios (P〈0.05). After challenged with Vibrio harveyi, the cumulative mortality of shrimp reared in a Na/K ratio of 23:1 (30±14.14)% was significantly lower than the control (75~7.07)%. In conclusion, the addition of K+ to low-salinity well water in L. vannamei cultures is feasible. Na/K ratios ranging from 23:1 to 33:1 might improve survival and growth. Immunity and disease resistance are also closely related to the Na/K ratio of the low-salinity well water. The findings may contribute to the development of more efficient K^+ remediation strategies for L. vananmei culture in low-salinity well water.展开更多
A simple hydration model is used here by taking the composition of the cement and the initial water: cementratio (w/c) into account explicitly. Its conceptual basis is a combination of the Avrami equation and Bentz’s...A simple hydration model is used here by taking the composition of the cement and the initial water: cementratio (w/c) into account explicitly. Its conceptual basis is a combination of the Avrami equation and Bentz’s modelbased on simple spatial considerations. In this model, the Avrami equation determines the initial reaction, andBentz’s model describes the following hydration stage. The model favors engineers for it relies on one experimentalparameter and has a reliable approximation in the practice.展开更多
To the Taihu region water evaporation environmt of water surface with plants, intruded salt watersurface, shallow water surface in rice fields etc., polluted water surface and hot water surface havenow been added in r...To the Taihu region water evaporation environmt of water surface with plants, intruded salt watersurface, shallow water surface in rice fields etc., polluted water surface and hot water surface havenow been added in recent years, as a result of economic development. This study on the regularitiesof evaporation from all the above water surfaces showed that evaporation will increase from some surfaces, but from the others.展开更多
[Objective] This study aimed to further explore the dynamics of related physiological indexes of rice seedlings under different NH4+ /NO3- ratio and different water condition. [Method] Under the hydroponic condition ...[Objective] This study aimed to further explore the dynamics of related physiological indexes of rice seedlings under different NH4+ /NO3- ratio and different water condition. [Method] Under the hydroponic condition in laboratory, 3 NH4+/NO3- ratios (0/100, 50/50 and 100/0) and 2 water conditions (+PEG,-PEG) were designed for Fengliangyou 7203. [Result] The root-canopy ratio of rice seedlings increased under any of the NH4+/NO3- ratios and water conditions. Under water stress, the root-canopy ratio of rice seedlings changed most greatly at the NH4+/NO3- ratio of 0/ 100; the overall water potential of rice seedlings reached the lowest at the NH4+/ NO3- ratio of 100/0; and the changes of water potential and xylem flow pH were relatively stable at the NH4+/NO3- ratio of 50/50. Under the condition of no water stress, the growth of rice seedlings was best at the NH4+/NO3- ratio of 50/50, followed by the NH4+/NO3- ratios of 0/100 and 100/0. [Conclusion] This study will pro- vide a basis for understanding the relationship between water potential and xylem flow.展开更多
The purpose of the study is to analyze the breeding ratio of a supercritical water cooled fast reactor (SCFR) and to increase the breeding core of SCFR. The sensitivities of assembly parameters, core arrangements and ...The purpose of the study is to analyze the breeding ratio of a supercritical water cooled fast reactor (SCFR) and to increase the breeding core of SCFR. The sensitivities of assembly parameters, core arrangements and fuel nuclide components to the breeding ratio are analyzed. In assembly parameters, the seed fuel rod diameter has higher sensitivities to the conversion ratio (CR) than the coolant tube diameter in blanket. Increasing heavy metal fraction is good to CR improvement. The CR of SCFR also increases with a reasonable core arrangement and Pu isotope mass fraction reduction in fuel, which can achieve more negative coolant void reactivity coefficient at the same time. The breeding ratio of SCFR is 1.03128 with a new core arrangement. And the coolant void reactivity coefficient is negative, which achieves a fuel breeding in initial fuel cycle.展开更多
