This study aimed to develop a water-extraction system which could produce the fresh water from the air in arid regions and which used renewable energies as the electric power source. In this paper, the experiments for...This study aimed to develop a water-extraction system which could produce the fresh water from the air in arid regions and which used renewable energies as the electric power source. In this paper, the experiments for water extraction from the air were carried out by using the novel multi-stage water-extraction device with Peltier deices for two cases of temperature and related humidity of the air. One was the case where the temperature and the related humidity of the air were constant, and the other was the case where they were simulated the variation of the temperature and related humidity of the air in a day of summer and spring in Loess Plateau, China. The effects of the temperature and related humidity of the atmospheric air and supply the electric power to Peltier devices on performance of water production of the device were investigated and reported.展开更多
Food losses in the developing country are thought to be 50% of the fruits and vegetables grown and 25% of harvested food grain. Food preservation can reduce wastage of a harvest surplus, allow storage for food shortag...Food losses in the developing country are thought to be 50% of the fruits and vegetables grown and 25% of harvested food grain. Food preservation can reduce wastage of a harvest surplus, allow storage for food shortages, and in some cases facilitate export to high-value markets. Drying is one of the oldest methods of food preservation. Drying makes produce lighter, smaller, and less likely to spoil and helps to minimize the moisture content in coffee beans as high moisture content during storage is certain to ruin the taste and appearance of coffee. This work presents the results of an experimental study of forced convection drying of coffee cherries in a modified Icaro solar dryer. The study aims to validate the numerical models developed for further research. The experimental tests envisaged also aim to determine the mass loss curves of the product by fixing or calculating its initial mass (1 kg), its initial water content (70%), the ambient temperature, the drying airflow (0.02 m<sup>3.</sup>s<sup>-1</sup> to 0.09 m<sup>3.</sup>s<sup>-1</sup>) and the exchange coefficients. The influence of these aerothermal parameters on the drying time of a most commercialized coffee variety (Robusta) was studied. Finally, the results revealed an increase in the efficiency of the heat transfer air and a reduction in the water content of the coffee cherry from 70% to 9.87%, after 30.2 hours.展开更多
Boron-doped zinc oxide transparent (BZO) films were prepared by sol-gel method. The effect of pyrolysis temperature on the crystallization behavior and properties was systematically investigated. XRD patterns reveal...Boron-doped zinc oxide transparent (BZO) films were prepared by sol-gel method. The effect of pyrolysis temperature on the crystallization behavior and properties was systematically investigated. XRD patterns revealed that the BZO films had wurtzite structure with a preferential growth orientation along the c-axis. With the increase of pyrolysis temperature, the particle size and surface roughness of the BZO films increased, suggesting that pyrolysis temperature is the critical factor for determining the crystallization behavior of the BZO films. Moreover, the carrier concentration and the carrier mobility increased with increasing the pyrolysis temperature, and the mean transmittance for every film is over 90% in the visible range.展开更多
The Ti-48Al alloy was pack siliconized with 15%Si+85%Al2O3. The microstructure of the siliconized coating on the TiAl-based alloy was analyzed and its effect on oxidation resistance was investigated. The specimens bef...The Ti-48Al alloy was pack siliconized with 15%Si+85%Al2O3. The microstructure of the siliconized coating on the TiAl-based alloy was analyzed and its effect on oxidation resistance was investigated. The specimens before and after cycle oxidation were examined by XRD and SEM equipped with XEDS. The results showed that the coating is composed of a thin Al2O3 outer layer and a composite inner layer of Ti5Si3 with an appropriate amount of Al2O3 dispersed in. Cycle oxidation tests showed that the high temperature oxidation resistance of TiAl-based alloy was greatly improved by forming such composite coating. No spaliation and crack happened and the weight gain was very small after cycle oxidation at 900℃ for 314h.展开更多
