Test tools and methods for synchronizing acoustic measurements in the course of stress-strain for seafloor sediment are elaborated and the test data of 45 sediment samples from the seafloor in the South China Sea are ...Test tools and methods for synchronizing acoustic measurements in the course of stress-strain for seafloor sediment are elaborated and the test data of 45 sediment samples from the seafloor in the South China Sea are analysed. The result shows that the coarser the sediment grains are, the smaller the porosity is and the larger the unconfined compression strength is, the higher the sound velocity is. In the course of stress-strain, the sediment sound velocity varies obviously with the stress. Acoustic characteristics of sediment in different strain phases and the influence of sediment microstructure change on its sound velocity are discussed. This study will be of important significance for surveying wells of petroleum geology and evaluating the base stabilization of seafloor engineering.展开更多
Heavily populated by Beijing and Tianjin cities, Bohai basin is a seismically active Cenozoic basin suffering from huge lost by devastating earthquakes, such as Tangshan earthquake. The attenuation (Qp and Qs) of th...Heavily populated by Beijing and Tianjin cities, Bohai basin is a seismically active Cenozoic basin suffering from huge lost by devastating earthquakes, such as Tangshan earthquake. The attenuation (Qp and Qs) of the surficial Quaternary sediment has not been studied at natural seismic frequency (1-10 Hz), which is crucial to earthquake hazards study. Borehole seismic records of micro earthquake provide us a good way to study the velocity and attenuation of the surficial structure (0-500 m). We found that there are two pulses well separated with simple waveforms on borehole seismic records from the 2006 Mw4.9 Wen'an earthquake sequence. Then we performed waveform modeling with generalized ray theory (GRT) to confirm that the two pulses are direct wave and surface reflected wave, and found that the average vp and Vs of the top 300 m in this region are about 1.8 km/s and 0.42 km/s, leading to high ve/vs ratio of 4.3. We also modeled surface refleeted wave with propagating matrix method to constrain Qs and the near surface velocity structure. Our modeling indicates that Qs is at least 30, or probably up to 100, much larger than the typically assumed extremely low Q(-10), but consistent with Qs modeling in Mississippi embayment. Also, the velocity gradient just beneath the free surface (0-50 m) is very large and velocity increases gradually at larger depth. Our modeling demonstrates the importance of borebole seismic records in resolving shallow velocity and attenuation structure, and hence may help in earthquake hazard simulation.展开更多
Based on the general relationship described by Cheng between the drag coefficient and the Reynolds number of a particle, a new relationship between the Reynolds number and a dimensionless particle parameter is propose...Based on the general relationship described by Cheng between the drag coefficient and the Reynolds number of a particle, a new relationship between the Reynolds number and a dimensionless particle parameter is proposed. Using a trial-and-error procedure to minimize errors, the coefficients were determined and a formula was developed for predicting the settling velocity of natural sediment particles. This formula has higher prediction accuracy than other published formulas and it is applicable to all Reynolds numbers less than 2× 10^5.展开更多
In this work,we investigated the influences of salinity,temperature,and hydrostatic pressure on the acoustics of seafloor surficial sediment by theoretically and experimentally analyzing the sound velocity ratio of th...In this work,we investigated the influences of salinity,temperature,and hydrostatic pressure on the acoustics of seafloor surficial sediment by theoretically and experimentally analyzing the sound velocity ratio of the seafloor sediment to the bottom sea-water in typical environmental conditions.Temperature-and pressure-controlled experiments were conducted to examine the charac-teristics of the sound velocity ratio,the results of which agree with the theoretical analysis using the effective density fluid model.Of the three environmental factors considered,the sound velocity ratio was found to be sensitive to temperature and pressure but not to salinity,with the sound velocity ratio decreasing with temperature and hydrostatic pressure.With respect to surficial sediments,pore water plays a key role in the sound velocity ratio of sediment influenced by different environmental factors.The sound velocities of different types of sediments(sandy,silty,and clayey)change similarly with temperature,but change slightly differently with hydro-static pressure.The influence of environmental factors on the sound velocity ratio of seafloor sediment is independent of the detec-tion frequency.The results show that the sound velocity ratio can change up to 0.0008 per℃ when the temperature ranges from 2℃ to 25℃ and up to 0.00064MPa−1 when the seawater depth pressure ranges from 0MPa to 40MPa.展开更多
