Objectives: To determine the economic challenges brought on by water-borne illnesses as a result of climate change. In addition to identifying potential access to safe drinking water during climate change and potentia...Objectives: To determine the economic challenges brought on by water-borne illnesses as a result of climate change. In addition to identifying potential access to safe drinking water during climate change and potential health hurdles brought on by water-related diseases, it is important to learn how to reduce the spread of water-borne diseases. Methods: A mixed method design was adopted to evaluate this research, and probability sampling, more specifically simple random sampling, was used to select to sample from the target population. The study was conducted in Taltali upazila of the Barguna district, and data was collected from 384 respondents;among them, 5 respondents were selected for the key informant interview. The research project began in June 2022 and was completed in December 2022. Results: 41.4% of respondents said they suffer from dysentery, 22.4% said the expense of treating water-borne diseases has increased as a result of climate change, and 37.8% said they must travel great distances to obtain clean drinking water. Currently, 41.7% of individuals utilize tube-well water, compared to 19.3% five to ten years ago, and 27.4% have been taught that water filtration helps reduce the spread of water-borne diseases. Conclusions: People’s vulnerability to climate change in the study area is a result of factors such as rapid population increase, unequal access to resources, food insecurity, a long distance to collect water, inadequate medical facilities, a lack of poverty, and a weak health system.展开更多
As a natural organic polymer,xanthan gum(XG)can alleviate the plastic deformation of gel ink under strong stress and realize the reasonable regulation of the rheological properties of gel ink.However,as the double-hel...As a natural organic polymer,xanthan gum(XG)can alleviate the plastic deformation of gel ink under strong stress and realize the reasonable regulation of the rheological properties of gel ink.However,as the double-helix structure connected by hydrogen bonds cannot resist the mechanical environment of strong stress,XG shows poor shear resistance.In this study,a polymer gel with interpenetrating polymer network structure was prepared by esterifying XG,taking polystyrene maleic anhydride(SMA)as the modifier.In addition to retaining the excellent rheological properties of XG,the generated polymer gel also exhibited high shear resistance.The optimal addition amount of the esterification reaction modifier was determined as mXG:mSMA=5:3 according to the gel ink standard.With this amount,the viscosity of the modified xanthan gum(SXG)gel increased to 1578.8 mPa·s and 100.7 mPa·s at shear rates of 4 s1 and 383 s1,respectively,and the shear resistance increased more than 2 times compared to the unmodified one.It is because of the ester bond formed by esterification that the reaction strengthens the interaction between molecular segments,enabling the new gel to resist to strong mechanical stress.The new polymer gel studied in this paper and the proposed mechanism of action provide new insights for the development of high-end gel ink and also provide theoretical support for the study of rheological properties of non-Newtonian fluids.展开更多
Achieving flexible electronics with comfort and durability comparable to traditional textiles is one of the ultimate pursuits of smart wearables.Ink printing is desirable for e-textile development using a simple and i...Achieving flexible electronics with comfort and durability comparable to traditional textiles is one of the ultimate pursuits of smart wearables.Ink printing is desirable for e-textile development using a simple and inexpensive process.However,fabricating high-performance atop textiles with good dispersity,stability,biocompatibility,and wearability for high-resolution,large-scale manufacturing,and practical applications has remained challenging.Here,waterbased multi-walled carbon nanotubes(MWCNTs)-decorated liquid metal(LM)inks are proposed with carbonaceous gallium–indium micro-nanostructure.With the assistance of biopolymers,the sodium alginate-encapsulated LM droplets contain high carboxyl groups which non-covalently crosslink with silk sericin-mediated MWCNTs.E-textile can be prepared subsequently via printing technique and natural waterproof triboelectric coating,enabling good flexibility,hydrophilicity,breathability,wearability,biocompatibility,conductivity,stability,and excellent versatility,without any artificial chemicals.The obtained e-textile can be used in various applications with designable patterns and circuits.Multi-sensing applications of recognizing complex human motions,breathing,phonation,and pressure distribution are demonstrated with repeatable and reliable signals.Self-powered and energy-harvesting capabilities are also presented by driving electronic devices and lighting LEDs.As proof of concept,this work provides new opportunities in a scalable and sustainable way to develop novel wearable electronics and smart clothing for future commercial applications.展开更多