To provide basic data for the reasonable mixing design of the alkali-activated (AA) foamed concrete as a thermal insulation material for a floor heating system, 9 concrete mixes with a targeted dry density less than 4...To provide basic data for the reasonable mixing design of the alkali-activated (AA) foamed concrete as a thermal insulation material for a floor heating system, 9 concrete mixes with a targeted dry density less than 400 kg/m3 were tested. Ground granulated blast-furnace slag (GGBS) as a source material was activated by the following two types of alkali activators: 10% Ca(OH)2 and 4% Mg(NO3)2, and 2.5% Ca(OH)2 and 6.5% Na2SiO3. The main test parameters were water-to-binder (W/B) ratio and the substitution level (RFA) of fly ash (FA) for GGBS. Test results revealed that the dry density of AA GGBS foamed concrete was independent of the W/B ratio an RFA, whereas the compressive strength increased with the decrease in W/B ratio and with the increase in RFA up to 15%, beyond which it decreased. With the increase in the W/B ratio, the amount of macro capillaries and artificial air pores increased, which resulted in the decrease of compressive strength. The magnitude of the environmental loads of the AA GGBS foamed concrete is independent of the W/B ratio and RFA. The largest reduction percentage was found in the photochemical oxidation potential, being more than 99%. The reduction percentage was 87% - 93% for the global warming potential, 81% - 84% for abiotic depletion, 79% - 84% for acidification potential, 77% - 85% for eutrophication potential, and 73% - 83% for human toxicity potential. Ultimately, this study proved that the developed AA GGBS foamed concrete has a considerable promise as a sustainable construction material for nonstructural element.展开更多
Groundwater mineralization is one of the main factors affecting the transport of soil water and salt in saline-sodic areas.To investigate the effects of groundwater with different levels of salinity on evaporation and...Groundwater mineralization is one of the main factors affecting the transport of soil water and salt in saline-sodic areas.To investigate the effects of groundwater with different levels of salinity on evaporation and distributions of soil water and salt in Songnen Plain,Northeast China,five levels of groundwater sodium adsorption ration of water(SARw)and total salt content(TSC mmol/L)were conducted in an oil column lysimeters.The five treated groundwater labeled as ST0:0,ST0:10,ST5:40,ST10:70 and ST20:100,were prepared with NaCl and CaCl2 in proportion,respectively.The results showed the groundwater evaporation(GWE)and soil evaporation(SE)increased firstly and then decreased with the increase of groundwater salinity.The values of GWE and SE in ST10:70 treatment were the highest,which were 2.09 and 1.84 times the values in the ST0:0 treatment with the lowest GWE and SE.There was a positive linear correlation between GWE and the Ca^(2+)content in groundwater,with R^(2)=0.998.The soil water content(SWC)of ST0:0 treatment was significantly(P<0.05)less than those of other treatments during the test.The SWC of the ST0:0 and ST0:10 treatments increased with the increase of soil depth,while the other treatments showed the opposite trend.Statistical analysis indicated the SWC in the 0–60 cm soil layer was positively correlated with the groundwater TSC and its ion contents during the test.Salt accumulation occurred in the topsoil and the salt accumulation in the 0–20 cm soil layer was significantly(P<0.05)greater than that in the subsoil.This study revealed the effects of the salinity level of groundwater,especially the Ca^(2+)content and TSC of groundwater,on the GWE and distributions of soil water and salt,which provided important support for the prevention and reclamation of soil salinization and sodificaton in shallow groundwater regions.展开更多
基金Key Research and Development Program of Xinjiang(2022B02001-1)National Natural Science Foundation of China(42105172,41975146).