The prediction of incipient motion has had great importance to the theory of sediment transport. The most commonly used methods are based on the concept of critical shear stress and employ an approach similar, or iden...The prediction of incipient motion has had great importance to the theory of sediment transport. The most commonly used methods are based on the concept of critical shear stress and employ an approach similar, or identical, to the Shields diagram. An alternative method that uses the movability number, defined as the ratio of the shear velocity to the particle's settling velocity, was employed in this study. A large amount of experimental data were used to develop an empirical incipient motion criterion based on the movability number. It is shown that this approach can provide a simple and accurate method of computing the threshold condition for sediment motion.展开更多
Settling velocity is a fundamental parameter in sediment transport dynamics. For uniform particles, there are abundant formulas for calculation of their settling velocities. But in natural fields, sediment consists of...Settling velocity is a fundamental parameter in sediment transport dynamics. For uniform particles, there are abundant formulas for calculation of their settling velocities. But in natural fields, sediment consists of non-uniform particles. The interaction among particles is complex and should not be neglected. In this paper, based on the analysis of settling mechanism of non-cohesive and non-uniform particles, a theoretical model to describe settling mechanism is proposed. Besides suspension concentration and upward turbulent flow caused by other particles, collision among particles is another main factor influencing settling velocity. By introducing the collision theory, equations of fall velocity before collision, collision probability, and fall velocity after collision are established. Finally, a formula used to calculate the settling velocity of non-cohesive particles with wide grain gradation is presented, which agrees well with the experimental data.展开更多
In this paper, the study on the fine velocity structure of sedimental and basement layers along 4 deep seismic sounding profiles in the Three Gorges Region of the Changjiang River (Yangtze River) are presented...In this paper, the study on the fine velocity structure of sedimental and basement layers along 4 deep seismic sounding profiles in the Three Gorges Region of the Changjiang River (Yangtze River) are presented. The velocity of sedimental cover is larger in hills of western Hubei in the western profiles, the total thickness is about 0~0.3 km. However, it becomes thick in southern part of Zigui basin and Zushui river valley, about 5.0 km and 4.0 km thick respectively. The sedimental cover is very thick in Jianghan plains in the eastern profiles, about 5~8 km, and the velocity is lower. The velocity of basemental plane is greater than 6.0 km/s over the whole region. An interface can be divided within the sedimental layer, it is about 3~4 km deep in Jianghan plains, while it approximates to surface in other regions. The profiles are cut by faults in many positions. Where the faults pass, the velocity isopleth varies sharply, and the velocity is obviously low. The basement layer is characterized by high velocity and low gradient, there exist 3 high velocity anomalous zones within the layer, which are located at the west, south and east of Huangling Anticlinorium respectively. They are the upwelling materials of basalt magma with high velocity from deep crust. Perhaps, this process took place before formation of Huangling Anticlinorium. Its action produces the significant variation of basement plane depth and the correspondent development and action of faults.展开更多