Electrostatic interaction conductive hybrids were prepared in water/ethanol solution by the sol-gel process from inorganic sol containing carboxyl group and water-borne conductive polyaniline (cPANI). The electrosta...Electrostatic interaction conductive hybrids were prepared in water/ethanol solution by the sol-gel process from inorganic sol containing carboxyl group and water-borne conductive polyaniline (cPANI). The electrostatic interaction hybrids film displayed 1-2 orders of magnitude higher electrical conductivity in comparison with common hybrids film, showing remarkable conductivity stability against water soaking. Most strikingly, it displayed ideal electrochemical activity even in a solution with pH = 14, which enlarged the conducting polyaniline application window to strong alkaline media.展开更多
Acetabular cups,which are among themost important implants in total hip arthroplasty,are usually made from titanium alloys with high porosity and adequate mechanical properties.The current three-dimensional(3D)printin...Acetabular cups,which are among themost important implants in total hip arthroplasty,are usually made from titanium alloys with high porosity and adequate mechanical properties.The current three-dimensional(3D)printing approaches to fabricate customized acetabular cups have some inherent disadvantages such as high cost and energy consumption,residual thermal stress,and relatively low efficiency.Thus,in this work,a direct ink writing method was developed to print a cup structure at room temperature,followed by multi-step heat treatment to form microscale porous structure within the acetabular cup.Our method is facilitated by the development of a self-supporting titanium-6 aluminum-4 vanadium(Ti64)ink that is composed of Ti64 particles,bentonite yield-stress additive,ultraviolet curable polymer,and photo-initiator.The effects of Ti64 and bentonite concentrations on the rheological properties and printability of inks were systematically investigated.Moreover,the printing conditions,geometrical limitations,and maximum curing depth were explored.Finally,some complex 3D structures,including lattices with different gap distances,honeycomb with a well-defined shape,and an acetabular cup with uniformly distributed micropores,were successfully printed/fabricated to validate the effectiveness of the proposed method.展开更多
The dysregulation of exosomal microRNAs(miRNAs)plays a crucial role in the development and progression of cancer.This study investigated the role of a newly identified serum exosomal miRNA miR-4256 in gastric cancer(G...The dysregulation of exosomal microRNAs(miRNAs)plays a crucial role in the development and progression of cancer.This study investigated the role of a newly identified serum exosomal miRNA miR-4256 in gastric cancer(GC)and the underlying mechanisms.The differentially expressed miRNAs were firstly identified in serum exosomes of GC patients and healthy individuals using next-generation sequencing and bioinformatics.Next,the expression of serum exosomal miR-4256 was analyzed in GC cells and GC tissues,and the role of miR-4256 in GC was investigated by in vitro and in vivo experiments.Then,the effect of miR-4256 on its downstream target genes HDAC5/p16^(INK4a) was studied in GC cells,and the underlying mechanisms were evaluated using dual luciferase reporter assay and Chromatin Immunoprecipitation(ChIP).Additionally,the role of the miR-4256/HDAC5/p16^(INK4a) axis in GC was studied using in vitro and in vivo experiments.Finally,the upstream regulators SMAD2/p300 that regulate miR-4256 expression and their role in GC were explored using in vitro experiments.miR-4256 was the most significantly upregulated miRNA and was overexpressed in GC cell lines and GC tissues;in vitro and in vivo results showed that miR-4256 promoted GC growth and progression.Mechanistically,miR-4256 enhanced HDAC5 expression by targeting the promoter of the HDAC5 gene in GC cells,and then restrained the expression of p16^(INK4a) through the epigenetic modulation of HDAC5 at the p16INK4a promoter.Furthermore,miR-4256 overexpression was positively regulated by the SMAD2/p300 complex in GC cells.Our data indicate that miR-4256 functions as an oncogene in GC via the SMAD2/miR-4256/HDAC5/p16^(INK4a) axis,which participates in GC progression and provides novel therapeutic and prognostic biomarkers for GC.展开更多
The kinetics of water absorption in water-borne anticorrosive urethane/epoxy coatings, which were actually introduced in the industrial field, are studied. It is found that the high water affinity of a water-borne coa...The kinetics of water absorption in water-borne anticorrosive urethane/epoxy coatings, which were actually introduced in the industrial field, are studied. It is found that the high water affinity of a water-borne coating supports a higher saturated water content, Mχ, and helps to facilitate absorption D. The three parameters of stretched exponential function called the William-Watt equation, Eo, τ, and β, are determined to fit the degraded stress relaxation behavior in the water absorption process because this function quantitatively describes the relaxing ability and has been successfully used by a number of researchers. An increasing in the water content is shown to correlate strongly with a decrease in Eo and fl early in the absorption process between Mt/M(χ) = 0 and Mt/Mχ≈ 0.5. The adhesive characteristics of the coatings are correlated with water content, and shown to exhibit higher cohesive failure in coating epoxies under saturated conditions. This suggests that water interferes with the intermolecular bonding between polymer chains which degrades the bulk materials ability to diffuse stress concentrations and reduces its overall strength.展开更多