文摘Background Water deficit is an important problem in agricultural production in arid regions.With the advent of wholly mechanized technology for cotton planting in Xinjiang,it is important to determine which planting mode could achieve high yield,fiber quality and water use efficiency(WUE).This study aimed to explore if chemical topping affected cotton yield,quality and water use in relation to row configuration and plant densities.Results Experiments were carried out in Xinjiang China,in 2020 and 2021 with two topping method,manual topping and chemical topping,two plant densities,low and high,and two row configurations,i.e.,76 cm equal rows and 10+66 cm narrow-wide rows,which were commonly applied in matching harvest machine.Chemical topping increased seed cotton yield,but did not affect cotton fiber quality comparing to traditional manual topping.Under equal row spacing,the WUE in higher density was 62.4%higher than in the lower one.However,under narrow-wide row spacing,the WUE in lower density was 53.3%higher than in higher one(farmers’practice).For machine-harvest cotton in Xinjiang,the optimal row configuration and plant density for chemical topping was narrow-wide rows with 15 plants m-2 or equal rows with 18 plants m-2.Conclusion The plant density recommended in narrow-wide rows was less than farmers’practice and the density in equal rows was moderate with local practice.Our results provide new knowledge on optimizing agronomic managements of machine-harvested cotton for both high yield and water efficient.
基金This work was supported by the National Natural Science Foundation of China (No.91127042, No.21103158, No.21273211, No.21473171), the National Key Basic Research Special Foundation (No.2013CB834602 and No.2010CB923300), the Fundamental Research Funds for the Central Universities (No.7215623603), and the Hua-shan Mountain Scholar Program. We also thank Doctor Kang-zhen Tian and Professor Shu-ji Ye for the measurement of IR spectra of aqueous lysozyme.
文摘The amide A band of protein is sensitive to the hydrogen bands of amide groups of proteins. However, it is hard to distinguish the amide A band of aqueous protein in situ directly, since it overlaps with O-H stretching vibration of water. In this work, we presented a new analytical method of Raman ratio spectrum, which can extract the amide A band of proteins in water. To obtain the Raman ratio spectrum, the Raman spectrum of aqueous protein was divided by that of pure water. A mathematical simulation was employed to examine whether Raman ratio spectrum is effective. Two kinds of protein, lysozyme and (^-chymotrypsin were employed. The amide A bands of them in water were extracted from Raman ratio spectra. Additionally, the process of thermal denaturation of lysozyme was detected from Raman ratio spectrum. These results demonstrated the Raman ratio spectra could be employed to study the amide A modes of proteins in water.
基金Project supported by the National Natural Science Foundation of China(No.30230250).
文摘Increasing atmospheric CO2 concentration is generally expected to enhance photosynthesis and growth of agricultural C3 vegetable crops, and therefore results in an increase in crop yield. However, little is known about the combined effect of elevated CO2 and N species on plant growth and development. Two growth-chamber experiments were conducted to determine the effects of NH4^+/NO3^- ratio and elevated CO2 concentration on the physiological development and water use of tomato seedlings. Tomato was grown for 45 d in containers with nutrient solutions varying in NH4^+/NO3^- ratios and CO2 concentrations in growth chambers. Results showed that plant height, stem thickness, total dry weight, dry weight of the leaves, stems and roots, G value (total plant dry weight/seedling days), chlorophyll content, photosynthetic rate, leaf-level and whole plant-level water use efficiency and cumulative water consumption of tomato seedlings were increased with increasing proportion of NO3- in nutrient solutions in the elevated CO2 treatment. Plant biomass, plant height, stem thickness and photosynthetic rate were 67%, 22%, 24% and 55% higher at elevated CO2 concentration than at ambient CO2 concentration, depending on the values of NH4^+/NO3^- ratio. These results indicated that elevating CO2 concentration did not mitigate the adverse effects of 100% NH4^+-N (in nutrient solution) on the tomato seedlings. At both CO2 levels, NH4^+/NO3^- ratios of nutrient solutions strongly influenced almost every measure of plant performance, and nitrate-fed plants attained a greater biomass production, as compared to ammonium-fed plants. These phenomena seem to be related to the coordinated regulation of photosynthetic rate and cumulative water consumption of tomato seedlings.