Modeling sediment transport depends on several parameters, such as suspended sediment concentration (SSC), shear stress, and settling velocity. To assess the ability of Pulse-Coherent Acoustic Doppler Profiling (PC...Modeling sediment transport depends on several parameters, such as suspended sediment concentration (SSC), shear stress, and settling velocity. To assess the ability of Pulse-Coherent Acoustic Doppler Profiling (PC-ADP) to non-intrusively quantify spatial and temporal SSC and settling velocity at seabed, a field experiment was conducted in the Beibu Gulf (Tonkin Gulf), in the South China Sea. The spatial profiles and temporal variations in SSC at 1 m above bottom were derived from PC-ADP acoustic backscatter intensity determinations after being calibrated with the optical backscatter sensor (OBS) measurements at the same elevation. The PC-ADP and OBS results agreed well. The temporal settling velocity obtained from Rouse profiles agreed well with the Soulsby formula based on size information by LISST (laser in situ scattering and transmissometry). Tides and tidal currents are diurnal in the gulf. SSC increased with increasing ebb and flood flow, and it rapidly decreased with the increase of distance from the seabed. The maximum SSC at 0.16 m and 1.3 m above bottom reached 816 mg/L and 490 mg/L during spring tides, respectively. The sediments consisted of mineral particles 23-162 μm in diameter and 0.05-2.04 crn/s in settling velocity. Generally, both the SSC and settling velocity followed variations in the bottom friction. Results suggest that PC-ADP is able to provide reasonable SSC and settling velocity measurements of both profiles and time series for a long study period.展开更多
The settling of sediments is an accelerative process in which the concentration of the main sediments zone will heavily influence settling velocity,but the explicit relationship between the concentration and settling ...The settling of sediments is an accelerative process in which the concentration of the main sediments zone will heavily influence settling velocity,but the explicit relationship between the concentration and settling velocity has not been reported in literature. Here a theoretical function was built for the time dependent concentration and time dependent settling velocity of sediments;then the entire settling process reflecting concentration was shown on the basis of sediments instant\|settlement theory and mathematical method. Agreement of computed results and experimental data was found. Several governing parameters,including particle size,particle density,initial suspended sediments concentration and suspension height,were discussed with a series of calculated velocity curves. The research indicated that ⑴ the presented concentration\|velocity time relationship is rational,⑵ settling process of the sediments group with variation of concentration consists of acceleration stage,uniform motion stage and deceleration stage,and ⑶ particle size,particle density and initial suspended sediments concentration have more influence on the settling velocity than the suspension height and water temperature.展开更多
Marine sediment velocity structural models have strong regional characteristics.Hamilton made two shallow continental shelf sediment velocity structure models,Lu Bo gave a model in accordance with the characteristics ...Marine sediment velocity structural models have strong regional characteristics.Hamilton made two shallow continental shelf sediment velocity structure models,Lu Bo gave a model in accordance with the characteristics of the continental shelf of China.However,no model can contain all geological situations.We got the in-situ velocity data at Zhapu and Jintang near the Hangzhou Bay by using the MFI GeoA(Multi-Frequency In-situ Geoacoustic Measurement),and used these data to make the velocity structure models.Finally,we got two different models.One is Zhapu velocity structural model that we can describe as Lower velocity-Higher velocity -Lower velocity-Higher velocity model simply。展开更多
The sedimentation of cylindrical pollutant particles which fall through a fluid is investigated. Differing from previous research work, particle oscillation and effect of particle on the fluid are considered, and the ...The sedimentation of cylindrical pollutant particles which fall through a fluid is investigated. Differing from previous research work, particle oscillation and effect of particle on the fluid are considered, and the torque exerted on a particle when viscous fluid flow around a particle is got through experiment and included in the numerical simulation. The computational results showed that the sedimentation velocities of particle increase slowly with the increase of particle aspect ratio . For disk like particle, when the motion direction of particle is parallel to axis of particle, particle falls more slowly than the case of perpendicular to axis of particle; while for rod like particle, it is inverse. For sedimentation of a crowd of high frequency oscillating cylindrical particles with arbitrary initial orientation, both vertical velocity and horizontal velocity oscillate dramatically, the degree of oscillation of the former is stronger than the later. A crowd of particles fall more quickly than an isolated particle. Particles tend to strongly align in the direction of gravity. The computational results agreed well with the experimental ones and helpful for controlling of pollutant particles.展开更多