Use of water-borne wood preservatives began in approximately the 1950s. Residential and commercial uses rapidly developed for products such as decking, fences, and other outdoor structures. Nearly all such products we...Use of water-borne wood preservatives began in approximately the 1950s. Residential and commercial uses rapidly developed for products such as decking, fences, and other outdoor structures. Nearly all such products were treated by preservatives using arsenic as a major ingredient. The most common preservative was chromated copper arsenate (CCA). A smaller volume used ammoniacal copper zinc arsenate (ACZA). Preservative label changes made in 2003 limited uses of these arsenical treatments to industrial or agricultural type uses, such as poles, piles, ties, bridges, and fencing. Use volumes of preservative-treated wood continued to grow after the label change, but the types of preservatives used changed greatly. The amounts of water-borne treated wood reaching end-of-life and being disposed also continued to grow, reflecting the increasing inventory of volume in service. However, the volume of arsenical-treated wood being disposed peaked in approximately 2008 and is now only approximately one-quarter of that volume. Most of the arsenical-treated wood now being disposed consists of large, easily identified and separated pieces, such as round poles, piles, and fence posts and timbers, which can be easily managed separated from other wood construction and demolition (C & D) waste. Thus, managing C & D waste to limit arsenic contamination of potential products, such as mulch, will be much more practical than some have feared.展开更多
Despite the safety,low cost,and high theoretical capacity(820 mA h g^(-1))of Zn metal anodes,the practical application of aqueous Zn metal batteries remains a critical challenge due to the Zn dendrite growth,corrosion...Despite the safety,low cost,and high theoretical capacity(820 mA h g^(-1))of Zn metal anodes,the practical application of aqueous Zn metal batteries remains a critical challenge due to the Zn dendrite growth,corrosion,and hydrogen evolution reaction.Herein,we demonstrate the MXene ink hosting Zn metal anodes(MX@Zn)for high-performance and patternable Zn metal full batteries.The as-designed MX@Zn electrode is more facile and reversible than bare Zn and CC@Zn,as verified by better cyclic stability and lower overpotentials of symmetric cells with the plating capacity of 0.05 mA h cm^(-2)at 0.1 m A cm^(-2)and of 1 m A h cm^(-2)at 1 m A cm^(-2).The MX@Zn|MnO_(2)full cells deliver a high specific capacity of 281.9 m A h g^(-1),91.5%of the theoretical capacity,achieving 50%capacity retention from 60 mA g^(-1)to 300 mA g^(-1)and 79.7%of initial capacity after 200 cycles.Moreover,the patterned devices based on the MX@Zn electrode achieve high energy and power densities of 348.57 Wh kg^(-1)and 1556 W kg^(-1),respectively,along with a capacity retention of 64%and Coulombic efficiency of 99%over 500 cycles.The high performance of MX@Zn is attributed to the high electrical conductivity and hydrophilicity of MXene and rapid ion diffusion through the 3D interconnected porous channels.展开更多
Direct ink writing(DIW)holds enormous potential in fabricating multiscale and multi-functional architectures by virtue of its wide range of printable materials,simple operation,and ease of rapid prototyping.Although i...Direct ink writing(DIW)holds enormous potential in fabricating multiscale and multi-functional architectures by virtue of its wide range of printable materials,simple operation,and ease of rapid prototyping.Although it is well known that ink rheology and processing parameters have a direct impact on the resolution and shape of the printed objects,the underlying mechanisms of these key factors on the printability and quality of DIW technique remain poorly understood.To tackle this issue,we systematically analyzed the printability and quality through extrusion mechanism modeling and experimental validating.Hybrid non-Newtonian fluid inks were first prepared,and their rheological properties were measured.Then,finite element analysis of the whole DIW process was conducted to reveal the flow dynamics of these inks.The obtained optimal process parameters(ink rheology,applied pressure,printing speed,etc)were also validated by experiments where high-resolution(<100μm)patterns were fabricated rapidly(>70 mm s^(-1)).Finally,as a process research demonstration,we printed a series of microstructures and circuit systems with hybrid inks and silver inks,showing the suitability of the printable process parameters.This study provides a strong quantitative illustration of the use of DIW for the high-speed preparation of high-resolution,high-precision samples.展开更多