基金Supported by the Funds for Creative Research Groups of China (No. 40721004)the National Natural Science Foundation of China (Nos. 40776012, 40976056)the Special Funds of the State Key Laboratory of Estuarine and Coastal Research (No. 2008KYYW03)
文摘We studied the flood, ebb and tidal averaged along (net) water diversion ratio (WDR) during dry season in the Changjiang (Yangtze) estuary, China, along with the effects of northerly wind, river discharge, tide and their interactions on WDR using the improved version of three-dimensional numerical model ECOM. Using data for annual mean wind speed and river discharge during January, we determined that the flood, ebb, net WDR values in the North Branch of the estuary were 3.48%, 1.68%,-4.06% during spring tide, and 4.82%, 2.34%,-2.79% during neap tide, respectively. Negative net WDR values denote the transport of water from the North Branch into the South Branch. Using the same data, the corresponding ratios were 50.09%, 50.92%, 54.97%, and 52.33%, 50.15%, 43.86% in the North Channel and 38.56%, 44.78%, 103.96%, and 36.92%, 43.17%, 60.97% in the North Passage, respectively. When northerly wind speed increased, landward Ekman transport was enhanced in the North Branch, increasing the flood WDR, while the ebb WDR declined and the net WDR exhibited a significant decrease. Similarly, in the North Channel, the flood WDR is increased, the ebb WDR reduced, and the net WDR showed a marked decrease. In the North Passage, the flood WDR also increased while the ebb and net WDR declined. As the river discharge increased, the flood and ebb WDR of the North Branch increased slightly and the net WDR increased markedly. In the North Channel the flood and ebb WDR changed very slightly, while the net WDR declined during spring tides and increased during neap tides. The WDR in the North Passage changed slightly during flood and ebb tides while the net WDR showed a marked increase. The WDR values of different bifurcations and the responses to northerly wind, river discharge, and tide are discussed in comparison with variations in river topography, horizontal wind-induced circulation, and tidal-induced residual current.
基金Supported by the Yangtze Scholars and Innovative Research Team in University of Ministry of Education of China(No.IRT_17R81)the Technology Support Project of Tianjin(No.16YFZCNC00810)
文摘Biofloc technology has been applied successfully in the intensive aquaculture of several fish and shrimp species. The growth of heterotrophic microorganisms can be stimulated through adding extra carbon, which reduces the nitrogen level in the water and provides microbial protein to the animals. However, most of the studies and practical applications have been conducted in freshwater and marine environment. This paper focused on brine shrimp Artemia that lives in high salinity environment together with other halophilic or halotolerant microorganisms. The effect of carbon supplementation on Artemia growth, water quality, and microbial diversity of biofl ocs was studied in the closed culture condition without any water exchange. The salinity of the culture medium was 100. A 24-d culture trial was conducted through supplementing sucrose at carbon/nitrogen (C/N) ratio of 5, 15, and 30 (Su5, Su15, and Su30), respectively. The culture without adding sucrose was used as a control. Artemia was fed formulated feed at a feeding ration of 60% recommended feeding level. The results showed that sucrose supplementation at higher C/N ratio (15 and 30) signifi cantly improved the Artemia survival, growth and water quality ( P <0.05). Addition of sucrose at C/N ratio of 15 and 30 significantly increased biofloc volume (BFV)( P <0.05). The Illumina MiSeq sequencing analysis showed that supplementing carbon at C/N ratio of 15 had a better total bacterial diversity and richness, and shaped the microbial composition at genera level. This study should provide information for studying the mechanism of biofloc technology and its application in high salinity culture conditions.