In coastal environments, fine-grain sediments often aggregate into large and porous flocs. ElectroMagnetic Current Meters (EMCM) and Laser In Situ Scattering and Transmissometry (LISST-ST) have been deployed withi...In coastal environments, fine-grain sediments often aggregate into large and porous flocs. ElectroMagnetic Current Meters (EMCM) and Laser In Situ Scattering and Transmissometry (LISST-ST) have been deployed within a Spartina alterniflora marsh of the Luoyuan Bay in Fujian Province, China, to measure the current velocity, the floc size and the settling velocity between 15 and 22 January 2008. During the observations, the near-bed water was collected in order to obtain the suspended sediment concentration (SSC) and constituent grain size. Data show that: (1) the nearbed current velocities vary from 0.1 to 5.6 cm/s in the central Spartina alterniflora marsh and 0.1–12.5 cm/s at the edge; (2) the SSCs vary from 47 to 188 mg/dm 3 . The mean grain size of constituent grains varies from 7.0 to 9.6 μm, and the mean floc sizes (MFS) vary from 30.4 to 69.4 μm. The relationship between the mean floc size and settling velocity can be described as: w s =ad b , in which w s is the floc settling velocity (mm/s), a and b are coefficients. The floc settling velocity varies from 0.17 to 0.32 mm/s, with a mean value of 0.26 mm/s, and the floc settling velocity during the flood tide is higher than that during the ebb tide. The current velocity and the SSC are the main factors controlling the flocculation processes and the floc settling velocity.展开更多
A new geo-acoustic model for gas-bearing sediment is proposed based on the work of Dvorkin and Prasad, and Biot theory. Only five geophysical parameters: sediment mineral composition, free gas saturation, tortuosity ...A new geo-acoustic model for gas-bearing sediment is proposed based on the work of Dvorkin and Prasad, and Biot theory. Only five geophysical parameters: sediment mineral composition, free gas saturation, tortuosity (also known as the structure factor), permeability, and porosity, are considered in the model. A benefit of this model is that we need only five parameters instead of ten parameters in the Blot' s formulas for acoustic velocity and attenuation calculation. Here the model is demonstrated with the in-situ experimental data collected from the Hangzhou Bay, China. The results of this study suggest that free gas content in sediment is the most critical condition resulting in a low acoustic velocity (compressional wave). The respective contributions of the other four parameters in the model are also discussed.展开更多
The culture of suspended kelp, such as Laminaria japonica Aresch, has arisen in nearshore areas for approximately 30 years since the 1980 s. This long-term activity has significant impact on the regional hydrodynamic ...The culture of suspended kelp, such as Laminaria japonica Aresch, has arisen in nearshore areas for approximately 30 years since the 1980 s. This long-term activity has significant impact on the regional hydrodynamic and sedimentary environments. In this study the impact was investigated, based on synchronized multi-station data from continuous observations made within and around the culture area. In total, three current velocity profiles were identified inside and on the landward side of the culture area. Based on the current velocity profiles we calculated the boundary layer parameters, the fluxes of erosion/deposition, and the rate of sediment transport in different times at each observation site. Comparison between culture and non-culture periods showed that the presence of suspended kelp caused the reduction in the average flow velocity by approximately 49.5%, the bottom friction velocity by 24.8%, the seabed roughness length by 62.7%, and the shear stress and the flux of resuspended sediment by approximately 50%. From analyses in combination with the corresponding vertical variation of the suspended sediment distribution, it is revealed that the lifted sediments by resuspension is mixed with the upper suspended material, which will modify the regional distribution of suspended sediment. These changes in flow structure and sediment movement will accelerate seabed siltation, which corresponds to the changes in seabed erosion/deposition. However, under the influences of the seasonal changes in kelp growth the magnitude of change with the seabed siltation was not obvious inside the culture area, but a fundamental change was apparent around the culture area.展开更多