It has been proved that there exists a certain cor relation between fingertip temperature oscillations and blood flow oscillations. In this work, a porous media model of hu man hand is presented to investigate how the...It has been proved that there exists a certain cor relation between fingertip temperature oscillations and blood flow oscillations. In this work, a porous media model of hu man hand is presented to investigate how the blood flow os cillation in the endothelial frequency band influences finger tip skin temperature oscillations. The porosity which repre sents the density of micro vessels is assumed to vary periodi cally and is a function of the skin temperature. Finite element analysis of skin temperature for a contra lateral hand under a cooling test was conducted. Subsequently, wavelet anal ysis was carried out to extract the temperature oscillations of the data through the numerical analysis and experimen tal measurements. Furthermore, the oscillations extracted from both numerical analyses and experiments were statis tically analyzed to compare the amplitude. The simulation and experimental results show that for the subjects in cardio vascular health, the skin temperature fluctuations in endothe lial frequency decrease during the cooling test and increase gradually after cooling, implying that the assumed porosity variation can represent the vasomotion in the endothelial fre quency band.展开更多
A knowledge of the tree-ring stable nitrogen isotope ratio(δ^(15)N)can deepen our understanding of forest ecosystem dynamics by indicating the long-term availability,cycling and sources of nitrogen(N).However,the rad...A knowledge of the tree-ring stable nitrogen isotope ratio(δ^(15)N)can deepen our understanding of forest ecosystem dynamics by indicating the long-term availability,cycling and sources of nitrogen(N).However,the radial mobility of N blurs the interannual variations in the long-term N records.Previous studies of the chemical extraction of tree rings before analysis had produced inconsistent results and it is still unclear whether it is necessary to pre-treat wood samples from specific tree species to remove soluble N compounds before determining theδ^(15)N values.We compared the effects of pre-treatment with organic solvents and hot ultrapure water on the N concentration andδ^(15)N of tree rings from endemic Qinghai spruce(Picea crassifolia)growing in the interior of the central Qilian Mountains,China,during the last 60 a.We assessed the effects of different preparation protocols on the removal of the labile N compounds and investigated the need to pre-treat wood samples before determining theδ^(15)N values of tree rings.Increasing trends of the tree-ring N concentration were consistently observed in both the extracted and unextracted wood samples.The total N removed by extraction with organic solvents was about 17.60%,with a significantly higher amount in the sapwood section(P<0.01).Theδ^(15)N values of tree rings decreased consistently from 1960 to 2019 in both the extracted and unextracted wood samples.Extraction with organic solvents increased theδ^(15)N values markedly by about 5.2‰and reduced the variations in theδ^(15)N series.However,extraction with hot ultrapure water had little effect,with only a slight decrease in theδ^(15)N values of about 0.5‰.Our results showed that the radial pattern in the inter-ring movement of N in Qinghai spruce was not minimized by extraction with either organic solvents or hot ultrapure water.It is unnecessary to conduct hot ultrapure water extraction for the wood samples from Qinghai spruce because of its negligible effect on the removal of the labile N.Theδ^(15)N variation trend of tree rings in the unextracted wood samples was not influenced by the heartwood-sapwood transition zone.We suggest that theδ^(15)N values of the unextracted wood samples of the climate-sensitive Qinghai spruce could be used to explore the ecophysiological dynamics while focusing on the long-term variations.展开更多
Aiming at the synergistic rock-breaking mechanism of supercritical carbon dioxide(SC-CO_(2))jet pressure and tem-perature difference,a heat-fluid-solid calculation model of rock-breaking stress was established and ver...Aiming at the synergistic rock-breaking mechanism of supercritical carbon dioxide(SC-CO_(2))jet pressure and tem-perature difference,a heat-fluid-solid calculation model of rock-breaking stress was established and verified to be effective,and the variations of jet flow field and rock stress with jet standoff distance of SC-CO_(2),water and nitrogen were studied.With the increase of jet standoff distance,the jet pressure of SC-CO_(2) decreases and the jet temperature difference increases.The SC-CO_(2) jet is higher in pressure than the nitrogen jet and differs little from the water jet.Temperature difference of SC-CO_(2) jet is 5 times that of water jet and more than 2.5 ti mes that of nitrogen jet when the jet standoff distance is larger than 10.The tem-perature stress is the main reason why SC-CO_(2) jet is superior to water and nitrogen jets in rock-breaking.The rock under the SC-CO_(2) jet has greater rock stress,effective rock-breaking jet standoff distance and rock-breaking area.The jet pressure plays a major role in rock-breaking when the jet standoff distance is small,while the jet temperature difference plays a major role in rock-breaking when the jet standoff distance is large.The SC-CO_(2) jet is an efficient volume rock-breaking method,which results in tensile and shear failure on the rock surface under short time jet and large area tensile failure inside the rock simultaneously under long time jet.展开更多