基金Funded by the National Natural Science Foundation of China(Nos.51278403 and 51308445)the Program for Innovative Research Team in University(IRT 13089)
文摘In order to study the durability of sprayed concrete (shotcrete), effects of different hydration aging and water-binder ratio (w/b) on the microstructure of cement paste and basic mechanical properties of test specimens were investigated. The phase composition, mass percentage of ettringite and portland in hydration production and microstructure were characterized by X-ray diffraction (XRD), thermo gravimetry-differential scanning calorimetry (TG-DSC) and scanning electron microscopy (SEM), respectively. The experimental results showed that changes in phase composition was more significant than those of water-binder ratio. With hydration aging and water-binder ratio increased, the mass percentage of ettringite and portland was decreased from 4.42%, 1.49% to 3.31%, 1.35%, respectively and the microstructure of paste was significantly compacted. Likewise, the mechanical properties including cubic compressive strength and splitting tensile strength were rised obviously.
文摘A study was conducted at Akron, CO, USA, on a Weld silt loam in 2004 to quantify the effects of water deficit stress on corn (Zea mays, L.) root and shoot biomass. Corn plants were grown under a range of soil bulk density and water conditions caused by previous tillage, crop rotation, and irrigation management. Water deficit stress (Dstress) was quantified by the number of days when the water content in the surface 0.3 m deviated from the water content range determined by the Least Limiting Water Range (LLWR). Root and shoot samples were collected at the V6, V12, and R1 growth stages. There was no significant correlation between Dstress and shoot or root biomass at the V6 growth stage. At the V12 and R1 growth stages, there were negative, linear correlations among Dstress and both root biomass and shoot biomass. The proportional decrease of shoot biomass was greater than the proportional decrease in root biomass, leading to an increase in the root:shoot ratio as water deficit stress increased at all growth stages. Determining restrictive soil conditions using the LLWR may be useful for evaluating improvement or degradation of the soil physical environment caused by soil management.
基金"111 Project" Biomedical Textile Materials Science and Technology,China
文摘Emulsion electrospinning as a novel process in spinning core-sheath fibers shows a promising potential in drug release control. The volume ratio of water phase to oily phase is one of the critical parameters in forming core-sheath fibers. In this study, water phase was presented by hydrophilic tetracycline hydrochloride and oily phase by hydrophobic poly (E-caprolactone) (PCL). The effects of volume ratios of water phase to oily phase on fiber morphology and in vitro drug release were investigated. Scanning electron microscopy ( SEM ), transmission electron microscopy ( TEM), and eonfoeal laser scanning microscopy(CLSM) were used to observe the morphology, core.sheath structure of the fibers and drug loading in the fibers, respectively. Samples of three different volume ratios of water phase to oily phase, 1: 25, 1:15, and 1:10, were prepared with the same concentration of drug solution. Experiment results showed that, with an increase in the volume ratios of water phase to oily phase, the fiber diameter increased and diameter distribution scattered. The drug entrapment efficiency of the fibers reduces with the increase in volume ratios, L e. , from 73.48 % in the ratio of 1 : 25, 62.23 % in 1 : 15, down to 45.63 % in 1:10. In vitro release tests showed that a higher volume ratio of water phase to oily phase would lead to a lower release rate resulted from thicker fiber sheath.
基金Funded by the National Natural Science Foundation of China (No.50872127)the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry
文摘The effects of water/binder ratio (w/b) on the toughness behavior, compressive strength and flexural strength of engineered cementitious composites (ECC) were investigated. The w/b ratios of 0.25, 0.31, 0.33 and 0.37 were selected and the specimens were tested at the ages of 7 d and 28 d. The experimental results showed that there was a corresponding increase in first cracking strength, modulus of rupture, compressive strength and flexural strength with the decrease of w/b. Within the w/b range of 0.25-0.37, higher w/b was found to have improved effects on deflection, strain hardening index and toughness index of ECC. In the permission of meeting the requirement of compressive strength grade, selecting higher w/b in mix design will help to obtain robust ECC.