Asymptotically bounded velocity profiles describe the vertical velocity variations in compacted sediments in a more realistic way than unbounded velocity models, and allow presenting the subsurface by a smaller number...Asymptotically bounded velocity profiles describe the vertical velocity variations in compacted sediments in a more realistic way than unbounded velocity models, and allow presenting the subsurface by a smaller number of thicker layers. The first and the simplest asymptotically bounded model is the Hyperbolic velocity profile proposed by Muscatin 1937, and our paper is an extension of this early study. The Hyperbolic model has an advantage over other bounded models: The velocity increases with depth and approaches the limiting value with a more smooth and gradual rate. We derive the time-depth relationships, forward and backward transforms between the instantaneous velocity profile and the effective models (average, RMS and fourth order average velocities), study the trajectories for pre-critical and post-critical curved rays and derive the equations for traveltime, lateral propagation and arc length. We compare the ray paths obtained with the Hyperbolic model and with the other bounded velocity profiles.展开更多
基金funded by the Key Laboratory of Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences (No. MSGL0606)the China National Natural Science Fundation (Ratification No. 40876018, 40476020)
文摘Test tools and methods for synchronizing acoustic measurements in the course of stress-strain for seafloor sediment are elaborated and the test data of 45 sediment samples from the seafloor in the South China Sea are analysed. The result shows that the coarser the sediment grains are, the smaller the porosity is and the larger the unconfined compression strength is, the higher the sound velocity is. In the course of stress-strain, the sediment sound velocity varies obviously with the stress. Acoustic characteristics of sediment in different strain phases and the influence of sediment microstructure change on its sound velocity are discussed. This study will be of important significance for surveying wells of petroleum geology and evaluating the base stabilization of seafloor engineering.
基金supported by National Natural Science Foundation of China (No.40676067)Knowledge Innovation Program of Chinese Academy of Sciences (No.kzcx2-yw-116-1)
文摘Heavily populated by Beijing and Tianjin cities, Bohai basin is a seismically active Cenozoic basin suffering from huge lost by devastating earthquakes, such as Tangshan earthquake. The attenuation (Qp and Qs) of the surficial Quaternary sediment has not been studied at natural seismic frequency (1-10 Hz), which is crucial to earthquake hazards study. Borehole seismic records of micro earthquake provide us a good way to study the velocity and attenuation of the surficial structure (0-500 m). We found that there are two pulses well separated with simple waveforms on borehole seismic records from the 2006 Mw4.9 Wen'an earthquake sequence. Then we performed waveform modeling with generalized ray theory (GRT) to confirm that the two pulses are direct wave and surface reflected wave, and found that the average vp and Vs of the top 300 m in this region are about 1.8 km/s and 0.42 km/s, leading to high ve/vs ratio of 4.3. We also modeled surface refleeted wave with propagating matrix method to constrain Qs and the near surface velocity structure. Our modeling indicates that Qs is at least 30, or probably up to 100, much larger than the typically assumed extremely low Q(-10), but consistent with Qs modeling in Mississippi embayment. Also, the velocity gradient just beneath the free surface (0-50 m) is very large and velocity increases gradually at larger depth. Our modeling demonstrates the importance of borebole seismic records in resolving shallow velocity and attenuation structure, and hence may help in earthquake hazard simulation.
基金supported by the National Natural Science Foundation of China (Grant No. 40476039)
文摘Based on the general relationship described by Cheng between the drag coefficient and the Reynolds number of a particle, a new relationship between the Reynolds number and a dimensionless particle parameter is proposed. Using a trial-and-error procedure to minimize errors, the coefficients were determined and a formula was developed for predicting the settling velocity of natural sediment particles. This formula has higher prediction accuracy than other published formulas and it is applicable to all Reynolds numbers less than 2× 10^5.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.41676055 and 41776043)the Natural Science Foundation of Guangdong Province(No.2019A1515011055)the Foundation of Qingdao National Laboratory for Marine Science and Te-chnology(No.MGQNLM-KF201805).