Swine wastewater (SW) and olive mill wastewater (OMW) are two problematic wastes that have become major causes of health and environmental concerns. The main objective of the current work was to evaluate the efficienc...Swine wastewater (SW) and olive mill wastewater (OMW) are two problematic wastes that have become major causes of health and environmental concerns. The main objective of the current work was to evaluate the efficiency of the co-digestion strategy for treatment of SW and OMW mixtures. Mesophilic batch reac-tors fed with mixtures of SW and OMW showed that the two adapted sludges Gadot and Prigat exhibited the best COD removal capacity and biogas production;therefore both were selected to seed up-flow anaerobic sludge blanket (UASB) continuous reactors. During 170 days of operation, both sludges Gadot and Prigat showed high biodegradation potential. The highest COD removal of 85-95% and biogas production of 0.55 L?g-1 COD were obtained at a mixture consisting of 33% OMW and 67% SW. Under these conditions, an organic load of 28,000 mg?L-1 COD was reduced to 1,500-3,500 mg?L-1. These results strongly suggest that co-digestion technology using UASB reactors is a highly reliable and promising technology for wastewater treatment and biogas production.展开更多
Temperate coniferous forest soils are considered important sinks of soil organic carbon(C).Fresh C inputs may,however,affect soil microbial activity,leading to increased organic matter decomposition and carbon dioxide...Temperate coniferous forest soils are considered important sinks of soil organic carbon(C).Fresh C inputs may,however,affect soil microbial activity,leading to increased organic matter decomposition and carbon dioxide production.Litter consists of labile and recalcitrant fractions which are thought to be utilized by distinct microbial communities and at different rates during the growing season.In this study,we incubated the whole litter(LC+RC),the labile(LC)and the recalcitrant(RC)fractions with the coniferous soil at two temperatures representing spring/autumn(10℃)and summer(20℃)for one month.Soil respiration and microbial community composition were regularly determined using phospholipid fatty acids as biomarkers.The LC fraction greatly increased soil respiration at the beginning of the incubation period but this effect was rather short-term.The effect of the RC fraction persisted longer and,together with the LC+RC fraction,respiration increased during the whole incubation period.Decomposition of the RC fraction was more strongly affected by higher temperatures than decomposition of the more labile fractions(LC and LC+RC).However,when we consider the relative increase in soil respiration compared to the dH2 O treatment,respiration increased more at a lower temperature,suggesting that available C is more important for microbial metabolism at lower temperatures.Although C was added only once in our study,no changes in microbial community composition were detected,possibly because the microbial community is adapted to relatively low amounts of additional C such as the amounts naturally found in litter.展开更多
In this paper, a low pressure Ar/N2 shock plasma jet with clearly multicycle al- ternating zones produced by a DC cascade arc discharge has been investigated by an emission spectral method combined with Abel inversion...In this paper, a low pressure Ar/N2 shock plasma jet with clearly multicycle al- ternating zones produced by a DC cascade arc discharge has been investigated by an emission spectral method combined with Abel inversion analysis. Plasma emission intensity, electron, vi- brational and rotational temperatures of the shock plasma have been measured in the expansion and compression zones. The results indicate that the ranges of the measured electron temperature, vibrational temperature and rotational temperature are 1.1 eV to 1.6 eV, 0.2 eV to 0.7 eV and 0.19 eV to 0.22 eV, respectively, and it is found for the first time that the vibrational and rota- tional temperatures increase while the electron temperature decreases in the compression zones. The electron temperature departs from the vibrational and the rotational temperatures due to non-equilibrium plasma effects. Electrons and heavy particles could not completely exchange energy via collisions in the shock plasma jet under the low pressure of 620 Pa or so.展开更多
A Porites lutea core from Yongshu Reef of Nansha Islands covering 50 years growth history was ana-ly/ed for oxygen isotopic composition with monthly and seasonally resolution. The calibration of the δ18O with the ins...A Porites lutea core from Yongshu Reef of Nansha Islands covering 50 years growth history was ana-ly/ed for oxygen isotopic composition with monthly and seasonally resolution. The calibration of the δ18O with the instrumental temperature indicated that the coral δ18O is a good indicator for sea surface temperature (SST) and air temperature (t). It can be used to reconstruct the SST and air temperature of the Yongshu Reef sea area. In addition, the coral δ18O provides signatures for the intensity of the East Asia monsoon and it is a record for the activities of El Nino events. With the calibrated SST and air temperature formulas, the most recent fifty years SST and air temperature were reconstructed based on the coral δ18O, thus back up the understanding of the climate of Nansha Islands to 1950. far beyond the limit of the instrumental recording since September 1988. It was found that, in general, increasing 1℃ air temperature results in 0.24‰decrease in skeletal δ18O.展开更多
