Electrostatic interaction conductive hybrids were prepared in water/ethanol solution by the sol-gel process from inorganic sol containing carboxyl group and water-borne conductive polyaniline (cPANI). The electrosta...Electrostatic interaction conductive hybrids were prepared in water/ethanol solution by the sol-gel process from inorganic sol containing carboxyl group and water-borne conductive polyaniline (cPANI). The electrostatic interaction hybrids film displayed 1-2 orders of magnitude higher electrical conductivity in comparison with common hybrids film, showing remarkable conductivity stability against water soaking. Most strikingly, it displayed ideal electrochemical activity even in a solution with pH = 14, which enlarged the conducting polyaniline application window to strong alkaline media.展开更多
Use of water-borne wood preservatives began in approximately the 1950s. Residential and commercial uses rapidly developed for products such as decking, fences, and other outdoor structures. Nearly all such products we...Use of water-borne wood preservatives began in approximately the 1950s. Residential and commercial uses rapidly developed for products such as decking, fences, and other outdoor structures. Nearly all such products were treated by preservatives using arsenic as a major ingredient. The most common preservative was chromated copper arsenate (CCA). A smaller volume used ammoniacal copper zinc arsenate (ACZA). Preservative label changes made in 2003 limited uses of these arsenical treatments to industrial or agricultural type uses, such as poles, piles, ties, bridges, and fencing. Use volumes of preservative-treated wood continued to grow after the label change, but the types of preservatives used changed greatly. The amounts of water-borne treated wood reaching end-of-life and being disposed also continued to grow, reflecting the increasing inventory of volume in service. However, the volume of arsenical-treated wood being disposed peaked in approximately 2008 and is now only approximately one-quarter of that volume. Most of the arsenical-treated wood now being disposed consists of large, easily identified and separated pieces, such as round poles, piles, and fence posts and timbers, which can be easily managed separated from other wood construction and demolition (C & D) waste. Thus, managing C & D waste to limit arsenic contamination of potential products, such as mulch, will be much more practical than some have feared.展开更多
The kinetics of water absorption in water-borne anticorrosive urethane/epoxy coatings, which were actually introduced in the industrial field, are studied. It is found that the high water affinity of a water-borne coa...The kinetics of water absorption in water-borne anticorrosive urethane/epoxy coatings, which were actually introduced in the industrial field, are studied. It is found that the high water affinity of a water-borne coating supports a higher saturated water content, Mχ, and helps to facilitate absorption D. The three parameters of stretched exponential function called the William-Watt equation, Eo, τ, and β, are determined to fit the degraded stress relaxation behavior in the water absorption process because this function quantitatively describes the relaxing ability and has been successfully used by a number of researchers. An increasing in the water content is shown to correlate strongly with a decrease in Eo and fl early in the absorption process between Mt/M(χ) = 0 and Mt/Mχ≈ 0.5. The adhesive characteristics of the coatings are correlated with water content, and shown to exhibit higher cohesive failure in coating epoxies under saturated conditions. This suggests that water interferes with the intermolecular bonding between polymer chains which degrades the bulk materials ability to diffuse stress concentrations and reduces its overall strength.展开更多
Objectives: To determine the economic challenges brought on by water-borne illnesses as a result of climate change. In addition to identifying potential access to safe drinking water during climate change and potentia...Objectives: To determine the economic challenges brought on by water-borne illnesses as a result of climate change. In addition to identifying potential access to safe drinking water during climate change and potential health hurdles brought on by water-related diseases, it is important to learn how to reduce the spread of water-borne diseases. Methods: A mixed method design was adopted to evaluate this research, and probability sampling, more specifically simple random sampling, was used to select to sample from the target population. The study was conducted in Taltali upazila of the Barguna district, and data was collected from 384 respondents;among them, 5 respondents were selected for the key informant interview. The research project began in June 2022 and was completed in December 2022. Results: 41.4% of respondents said they suffer from dysentery, 22.4% said the expense of treating water-borne diseases has increased as a result of climate change, and 37.8% said they must travel great distances to obtain clean drinking water. Currently, 41.7% of individuals utilize tube-well water, compared to 19.3% five to ten years ago, and 27.4% have been taught that water filtration helps reduce the spread of water-borne diseases. Conclusions: People’s vulnerability to climate change in the study area is a result of factors such as rapid population increase, unequal access to resources, food insecurity, a long distance to collect water, inadequate medical facilities, a lack of poverty, and a weak health system.展开更多