文摘The water equivalent ratio(WER) was calculated for polypropylene(PP), paraffin, polyethylene(PE), polystyrene(PS), polymethyl methacrylate(PMMA), and polycarbonate materials with potential applications in dosimetry and medical physics. This was performed using the Monte Carlo simulation code, MCNPX, at different proton energies. The calculated WER values were compared with National Institute of Standards and Technology(NIST) data, available experimental and analytical results,as well as the FLUKA, SRIM, and SEICS codes. PP and PMMA were associated with the minimum and maximum WER values, respectively. Good agreement was observed between the MCNPX and NIST data. The biggest difference was 0.71% for PS at 150 MeV proton energy. In addition, a relatively large positive correlation between the WER values and the electron density of the dosimetric materials was observed. Finally, it was noted that PE presented the most analogous Depth Dose Characteristics to liquid water.
基金Project(E21527)supported by Open Research Fund Program of Hunan Provincial Key Laboratory of Shale Gas Resource Utilization,Hunan University of Science and Technology,ChinaProjects(51174088,51174228)supported by the National Natural Science Foundation of China+1 种基金Project(2013CB035401)supported by the National Basic Research Program of ChinaProject(2015zzts077)supported by the Fundamental Research Funds for the Central Universities,China
文摘Brazilian disc tests were undertaken on a number of red sandstone samples with different water absorption ratios.The tensile strength of the red sandstone decreases as the water absorption ratio increases.The fracture surfaces of failed red sandstone discs were scanned by Talysurf CLI 2000.With the aid of Talymap Gold software,based on ISO25178,a set of statistical parameters was obtained for the fracture surfaces.The maximum peak height(S_p),maximum pit height(S_v) and maximum height(S_z) of the fracture surfaces exhibited the same decreasing trend with increasing water absorption.Sa and Sku values for the fracture surfaces showed a downward trend as the water absorption ratio increased.The fractal dimensions of fracture surfaces were calculated and found to decrease as the water absorption ratio increased.Through analysis of PSD curves,the smallest dominant wavelength was observed to reflect the roughness of the fracture surfaces.Additionally,the results suggest that the roughness of fracture surfaces becomes small as the water absorption ratio increases.
基金supported by the CAS Knowledge Innovation Key Project (Grant No. KZCX2-YW-330)the National Science Fund Fostering Talents in Basic Research to Glaciology and Geocryology (Grant No. J0630966)the Training Fund of State Key Laboratory of Frozen Soil Engineering of Chinese Academy of Sciences (Grant No. 52YOSF102)
文摘With a new apparatus designed and assembled by ourselves, the matrix potential of non-saturated loess was firstly measured and studied during methane hydrate formation processes. The experimental results showed that during two formation processes, the matrix potential changes of the loess all presented a good linear relationship with water conversion ratios. In addition, although it was well known that the secondary gas hydrate formation was easier than the initial, our experimental results showed that the initial hydrate formation efficiency in non-saturated loess was higher than that of the secondary.
文摘This paper analyzed the consistency of some parameters of soils in the literature and experimental results from fall cone test and its application to soil plasticity classification.Over 500 data from both literatures and experiments using fall cone and Casagrande methods were compiled to assess the relationships among specified water content,cone penetration index ebT,and plasticity angle eaT of finegrained soils.The results indicate that no unique correlation exists among b,liquid limit of the fall cone test(LLc)and a.The water content at 1 mm cone penetration eC0T correlates well with b,plasticity ratio eRpT(i.e.the ratio of plastic limit to liquid limit),and a.Finally,the potential of using the btan a diagram to classify soil plasticity was also discussed.