Carbon of humus acids(HSAC) and dissolved organic carbon(DOC) are the most active forms of soil organic carbon(SOC) and play an important role in global carbon recycling. We investigated the concentrations of HSAC,wat...Carbon of humus acids(HSAC) and dissolved organic carbon(DOC) are the most active forms of soil organic carbon(SOC) and play an important role in global carbon recycling. We investigated the concentrations of HSAC,water-soluble organic carbon(WSOC),hot water-extractable organic carbon(HWOC) and SOC in soils under different vegetation types of four copper mine tailings sites with differing vegetation succession time periods in Tongling,China. The concentrations of HSAC,WSOC,HWOC and SOC increased with vegetation succession. WSOC concentration increased with the accumulation of SOC in the tailings,and a linearly positive correlation existed between the concentrations of HSAC and SOC in the tailings. However,the percentages of HSAC and DOC in the SOC decreased during vegetation succession. The rate of SOC accumulation was higher when the succession time was longer than 20 years,whereas the speeds of soil organic matter(SOM) decomposition and humification were slow,and the concentrations of HSAC and DOC increased slowly in the tailings. The percentage of carbon of humic acid(HAC) in HSAC increased with vegetation succession,and the values of humification index(HI),HAC/carbon of fulvic acid,also increased with the accumulation of HSAC and SOC in soils of the tailings sites. However,the HI value in the each of the tailings was less than 0.50. The humification rate of SOM was lower than the accumulation rate of SOM,and the level of soil fertility was still very low in the tailings even after 40 years of natural restoration.展开更多
Little is known about the surface energy balance problem for a complex underlying surface.Taking data from the Loess Plateau Land-surface Processes Experiment(LOPEX) and investigating the characteristics of the surfac...Little is known about the surface energy balance problem for a complex underlying surface.Taking data from the Loess Plateau Land-surface Processes Experiment(LOPEX) and investigating the characteristics of the surface energy balance over a complex underlying surface,this paper calculates the soil heat storage and vertical sensible heat advection,analyzes their contributions to the surface energy imbalance,and discusses the mechanism by which the vertical velocity and temperature gradient in the surface layer affect the vertical sensible heat advection transfer.We found that the vertical velocity in the surface layer provides the necessary dynamic power for vertical sensible heat advection,and a relatively strong temperature gradient is the energy source generating vertical sensible heat advection.Under an ascending condition,the effect of vertical sensible heat advection on the surface energy budget is more obvious.It is also found that when the soil heat storage term and the vertical sensible heat advection term are added to the energy balance equation,the imbalance significantly improves.The peak of average diurnal residuals decreases from 125.1 to 41.5 W m-2,the daily average absolute value of residuals falls from 59.0 to 26.4 W m-2,and the surface energy balance closure increases from 78.4% to 94.0%.展开更多
When humic acid (HA) and phosphorus (P) fertilizer are simultaneously applied to soil, HA may affect the movement of P. A laboratory incubation experiment was conducted to quantify the effects of a commercial HA produ...When humic acid (HA) and phosphorus (P) fertilizer are simultaneously applied to soil, HA may affect the movement of P. A laboratory incubation experiment was conducted to quantify the effects of a commercial HA product co-applied with monocalcium phosphate (MCP) on the distance of P movement and the concentration of P in various forms at different distances from the P fertilizer application site in a calcareous soil from northern China. Fertilizer MCP (at a rate equivalent to 26.6 kg P ha-1 ) was applied alone or in combination with HA (at 254.8 kg HA ha-1 ) to the surface of soil packed in cylinders (150 mm high and 50 mm internal diameter), and then incubated at 320 g kg-1 moisture content for 7 and 28 d periods. Extraction and analysis of each 2 mm soil layer in columns showed that the addition of HA to MCP increased the distance of P movement and the concentrations of water-extractable P, acid-extractable P and Olsen P in soil. The addition of HA to MCP could enhance P availability by increasing the distance of P movement and the concentration of extractable P in soil surrounding the P fertilizer.展开更多