文摘In this work,we investigated the influences of salinity,temperature,and hydrostatic pressure on the acoustics of seafloor surficial sediment by theoretically and experimentally analyzing the sound velocity ratio of the seafloor sediment to the bottom sea-water in typical environmental conditions.Temperature-and pressure-controlled experiments were conducted to examine the charac-teristics of the sound velocity ratio,the results of which agree with the theoretical analysis using the effective density fluid model.Of the three environmental factors considered,the sound velocity ratio was found to be sensitive to temperature and pressure but not to salinity,with the sound velocity ratio decreasing with temperature and hydrostatic pressure.With respect to surficial sediments,pore water plays a key role in the sound velocity ratio of sediment influenced by different environmental factors.The sound velocities of different types of sediments(sandy,silty,and clayey)change similarly with temperature,but change slightly differently with hydro-static pressure.The influence of environmental factors on the sound velocity ratio of seafloor sediment is independent of the detec-tion frequency.The results show that the sound velocity ratio can change up to 0.0008 per℃ when the temperature ranges from 2℃ to 25℃ and up to 0.00064MPa−1 when the seawater depth pressure ranges from 0MPa to 40MPa.
文摘The prediction of incipient motion has had great importance to the theory of sediment transport. The most commonly used methods are based on the concept of critical shear stress and employ an approach similar, or identical, to the Shields diagram. An alternative method that uses the movability number, defined as the ratio of the shear velocity to the particle's settling velocity, was employed in this study. A large amount of experimental data were used to develop an empirical incipient motion criterion based on the movability number. It is shown that this approach can provide a simple and accurate method of computing the threshold condition for sediment motion.
文摘Settling velocity is a fundamental parameter in sediment transport dynamics. For uniform particles, there are abundant formulas for calculation of their settling velocities. But in natural fields, sediment consists of non-uniform particles. The interaction among particles is complex and should not be neglected. In this paper, based on the analysis of settling mechanism of non-cohesive and non-uniform particles, a theoretical model to describe settling mechanism is proposed. Besides suspension concentration and upward turbulent flow caused by other particles, collision among particles is another main factor influencing settling velocity. By introducing the collision theory, equations of fall velocity before collision, collision probability, and fall velocity after collision are established. Finally, a formula used to calculate the settling velocity of non-cohesive particles with wide grain gradation is presented, which agrees well with the experimental data.
文摘In this paper, the study on the fine velocity structure of sedimental and basement layers along 4 deep seismic sounding profiles in the Three Gorges Region of the Changjiang River (Yangtze River) are presented. The velocity of sedimental cover is larger in hills of western Hubei in the western profiles, the total thickness is about 0~0.3 km. However, it becomes thick in southern part of Zigui basin and Zushui river valley, about 5.0 km and 4.0 km thick respectively. The sedimental cover is very thick in Jianghan plains in the eastern profiles, about 5~8 km, and the velocity is lower. The velocity of basemental plane is greater than 6.0 km/s over the whole region. An interface can be divided within the sedimental layer, it is about 3~4 km deep in Jianghan plains, while it approximates to surface in other regions. The profiles are cut by faults in many positions. Where the faults pass, the velocity isopleth varies sharply, and the velocity is obviously low. The basement layer is characterized by high velocity and low gradient, there exist 3 high velocity anomalous zones within the layer, which are located at the west, south and east of Huangling Anticlinorium respectively. They are the upwelling materials of basalt magma with high velocity from deep crust. Perhaps, this process took place before formation of Huangling Anticlinorium. Its action produces the significant variation of basement plane depth and the correspondent development and action of faults.
基金Supported by Major Programs of the Chinese Academy of Sciences (No. H42032602)the National Natural Science Foundation of China (No. 470776061)
文摘Modeling sediment transport depends on several parameters, such as suspended sediment concentration (SSC), shear stress, and settling velocity. To assess the ability of Pulse-Coherent Acoustic Doppler Profiling (PC-ADP) to non-intrusively quantify spatial and temporal SSC and settling velocity at seabed, a field experiment was conducted in the Beibu Gulf (Tonkin Gulf), in the South China Sea. The spatial profiles and temporal variations in SSC at 1 m above bottom were derived from PC-ADP acoustic backscatter intensity determinations after being calibrated with the optical backscatter sensor (OBS) measurements at the same elevation. The PC-ADP and OBS results agreed well. The temporal settling velocity obtained from Rouse profiles agreed well with the Soulsby formula based on size information by LISST (laser in situ scattering and transmissometry). Tides and tidal currents are diurnal in the gulf. SSC increased with increasing ebb and flood flow, and it rapidly decreased with the increase of distance from the seabed. The maximum SSC at 0.16 m and 1.3 m above bottom reached 816 mg/L and 490 mg/L during spring tides, respectively. The sediments consisted of mineral particles 23-162 μm in diameter and 0.05-2.04 crn/s in settling velocity. Generally, both the SSC and settling velocity followed variations in the bottom friction. Results suggest that PC-ADP is able to provide reasonable SSC and settling velocity measurements of both profiles and time series for a long study period.