基金Supported by the National Natural Science Foundation of China(Nos.30871928,31272673)the Special Fund for Agro-Scientific Research of Public Interest(No.201003020)the High Level Talent Project of Guangdong Province Universities and Colleges Pearl River Scholar(GDUPS)(No.2011)
文摘To investigate the influence of sodium to potassium (Na/IO ratios on the growth performance and physiological response of the Pacific white shrimp (Litopenaeus vananmei), various concentrations of KC1 were added to low-salinity well water (salinity 4) in an 8-week culture trial. Six treatments with NWK ratios of 60:1, 42:1, 33:1, 23:1, 17:1, and 14:1 were replicated in triplicate. The highest weight-gain rate (3 506±48)% and survival rate (89.38±0.88)% was observed in well water with Na/K ratios of 23:1 and 42:1, respectively, while the feed conversion ratio (1.02~0.01), oxygen consumption, and ammonia-N excretion rate was the lowest in the medium with a Na/K ratio of 23:1. Gill Na+-K+-ATPase activity, as an indicator of osmoregulation, peaked in the treatment where the Na/K ratio was 17:1. The total hemocyte count, respiratory burst, and immune-related enzyme activities (ALP, LSZ, PO, and SOD) ofL. vananmei were affected significantly by Na/K ratios (P〈0.05). After challenged with Vibrio harveyi, the cumulative mortality of shrimp reared in a Na/K ratio of 23:1 (30±14.14)% was significantly lower than the control (75~7.07)%. In conclusion, the addition of K+ to low-salinity well water in L. vannamei cultures is feasible. Na/K ratios ranging from 23:1 to 33:1 might improve survival and growth. Immunity and disease resistance are also closely related to the Na/K ratio of the low-salinity well water. The findings may contribute to the development of more efficient K^+ remediation strategies for L. vananmei culture in low-salinity well water.
基金The work was supported by Yunnan Local Colleges Applied Basic Research Projects(No.2018FH001-119)Science Research Foundation of Yunnan Education Department of China(Nos.2019J0734,2019J0733,2017ZZX177 and 2018JS422)+2 种基金the Candidate Talents Training Fund of Yunnan Province(Project No.2015HB064)National Natural Science Foundation of China(No.11802265)The authors(MBY and QLH)gratefully acknowledge the financial support from the Hundred Talents Program of Yuxi(Grant 2019).
文摘A simple hydration model is used here by taking the composition of the cement and the initial water: cementratio (w/c) into account explicitly. Its conceptual basis is a combination of the Avrami equation and Bentz’s modelbased on simple spatial considerations. In this model, the Avrami equation determines the initial reaction, andBentz’s model describes the following hydration stage. The model favors engineers for it relies on one experimentalparameter and has a reliable approximation in the practice.
基金The research was funded by the Chinese Academy of Sciences,1992
文摘To the Taihu region water evaporation environmt of water surface with plants, intruded salt watersurface, shallow water surface in rice fields etc., polluted water surface and hot water surface havenow been added in recent years, as a result of economic development. This study on the regularitiesof evaporation from all the above water surfaces showed that evaporation will increase from some surfaces, but from the others.
基金Supported by Natural Science Foundation of Guangdong Province(2014 A030307013)~~
文摘[Objective] This study aimed to further explore the dynamics of related physiological indexes of rice seedlings under different NH4+ /NO3- ratio and different water condition. [Method] Under the hydroponic condition in laboratory, 3 NH4+/NO3- ratios (0/100, 50/50 and 100/0) and 2 water conditions (+PEG,-PEG) were designed for Fengliangyou 7203. [Result] The root-canopy ratio of rice seedlings increased under any of the NH4+/NO3- ratios and water conditions. Under water stress, the root-canopy ratio of rice seedlings changed most greatly at the NH4+/NO3- ratio of 0/ 100; the overall water potential of rice seedlings reached the lowest at the NH4+/ NO3- ratio of 100/0; and the changes of water potential and xylem flow pH were relatively stable at the NH4+/NO3- ratio of 50/50. Under the condition of no water stress, the growth of rice seedlings was best at the NH4+/NO3- ratio of 50/50, followed by the NH4+/NO3- ratios of 0/100 and 100/0. [Conclusion] This study will pro- vide a basis for understanding the relationship between water potential and xylem flow.