The application of organic amendments on soils poor in organic matter(OM) can improve long-term soil fertility, but may also enhance the mineralization of native soil organic matter. Three organic amendments, compost,...The application of organic amendments on soils poor in organic matter(OM) can improve long-term soil fertility, but may also enhance the mineralization of native soil organic matter. Three organic amendments, compost, sewage sludge and horse manure, used by urban market gardeners in Dakar, Senegal were analyzed for their OM maturity. Their fate was evaluated in a 45-d agronomic trial in a sandy Arenosol with lettuce. In each case, water-extractable organic matter(WEOM) and humic-like substances(HLS)were isolated from raw amendments and amended soils, and characterized using ultraviolet-visible(UV/Vis) spectroscopy. Results highlighted the general more aromatic character of HLS and WEOM fractions extracted from compost compared to the other two amendments. When applied to soils, however, these differences were not clearly observed. The aromaticity and humification degree of the labile fraction(WEOM) increased with depth in the first 30 cm for all amendments. This indicated the high lixiviation rates that fresh OM underwent in the studied sandy soil. Finally, a statistical analysis of the results was able to discriminate between surface and deeper horizons and between amended- and non-amended soil samples. Spectroscopic indices showed indeed strong increase/decrease with depth linked with the mineralization/humification processes that the fresh OM from amendments underwent during the 45 d of the agronomic trial. This study highlights the potential of spectroscopic techniques to study agricultural amendment organic matter fractions and their fate in soils.展开更多
Biochar has received increasing attention due to its applications as a soil amendment. Here, the chemical properties of solid and water-extractable fractions of four biochar samples were investigated. The results show...Biochar has received increasing attention due to its applications as a soil amendment. Here, the chemical properties of solid and water-extractable fractions of four biochar samples were investigated. The results showed that wood biochar and bamboo biochar samples were 60%-80% more hydrophobic than those of rice husk biochar and rice husk ash. In addition, the acidity was 3.88 mmol/g from the total functional groups and 1.03 mmol/g from the carboxyl groups/lactones/phenols found in the wood biochar sample, which were about 1.5 times greater than those of the bamboo biochar sample. These functional groups could be used to determine the sorptive capacity of biochar for ionic solutes and water content and to increase the degradation of compost organics. The wood biochar sample was found to have the most humification materials (fulvic acid-like material + humic acid-like material) in the water-extractable fraction, which was 3-10 times higher than that in the rice husk biochar and rice husk ash; humified materials were not detected in the bamboo biochar sample. Humification materials in biochar may be involved in increasing the proportion of humic acid-like materials in humic-like substances within the compost product. Wood biochar had better hydrophobic, sorptive, aromatic, and humification properties compared to other biochars, suggesting that it may be used in composting in order to exert its effect as both a bulking agent and a composting amendment during the solid waste composting process.展开更多
Diuron is frequently detected in surface- and groundwater under the vineyards, where organic amendments are often used, in Burgundy of France. Undisturbed column experiments were conducted to study the influence of th...Diuron is frequently detected in surface- and groundwater under the vineyards, where organic amendments are often used, in Burgundy of France. Undisturbed column experiments were conducted to study the influence of three composted organic amendments on diuron leaching through columns of two vineyard soils from Vosne-Roman′ee(VR, calcareous Cambisol) and Beaujolais(Bj, sandy Leptosol), France. Bromide(used as non-reactive tracer) and diuron breakthrough curves(BTCs) were analyzed using convectivedispersive equation(CDE), two-region(mobile-immobile, MIM) and two-site models. No influence of the composts was observed on the bromide recovery rates. The CDE model described well the bromide BTCs for all columns of the Bj soil and seven of the VR soil, suggesting a homogeneous water flow. However, for five VR soil columns, the MIM model fitted better, suggesting a partition of the water flow(15%–50% of matrix flow). The texture, the coarse material content and the tillage of the VR soil could explain this heterogeneity. However, for all columns, diuron leaching was greater through the Bj soil(46%–68%) than the VR soil(28%–39%). The compost addition resulted in a contrasting effect on diuron leaching: no difference or a decrease was observed for the VR soil, probably due to an increase of adsorption sites, whereas no difference or an increase was observed for the Bj soil possibly because of interactions and/or competition of diuron with the compost water-extractable organic matter which could facilitate its transport. All the diuron BTCs were best described using the two-site model, suggesting a large proportion of time-dependent sorption sites(30%–50%). The soil type and the nature of the amendments had contrasting influences on diuron transport. Composts with a high water-soluble fraction must be avoided in sandy soils to reduce the risk of groundwater contamination.展开更多