文摘The settling of sediments is an accelerative process in which the concentration of the main sediments zone will heavily influence settling velocity,but the explicit relationship between the concentration and settling velocity has not been reported in literature. Here a theoretical function was built for the time dependent concentration and time dependent settling velocity of sediments;then the entire settling process reflecting concentration was shown on the basis of sediments instant\|settlement theory and mathematical method. Agreement of computed results and experimental data was found. Several governing parameters,including particle size,particle density,initial suspended sediments concentration and suspension height,were discussed with a series of calculated velocity curves. The research indicated that ⑴ the presented concentration\|velocity time relationship is rational,⑵ settling process of the sediments group with variation of concentration consists of acceleration stage,uniform motion stage and deceleration stage,and ⑶ particle size,particle density and initial suspended sediments concentration have more influence on the settling velocity than the suspension height and water temperature.
文摘Marine sediment velocity structural models have strong regional characteristics.Hamilton made two shallow continental shelf sediment velocity structure models,Lu Bo gave a model in accordance with the characteristics of the continental shelf of China.However,no model can contain all geological situations.We got the in-situ velocity data at Zhapu and Jintang near the Hangzhou Bay by using the MFI GeoA(Multi-Frequency In-situ Geoacoustic Measurement),and used these data to make the velocity structure models.Finally,we got two different models.One is Zhapu velocity structural model that we can describe as Lower velocity-Higher velocity -Lower velocity-Higher velocity model simply。
基金TheNationalNaturalSciencesFoundationforOutstandingYouthofChina (No .1 992 52 1 0 )
文摘The sedimentation of cylindrical pollutant particles which fall through a fluid is investigated. Differing from previous research work, particle oscillation and effect of particle on the fluid are considered, and the torque exerted on a particle when viscous fluid flow around a particle is got through experiment and included in the numerical simulation. The computational results showed that the sedimentation velocities of particle increase slowly with the increase of particle aspect ratio . For disk like particle, when the motion direction of particle is parallel to axis of particle, particle falls more slowly than the case of perpendicular to axis of particle; while for rod like particle, it is inverse. For sedimentation of a crowd of high frequency oscillating cylindrical particles with arbitrary initial orientation, both vertical velocity and horizontal velocity oscillate dramatically, the degree of oscillation of the former is stronger than the later. A crowd of particles fall more quickly than an isolated particle. Particles tend to strongly align in the direction of gravity. The computational results agreed well with the experimental ones and helpful for controlling of pollutant particles.
基金The National Natural Science Foundation of China under contract No. 40606012the Scientific Research Foundation of Third Institute of Oceanography, State Oceanic Administration under contract No. 2009015
文摘In coastal environments, fine-grain sediments often aggregate into large and porous flocs. ElectroMagnetic Current Meters (EMCM) and Laser In Situ Scattering and Transmissometry (LISST-ST) have been deployed within a Spartina alterniflora marsh of the Luoyuan Bay in Fujian Province, China, to measure the current velocity, the floc size and the settling velocity between 15 and 22 January 2008. During the observations, the near-bed water was collected in order to obtain the suspended sediment concentration (SSC) and constituent grain size. Data show that: (1) the nearbed current velocities vary from 0.1 to 5.6 cm/s in the central Spartina alterniflora marsh and 0.1–12.5 cm/s at the edge; (2) the SSCs vary from 47 to 188 mg/dm 3 . The mean grain size of constituent grains varies from 7.0 to 9.6 μm, and the mean floc sizes (MFS) vary from 30.4 to 69.4 μm. The relationship between the mean floc size and settling velocity can be described as: w s =ad b , in which w s is the floc settling velocity (mm/s), a and b are coefficients. The floc settling velocity varies from 0.17 to 0.32 mm/s, with a mean value of 0.26 mm/s, and the floc settling velocity during the flood tide is higher than that during the ebb tide. The current velocity and the SSC are the main factors controlling the flocculation processes and the floc settling velocity.