文摘Objectives: To determine the economic challenges brought on by water-borne illnesses as a result of climate change. In addition to identifying potential access to safe drinking water during climate change and potential health hurdles brought on by water-related diseases, it is important to learn how to reduce the spread of water-borne diseases. Methods: A mixed method design was adopted to evaluate this research, and probability sampling, more specifically simple random sampling, was used to select to sample from the target population. The study was conducted in Taltali upazila of the Barguna district, and data was collected from 384 respondents;among them, 5 respondents were selected for the key informant interview. The research project began in June 2022 and was completed in December 2022. Results: 41.4% of respondents said they suffer from dysentery, 22.4% said the expense of treating water-borne diseases has increased as a result of climate change, and 37.8% said they must travel great distances to obtain clean drinking water. Currently, 41.7% of individuals utilize tube-well water, compared to 19.3% five to ten years ago, and 27.4% have been taught that water filtration helps reduce the spread of water-borne diseases. Conclusions: People’s vulnerability to climate change in the study area is a result of factors such as rapid population increase, unequal access to resources, food insecurity, a long distance to collect water, inadequate medical facilities, a lack of poverty, and a weak health system.
基金supported by Shanxi Provincial Science and Technology Achievement Transformation Guidance Special Program of China(202104021301052)Shanxi Provincial Patent Transformation Special Plan Project(202202054,202306013).
文摘As a natural organic polymer,xanthan gum(XG)can alleviate the plastic deformation of gel ink under strong stress and realize the reasonable regulation of the rheological properties of gel ink.However,as the double-helix structure connected by hydrogen bonds cannot resist the mechanical environment of strong stress,XG shows poor shear resistance.In this study,a polymer gel with interpenetrating polymer network structure was prepared by esterifying XG,taking polystyrene maleic anhydride(SMA)as the modifier.In addition to retaining the excellent rheological properties of XG,the generated polymer gel also exhibited high shear resistance.The optimal addition amount of the esterification reaction modifier was determined as mXG:mSMA=5:3 according to the gel ink standard.With this amount,the viscosity of the modified xanthan gum(SXG)gel increased to 1578.8 mPa·s and 100.7 mPa·s at shear rates of 4 s1 and 383 s1,respectively,and the shear resistance increased more than 2 times compared to the unmodified one.It is because of the ester bond formed by esterification that the reaction strengthens the interaction between molecular segments,enabling the new gel to resist to strong mechanical stress.The new polymer gel studied in this paper and the proposed mechanism of action provide new insights for the development of high-end gel ink and also provide theoretical support for the study of rheological properties of non-Newtonian fluids.
基金funded by The Hong Kong Polytechnic University(Project No.1-WZ1Y,1-YXAK,1-W21C).
文摘Achieving flexible electronics with comfort and durability comparable to traditional textiles is one of the ultimate pursuits of smart wearables.Ink printing is desirable for e-textile development using a simple and inexpensive process.However,fabricating high-performance atop textiles with good dispersity,stability,biocompatibility,and wearability for high-resolution,large-scale manufacturing,and practical applications has remained challenging.Here,waterbased multi-walled carbon nanotubes(MWCNTs)-decorated liquid metal(LM)inks are proposed with carbonaceous gallium–indium micro-nanostructure.With the assistance of biopolymers,the sodium alginate-encapsulated LM droplets contain high carboxyl groups which non-covalently crosslink with silk sericin-mediated MWCNTs.E-textile can be prepared subsequently via printing technique and natural waterproof triboelectric coating,enabling good flexibility,hydrophilicity,breathability,wearability,biocompatibility,conductivity,stability,and excellent versatility,without any artificial chemicals.The obtained e-textile can be used in various applications with designable patterns and circuits.Multi-sensing applications of recognizing complex human motions,breathing,phonation,and pressure distribution are demonstrated with repeatable and reliable signals.Self-powered and energy-harvesting capabilities are also presented by driving electronic devices and lighting LEDs.As proof of concept,this work provides new opportunities in a scalable and sustainable way to develop novel wearable electronics and smart clothing for future commercial applications.
基金This work was financially supported by the National Science Foundation of China (No. 20225414).