文摘The purpose of the study is to analyze the breeding ratio of a supercritical water cooled fast reactor (SCFR) and to increase the breeding core of SCFR. The sensitivities of assembly parameters, core arrangements and fuel nuclide components to the breeding ratio are analyzed. In assembly parameters, the seed fuel rod diameter has higher sensitivities to the conversion ratio (CR) than the coolant tube diameter in blanket. Increasing heavy metal fraction is good to CR improvement. The CR of SCFR also increases with a reasonable core arrangement and Pu isotope mass fraction reduction in fuel, which can achieve more negative coolant void reactivity coefficient at the same time. The breeding ratio of SCFR is 1.03128 with a new core arrangement. And the coolant void reactivity coefficient is negative, which achieves a fuel breeding in initial fuel cycle.
文摘To provide basic data for the reasonable mixing design of the alkali-activated (AA) foamed concrete as a thermal insulation material for a floor heating system, 9 concrete mixes with a targeted dry density less than 400 kg/m3 were tested. Ground granulated blast-furnace slag (GGBS) as a source material was activated by the following two types of alkali activators: 10% Ca(OH)2 and 4% Mg(NO3)2, and 2.5% Ca(OH)2 and 6.5% Na2SiO3. The main test parameters were water-to-binder (W/B) ratio and the substitution level (RFA) of fly ash (FA) for GGBS. Test results revealed that the dry density of AA GGBS foamed concrete was independent of the W/B ratio an RFA, whereas the compressive strength increased with the decrease in W/B ratio and with the increase in RFA up to 15%, beyond which it decreased. With the increase in the W/B ratio, the amount of macro capillaries and artificial air pores increased, which resulted in the decrease of compressive strength. The magnitude of the environmental loads of the AA GGBS foamed concrete is independent of the W/B ratio and RFA. The largest reduction percentage was found in the photochemical oxidation potential, being more than 99%. The reduction percentage was 87% - 93% for the global warming potential, 81% - 84% for abiotic depletion, 79% - 84% for acidification potential, 77% - 85% for eutrophication potential, and 73% - 83% for human toxicity potential. Ultimately, this study proved that the developed AA GGBS foamed concrete has a considerable promise as a sustainable construction material for nonstructural element.
基金Under the auspices of National Key Research and Development Program of China(No.2022YFD1500501)National Natural Science Foundation of China(No.41971066)+1 种基金Key Laboratory Foundation of Mollisols Agroecology(No.2020ZKHT-03)High Tech Fund Project of S&T Cooperation Between Jilin Province and Chinese Academy of Sciences(No.2022SYHZ0018)。
文摘Groundwater mineralization is one of the main factors affecting the transport of soil water and salt in saline-sodic areas.To investigate the effects of groundwater with different levels of salinity on evaporation and distributions of soil water and salt in Songnen Plain,Northeast China,five levels of groundwater sodium adsorption ration of water(SARw)and total salt content(TSC mmol/L)were conducted in an oil column lysimeters.The five treated groundwater labeled as ST0:0,ST0:10,ST5:40,ST10:70 and ST20:100,were prepared with NaCl and CaCl2 in proportion,respectively.The results showed the groundwater evaporation(GWE)and soil evaporation(SE)increased firstly and then decreased with the increase of groundwater salinity.The values of GWE and SE in ST10:70 treatment were the highest,which were 2.09 and 1.84 times the values in the ST0:0 treatment with the lowest GWE and SE.There was a positive linear correlation between GWE and the Ca^(2+)content in groundwater,with R^(2)=0.998.The soil water content(SWC)of ST0:0 treatment was significantly(P<0.05)less than those of other treatments during the test.The SWC of the ST0:0 and ST0:10 treatments increased with the increase of soil depth,while the other treatments showed the opposite trend.Statistical analysis indicated the SWC in the 0–60 cm soil layer was positively correlated with the groundwater TSC and its ion contents during the test.Salt accumulation occurred in the topsoil and the salt accumulation in the 0–20 cm soil layer was significantly(P<0.05)greater than that in the subsoil.This study revealed the effects of the salinity level of groundwater,especially the Ca^(2+)content and TSC of groundwater,on the GWE and distributions of soil water and salt,which provided important support for the prevention and reclamation of soil salinization and sodificaton in shallow groundwater regions.