Carbon fractions in soils apparently vary not only in space, but also over time. A lack of knowledge on the seasonal variability of labile carbon fractions under arable land hampers the reliability and comparability o...Carbon fractions in soils apparently vary not only in space, but also over time. A lack of knowledge on the seasonal variability of labile carbon fractions under arable land hampers the reliability and comparability of soil organic carbon(SOC) surveys from different studies. Therefore, we studied the seasonal variability of two SOC fractions, particulate organic matter(POM) and dissolved organic carbon(DOC), under maize cropping: POM was determined as the SOC content in particle-size fractions, and DOC was measured as the water-extractable SOC(WESOC) of air-dried soil. Ammonium, nitrate, and water-extractable nitrogen were measured as potential regulating factors of WESOC formation because carbon and nitrogen cycles in soils are strongly connected. There was a significant annual variation of WESOC(coefficient of variation(CV) = 30%). Temporal variations of SOC in particle-size fractions were smaller than those of WESOC. The stocks of SOC in particle-size fractions decreased with decreasing particle sizes, exhibiting a CV of 20%for the coarse sand-size fraction(250–2 000 μm), of 9% for the fine sand-size fraction(50–250 μm), and of 5% for the silt-size fraction(20–50 μm). The WESOC and SOC in particle-size fractions both peaked in March and reached the minimum in May/June and August, respectively. These results indicate the importance of the time of soil sampling during the course of a year, especially when investigating WESOC.展开更多
Measurements of brightness temperatures from Advanced Microwave Sounding Unit-A (AMSU-A) temperature sounding instruments onboard NOAA Polar- orbiting Operational Environmental Satellites (POES) have been extensiv...Measurements of brightness temperatures from Advanced Microwave Sounding Unit-A (AMSU-A) temperature sounding instruments onboard NOAA Polar- orbiting Operational Environmental Satellites (POES) have been extensively used for studying atmospheric temperature trends over the past several decades. Inter- sensor biases, orbital drifts and diurnal variations of atmospheric and surface temperatures must be considered before using a merged long-term time series of AMSU-A measurements from NOAA- 15, - 18, - 19 and MetOp-A. We study the impacts of the orbital drift and orbital differences of local equator crossing times (LECTs) on temperature trends derivable from AMSU-A using near-nadir observa- tions from NOAA-15, NOAA-18, NOAA-19, and MetOp-A during 1998 - 2014 over the Amazon rainforest. The double difference method is firstly applied to estimation of inter-sensor biases between any two satellites during their overlapping time period. The inter-calibrated observations are then used to generate a monthly mean diurnal cycle of brightness temperature for each AMSU-A channel. A diurnal correction is finally applied each channel to obtain AMSU-A data valid at the same local time. Impacts of the inter-sensor bias correction and diurnal correction on the AMSU-A derived long-term atmospheric temperature trends are separately quantified and compared with those derived from original data. It is shown that the orbital drift and differences of LECT among different POESs induce a large uncertainty in AMSU-A derived long-term warming/cooling trends. After applying an inter-sensor bias correction and a diurnal correction, the warming trends at different local times, which are approximately the same, are smaller by half than the trends derived without applying these corrections.展开更多
文摘This study aimed to develop a water-extraction system which could produce the fresh water from the air in arid regions and which used renewable energies as the electric power source. In this paper, the experiments for water extraction from the air were carried out by using the novel multi-stage water-extraction device with Peltier deices for two cases of temperature and related humidity of the air. One was the case where the temperature and the related humidity of the air were constant, and the other was the case where they were simulated the variation of the temperature and related humidity of the air in a day of summer and spring in Loess Plateau, China. The effects of the temperature and related humidity of the atmospheric air and supply the electric power to Peltier devices on performance of water production of the device were investigated and reported.