In this paper, strontium aluminate phosphors of Sr Al2O4: Eu2+, Dy3+ and Sr4Al14O25: Eu2+, Dy3+ were prepared via solid state reactions and subsequent surface modification with Si O2 by a chemical precipitation method...In this paper, strontium aluminate phosphors of Sr Al2O4: Eu2+, Dy3+ and Sr4Al14O25: Eu2+, Dy3+ were prepared via solid state reactions and subsequent surface modification with Si O2 by a chemical precipitation method. The strontium aluminate phosphors were characterized by measurement-ray diffraction. According to the analysis by transmission electron microscopy, a continuous Si O2 coating layer with a thickness of 50 nm can be formed on the surface of Si O2-coated phosphor. The covalent bond that attached the phosphor and the Si O2 coating was determined by Fourier transform infrared spectroscopy. The water resistance and optical measurements indicate that the optimum ratio of Si O2 coating to phosphors is 30% by mass. Also, the Si O2-coated phosphors could be used in a water-borne paint with the superior luminous performance.展开更多
This research is devoted to diagnosing water-borne infectious diseases caused by floods employing a novel diagnosis approach,the Einstein hybrid structure of q-rung orthopair fuzzy soft set.This approach integrates pa...This research is devoted to diagnosing water-borne infectious diseases caused by floods employing a novel diagnosis approach,the Einstein hybrid structure of q-rung orthopair fuzzy soft set.This approach integrates parts of fuzzy logic and soft set theory to develop a robust alternative for disease detection in stressful situations,especially in areas affected by floods.Compared to the traditional intuitionistic fuzzy soft set and Pythagorean fuzzy soft set,the q-rung orthopair fuzzy soft set(q-ROFSS)adequately incorporates unclear and indeterminate facts.The major objective of this investigation is to formulate the q-rung orthopair fuzzy soft Einstein hybrid weighted average(q-ROFSEHWA)operator and its specific characteristics.Moreover,our stated operator is implementing intelligentmulti-criteria group decision-making(MCGDM)methodology.Floods are severe natural catastrophes that raise the risk of diseases and epidemics,particularly those caused by contaminants in the water,such as gastrointestinal diseases,respiratory infections,vector-borne diseases,skin infections,and water-borne parasites.The designed MCGDM strategy tackles the prevalence of certain conditions in flood-affected patients.A comparative investigation determined that the suggested method for detecting water-borne infectious disease due to floods is more effective and productive than conventional methods because of its logical structure.展开更多
UV-curable polyurethane prepolymer and photoinitiator 1173 were facilely encapsulated in a poly(urea-formaldehyde) shell, which was in situ formed by the polymerization of formalde-hyde and urea in an oil-in-water e...UV-curable polyurethane prepolymer and photoinitiator 1173 were facilely encapsulated in a poly(urea-formaldehyde) shell, which was in situ formed by the polymerization of formalde-hyde and urea in an oil-in-water emulsion. The diameters of the microcapsules ranged from 118 μm to 663 μm depending on agitation speed, and were obtained via optical mi-croscopy and scanning electron microscopy analyses. The encapsulation percent and the yield of microcapsules prepared at the agitation speed of 600 r/min can reach 97.52wt% and 65.23wt%, respectively. When the water-borne polyurethane (WPU) coating embedded with the prepared microcapsules were scratched, the healing agent could be released from rup-tured microcapsules and lled the scribed region. The excellent anticorrosion properties of the WPU coating embedded with the prepared microcapsules were con rmed by the results obtained from both electrochemical impedance spectroscopy and Tafel curves.展开更多
基金This work was financially supported by the National Science Foundation of China (No. 20225414).
文摘Electrostatic interaction conductive hybrids were prepared in water/ethanol solution by the sol-gel process from inorganic sol containing carboxyl group and water-borne conductive polyaniline (cPANI). The electrostatic interaction hybrids film displayed 1-2 orders of magnitude higher electrical conductivity in comparison with common hybrids film, showing remarkable conductivity stability against water soaking. Most strikingly, it displayed ideal electrochemical activity even in a solution with pH = 14, which enlarged the conducting polyaniline application window to strong alkaline media.
文摘Use of water-borne wood preservatives began in approximately the 1950s. Residential and commercial uses rapidly developed for products such as decking, fences, and other outdoor structures. Nearly all such products were treated by preservatives using arsenic as a major ingredient. The most common preservative was chromated copper arsenate (CCA). A smaller volume used ammoniacal copper zinc arsenate (ACZA). Preservative label changes made in 2003 limited uses of these arsenical treatments to industrial or agricultural type uses, such as poles, piles, ties, bridges, and fencing. Use volumes of preservative-treated wood continued to grow after the label change, but the types of preservatives used changed greatly. The amounts of water-borne treated wood reaching end-of-life and being disposed also continued to grow, reflecting the increasing inventory of volume in service. However, the volume of arsenical-treated wood being disposed peaked in approximately 2008 and is now only approximately one-quarter of that volume. Most of the arsenical-treated wood now being disposed consists of large, easily identified and separated pieces, such as round poles, piles, and fence posts and timbers, which can be easily managed separated from other wood construction and demolition (C & D) waste. Thus, managing C & D waste to limit arsenic contamination of potential products, such as mulch, will be much more practical than some have feared.