文摘Electrostatic interaction conductive hybrids were prepared in water/ethanol solution by the sol-gel process from inorganic sol containing carboxyl group and water-borne conductive polyaniline (cPANI). The electrostatic interaction hybrids film displayed 1-2 orders of magnitude higher electrical conductivity in comparison with common hybrids film, showing remarkable conductivity stability against water soaking. Most strikingly, it displayed ideal electrochemical activity even in a solution with pH = 14, which enlarged the conducting polyaniline application window to strong alkaline media.
基金supported by the Micro Grant (PG20473) at the University of Nevada, Reno, USA
文摘Acetabular cups,which are among themost important implants in total hip arthroplasty,are usually made from titanium alloys with high porosity and adequate mechanical properties.The current three-dimensional(3D)printing approaches to fabricate customized acetabular cups have some inherent disadvantages such as high cost and energy consumption,residual thermal stress,and relatively low efficiency.Thus,in this work,a direct ink writing method was developed to print a cup structure at room temperature,followed by multi-step heat treatment to form microscale porous structure within the acetabular cup.Our method is facilitated by the development of a self-supporting titanium-6 aluminum-4 vanadium(Ti64)ink that is composed of Ti64 particles,bentonite yield-stress additive,ultraviolet curable polymer,and photo-initiator.The effects of Ti64 and bentonite concentrations on the rheological properties and printability of inks were systematically investigated.Moreover,the printing conditions,geometrical limitations,and maximum curing depth were explored.Finally,some complex 3D structures,including lattices with different gap distances,honeycomb with a well-defined shape,and an acetabular cup with uniformly distributed micropores,were successfully printed/fabricated to validate the effectiveness of the proposed method.
基金The studies involving human participants were approved by The First Affiliated Hospital of Jinan University Ethics Committee(KY-2021-095)The participants provided their written informed consent to participate in this study+1 种基金Animalinvolved experimental protocols were compliance with guidelines and licensesapproved by the Laboratory Animal Center of Jinan University(20220225-65).
文摘The dysregulation of exosomal microRNAs(miRNAs)plays a crucial role in the development and progression of cancer.This study investigated the role of a newly identified serum exosomal miRNA miR-4256 in gastric cancer(GC)and the underlying mechanisms.The differentially expressed miRNAs were firstly identified in serum exosomes of GC patients and healthy individuals using next-generation sequencing and bioinformatics.Next,the expression of serum exosomal miR-4256 was analyzed in GC cells and GC tissues,and the role of miR-4256 in GC was investigated by in vitro and in vivo experiments.Then,the effect of miR-4256 on its downstream target genes HDAC5/p16^(INK4a) was studied in GC cells,and the underlying mechanisms were evaluated using dual luciferase reporter assay and Chromatin Immunoprecipitation(ChIP).Additionally,the role of the miR-4256/HDAC5/p16^(INK4a) axis in GC was studied using in vitro and in vivo experiments.Finally,the upstream regulators SMAD2/p300 that regulate miR-4256 expression and their role in GC were explored using in vitro experiments.miR-4256 was the most significantly upregulated miRNA and was overexpressed in GC cell lines and GC tissues;in vitro and in vivo results showed that miR-4256 promoted GC growth and progression.Mechanistically,miR-4256 enhanced HDAC5 expression by targeting the promoter of the HDAC5 gene in GC cells,and then restrained the expression of p16^(INK4a) through the epigenetic modulation of HDAC5 at the p16INK4a promoter.Furthermore,miR-4256 overexpression was positively regulated by the SMAD2/p300 complex in GC cells.Our data indicate that miR-4256 functions as an oncogene in GC via the SMAD2/miR-4256/HDAC5/p16^(INK4a) axis,which participates in GC progression and provides novel therapeutic and prognostic biomarkers for GC.
文摘The kinetics of water absorption in water-borne anticorrosive urethane/epoxy coatings, which were actually introduced in the industrial field, are studied. It is found that the high water affinity of a water-borne coating supports a higher saturated water content, Mχ, and helps to facilitate absorption D. The three parameters of stretched exponential function called the William-Watt equation, Eo, τ, and β, are determined to fit the degraded stress relaxation behavior in the water absorption process because this function quantitatively describes the relaxing ability and has been successfully used by a number of researchers. An increasing in the water content is shown to correlate strongly with a decrease in Eo and fl early in the absorption process between Mt/M(χ) = 0 and Mt/Mχ≈ 0.5. The adhesive characteristics of the coatings are correlated with water content, and shown to exhibit higher cohesive failure in coating epoxies under saturated conditions. This suggests that water interferes with the intermolecular bonding between polymer chains which degrades the bulk materials ability to diffuse stress concentrations and reduces its overall strength.