基金supported by the National Natural Science Foundation of China(Grant No.40776038)the Open Fund of Key Laboratory of Geo-detection(China University of Geosciences,Beijing)+2 种基金Ministry of Education(Grant No.GDL0802)the Ocean Public Welfare Scientific Research Special Appropriation Project(Grant Nos.200805079and200805005)the Open Fund of Key Laboratory of Submarine Geoscience,State Oceanic Administration(Grant No.KCSG0803)
文摘A new geo-acoustic model for gas-bearing sediment is proposed based on the work of Dvorkin and Prasad, and Biot theory. Only five geophysical parameters: sediment mineral composition, free gas saturation, tortuosity (also known as the structure factor), permeability, and porosity, are considered in the model. A benefit of this model is that we need only five parameters instead of ten parameters in the Blot' s formulas for acoustic velocity and attenuation calculation. Here the model is demonstrated with the in-situ experimental data collected from the Hangzhou Bay, China. The results of this study suggest that free gas content in sediment is the most critical condition resulting in a low acoustic velocity (compressional wave). The respective contributions of the other four parameters in the model are also discussed.
基金funded by the National Natural Science Foundation of China, Nos.41076031 and 41106041
文摘The culture of suspended kelp, such as Laminaria japonica Aresch, has arisen in nearshore areas for approximately 30 years since the 1980 s. This long-term activity has significant impact on the regional hydrodynamic and sedimentary environments. In this study the impact was investigated, based on synchronized multi-station data from continuous observations made within and around the culture area. In total, three current velocity profiles were identified inside and on the landward side of the culture area. Based on the current velocity profiles we calculated the boundary layer parameters, the fluxes of erosion/deposition, and the rate of sediment transport in different times at each observation site. Comparison between culture and non-culture periods showed that the presence of suspended kelp caused the reduction in the average flow velocity by approximately 49.5%, the bottom friction velocity by 24.8%, the seabed roughness length by 62.7%, and the shear stress and the flux of resuspended sediment by approximately 50%. From analyses in combination with the corresponding vertical variation of the suspended sediment distribution, it is revealed that the lifted sediments by resuspension is mixed with the upper suspended material, which will modify the regional distribution of suspended sediment. These changes in flow structure and sediment movement will accelerate seabed siltation, which corresponds to the changes in seabed erosion/deposition. However, under the influences of the seasonal changes in kelp growth the magnitude of change with the seabed siltation was not obvious inside the culture area, but a fundamental change was apparent around the culture area.
文摘Asymptotically bounded velocity profiles describe the vertical velocity variations in compacted sediments in a more realistic way than unbounded velocity models, and allow presenting the subsurface by a smaller number of thicker layers. The first and the simplest asymptotically bounded model is the Hyperbolic velocity profile proposed by Muscatin 1937, and our paper is an extension of this early study. The Hyperbolic model has an advantage over other bounded models: The velocity increases with depth and approaches the limiting value with a more smooth and gradual rate. We derive the time-depth relationships, forward and backward transforms between the instantaneous velocity profile and the effective models (average, RMS and fourth order average velocities), study the trajectories for pre-critical and post-critical curved rays and derive the equations for traveltime, lateral propagation and arc length. We compare the ray paths obtained with the Hyperbolic model and with the other bounded velocity profiles.