文摘The kinetics of water absorption in water-borne anticorrosive urethane/epoxy coatings, which were actually introduced in the industrial field, are studied. It is found that the high water affinity of a water-borne coating supports a higher saturated water content, Mχ, and helps to facilitate absorption D. The three parameters of stretched exponential function called the William-Watt equation, Eo, τ, and β, are determined to fit the degraded stress relaxation behavior in the water absorption process because this function quantitatively describes the relaxing ability and has been successfully used by a number of researchers. An increasing in the water content is shown to correlate strongly with a decrease in Eo and fl early in the absorption process between Mt/M(χ) = 0 and Mt/Mχ≈ 0.5. The adhesive characteristics of the coatings are correlated with water content, and shown to exhibit higher cohesive failure in coating epoxies under saturated conditions. This suggests that water interferes with the intermolecular bonding between polymer chains which degrades the bulk materials ability to diffuse stress concentrations and reduces its overall strength.
文摘Objectives: To determine the economic challenges brought on by water-borne illnesses as a result of climate change. In addition to identifying potential access to safe drinking water during climate change and potential health hurdles brought on by water-related diseases, it is important to learn how to reduce the spread of water-borne diseases. Methods: A mixed method design was adopted to evaluate this research, and probability sampling, more specifically simple random sampling, was used to select to sample from the target population. The study was conducted in Taltali upazila of the Barguna district, and data was collected from 384 respondents;among them, 5 respondents were selected for the key informant interview. The research project began in June 2022 and was completed in December 2022. Results: 41.4% of respondents said they suffer from dysentery, 22.4% said the expense of treating water-borne diseases has increased as a result of climate change, and 37.8% said they must travel great distances to obtain clean drinking water. Currently, 41.7% of individuals utilize tube-well water, compared to 19.3% five to ten years ago, and 27.4% have been taught that water filtration helps reduce the spread of water-borne diseases. Conclusions: People’s vulnerability to climate change in the study area is a result of factors such as rapid population increase, unequal access to resources, food insecurity, a long distance to collect water, inadequate medical facilities, a lack of poverty, and a weak health system.
基金financially supported by the Bayer-Tongji Eco-Construction and Materials Academythe open Funds from the Key Laboratory of Advanced Civil Engineering Materials (Tongji University)
文摘In this paper, strontium aluminate phosphors of Sr Al2O4: Eu2+, Dy3+ and Sr4Al14O25: Eu2+, Dy3+ were prepared via solid state reactions and subsequent surface modification with Si O2 by a chemical precipitation method. The strontium aluminate phosphors were characterized by measurement-ray diffraction. According to the analysis by transmission electron microscopy, a continuous Si O2 coating layer with a thickness of 50 nm can be formed on the surface of Si O2-coated phosphor. The covalent bond that attached the phosphor and the Si O2 coating was determined by Fourier transform infrared spectroscopy. The water resistance and optical measurements indicate that the optimum ratio of Si O2 coating to phosphors is 30% by mass. Also, the Si O2-coated phosphors could be used in a water-borne paint with the superior luminous performance.
基金funded by King Saud University,Research Supporting Project Number(RSP2024R167),Riyadh,Saudi Arabia.
文摘This research is devoted to diagnosing water-borne infectious diseases caused by floods employing a novel diagnosis approach,the Einstein hybrid structure of q-rung orthopair fuzzy soft set.This approach integrates parts of fuzzy logic and soft set theory to develop a robust alternative for disease detection in stressful situations,especially in areas affected by floods.Compared to the traditional intuitionistic fuzzy soft set and Pythagorean fuzzy soft set,the q-rung orthopair fuzzy soft set(q-ROFSS)adequately incorporates unclear and indeterminate facts.The major objective of this investigation is to formulate the q-rung orthopair fuzzy soft Einstein hybrid weighted average(q-ROFSEHWA)operator and its specific characteristics.Moreover,our stated operator is implementing intelligentmulti-criteria group decision-making(MCGDM)methodology.Floods are severe natural catastrophes that raise the risk of diseases and epidemics,particularly those caused by contaminants in the water,such as gastrointestinal diseases,respiratory infections,vector-borne diseases,skin infections,and water-borne parasites.The designed MCGDM strategy tackles the prevalence of certain conditions in flood-affected patients.A comparative investigation determined that the suggested method for detecting water-borne infectious disease due to floods is more effective and productive than conventional methods because of its logical structure.
文摘UV-curable polyurethane prepolymer and photoinitiator 1173 were facilely encapsulated in a poly(urea-formaldehyde) shell, which was in situ formed by the polymerization of formalde-hyde and urea in an oil-in-water emulsion. The diameters of the microcapsules ranged from 118 μm to 663 μm depending on agitation speed, and were obtained via optical mi-croscopy and scanning electron microscopy analyses. The encapsulation percent and the yield of microcapsules prepared at the agitation speed of 600 r/min can reach 97.52wt% and 65.23wt%, respectively. When the water-borne polyurethane (WPU) coating embedded with the prepared microcapsules were scratched, the healing agent could be released from rup-tured microcapsules and lled the scribed region. The excellent anticorrosion properties of the WPU coating embedded with the prepared microcapsules were con rmed by the results obtained from both electrochemical impedance spectroscopy and Tafel curves.