文摘Use of water-borne wood preservatives began in approximately the 1950s. Residential and commercial uses rapidly developed for products such as decking, fences, and other outdoor structures. Nearly all such products were treated by preservatives using arsenic as a major ingredient. The most common preservative was chromated copper arsenate (CCA). A smaller volume used ammoniacal copper zinc arsenate (ACZA). Preservative label changes made in 2003 limited uses of these arsenical treatments to industrial or agricultural type uses, such as poles, piles, ties, bridges, and fencing. Use volumes of preservative-treated wood continued to grow after the label change, but the types of preservatives used changed greatly. The amounts of water-borne treated wood reaching end-of-life and being disposed also continued to grow, reflecting the increasing inventory of volume in service. However, the volume of arsenical-treated wood being disposed peaked in approximately 2008 and is now only approximately one-quarter of that volume. Most of the arsenical-treated wood now being disposed consists of large, easily identified and separated pieces, such as round poles, piles, and fence posts and timbers, which can be easily managed separated from other wood construction and demolition (C & D) waste. Thus, managing C & D waste to limit arsenic contamination of potential products, such as mulch, will be much more practical than some have feared.
基金supported by financial support from the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(NRF-2020R1A3B2079803 and NRF2019K1A3A1A21032033),Republic of Korea。
文摘Despite the safety,low cost,and high theoretical capacity(820 mA h g^(-1))of Zn metal anodes,the practical application of aqueous Zn metal batteries remains a critical challenge due to the Zn dendrite growth,corrosion,and hydrogen evolution reaction.Herein,we demonstrate the MXene ink hosting Zn metal anodes(MX@Zn)for high-performance and patternable Zn metal full batteries.The as-designed MX@Zn electrode is more facile and reversible than bare Zn and CC@Zn,as verified by better cyclic stability and lower overpotentials of symmetric cells with the plating capacity of 0.05 mA h cm^(-2)at 0.1 m A cm^(-2)and of 1 m A h cm^(-2)at 1 m A cm^(-2).The MX@Zn|MnO_(2)full cells deliver a high specific capacity of 281.9 m A h g^(-1),91.5%of the theoretical capacity,achieving 50%capacity retention from 60 mA g^(-1)to 300 mA g^(-1)and 79.7%of initial capacity after 200 cycles.Moreover,the patterned devices based on the MX@Zn electrode achieve high energy and power densities of 348.57 Wh kg^(-1)and 1556 W kg^(-1),respectively,along with a capacity retention of 64%and Coulombic efficiency of 99%over 500 cycles.The high performance of MX@Zn is attributed to the high electrical conductivity and hydrophilicity of MXene and rapid ion diffusion through the 3D interconnected porous channels.
基金supported by National Natural Science Foundation of China(Nos.52188102,U2013213,51820105008)the Technology Innovation Project of Hubei Province of China under Grant No.2019AEA171+1 种基金The project of introducing innovative leading talents in Songshan Lake High-tech Zone,Dongguan City,Guangdong Province(No.2019342101RSFJ-G)the support from Flexible Electronics Research Center of HUST for providing experiment facility。
文摘Direct ink writing(DIW)holds enormous potential in fabricating multiscale and multi-functional architectures by virtue of its wide range of printable materials,simple operation,and ease of rapid prototyping.Although it is well known that ink rheology and processing parameters have a direct impact on the resolution and shape of the printed objects,the underlying mechanisms of these key factors on the printability and quality of DIW technique remain poorly understood.To tackle this issue,we systematically analyzed the printability and quality through extrusion mechanism modeling and experimental validating.Hybrid non-Newtonian fluid inks were first prepared,and their rheological properties were measured.Then,finite element analysis of the whole DIW process was conducted to reveal the flow dynamics of these inks.The obtained optimal process parameters(ink rheology,applied pressure,printing speed,etc)were also validated by experiments where high-resolution(<100μm)patterns were fabricated rapidly(>70 mm s^(-1)).Finally,as a process research demonstration,we printed a series of microstructures and circuit systems with hybrid inks and silver inks,showing the suitability of the printable process parameters.This study provides a strong quantitative illustration of the use of DIW for the high-speed preparation of high-resolution,high-precision samples.