文摘Food losses in the developing country are thought to be 50% of the fruits and vegetables grown and 25% of harvested food grain. Food preservation can reduce wastage of a harvest surplus, allow storage for food shortages, and in some cases facilitate export to high-value markets. Drying is one of the oldest methods of food preservation. Drying makes produce lighter, smaller, and less likely to spoil and helps to minimize the moisture content in coffee beans as high moisture content during storage is certain to ruin the taste and appearance of coffee. This work presents the results of an experimental study of forced convection drying of coffee cherries in a modified Icaro solar dryer. The study aims to validate the numerical models developed for further research. The experimental tests envisaged also aim to determine the mass loss curves of the product by fixing or calculating its initial mass (1 kg), its initial water content (70%), the ambient temperature, the drying airflow (0.02 m<sup>3.</sup>s<sup>-1</sup> to 0.09 m<sup>3.</sup>s<sup>-1</sup>) and the exchange coefficients. The influence of these aerothermal parameters on the drying time of a most commercialized coffee variety (Robusta) was studied. Finally, the results revealed an increase in the efficiency of the heat transfer air and a reduction in the water content of the coffee cherry from 70% to 9.87%, after 30.2 hours.
文摘Boron-doped zinc oxide transparent (BZO) films were prepared by sol-gel method. The effect of pyrolysis temperature on the crystallization behavior and properties was systematically investigated. XRD patterns revealed that the BZO films had wurtzite structure with a preferential growth orientation along the c-axis. With the increase of pyrolysis temperature, the particle size and surface roughness of the BZO films increased, suggesting that pyrolysis temperature is the critical factor for determining the crystallization behavior of the BZO films. Moreover, the carrier concentration and the carrier mobility increased with increasing the pyrolysis temperature, and the mean transmittance for every film is over 90% in the visible range.
文摘The Ti-48Al alloy was pack siliconized with 15%Si+85%Al2O3. The microstructure of the siliconized coating on the TiAl-based alloy was analyzed and its effect on oxidation resistance was investigated. The specimens before and after cycle oxidation were examined by XRD and SEM equipped with XEDS. The results showed that the coating is composed of a thin Al2O3 outer layer and a composite inner layer of Ti5Si3 with an appropriate amount of Al2O3 dispersed in. Cycle oxidation tests showed that the high temperature oxidation resistance of TiAl-based alloy was greatly improved by forming such composite coating. No spaliation and crack happened and the weight gain was very small after cycle oxidation at 900℃ for 314h.
基金supported by Anhui Provincial Natural Science Foundation of China(11040606M09)
文摘It has been proved that there exists a certain cor relation between fingertip temperature oscillations and blood flow oscillations. In this work, a porous media model of hu man hand is presented to investigate how the blood flow os cillation in the endothelial frequency band influences finger tip skin temperature oscillations. The porosity which repre sents the density of micro vessels is assumed to vary periodi cally and is a function of the skin temperature. Finite element analysis of skin temperature for a contra lateral hand under a cooling test was conducted. Subsequently, wavelet anal ysis was carried out to extract the temperature oscillations of the data through the numerical analysis and experimen tal measurements. Furthermore, the oscillations extracted from both numerical analyses and experiments were statis tically analyzed to compare the amplitude. The simulation and experimental results show that for the subjects in cardio vascular health, the skin temperature fluctuations in endothe lial frequency decrease during the cooling test and increase gradually after cooling, implying that the assumed porosity variation can represent the vasomotion in the endothelial fre quency band.
基金supported by the National Natural Science Foundation of China (41971104)the Open Foundation of the State Key Laboratory of Loess and Quaternary Geology,Institute of Earth Environment+1 种基金Chinese Academy of Sciences (CASSKLLQG1817)the Qilian Mountain National Park Research Center (Qinghai)(GKQ2019-01)。
文摘A knowledge of the tree-ring stable nitrogen isotope ratio(δ^(15)N)can deepen our understanding of forest ecosystem dynamics by indicating the long-term availability,cycling and sources of nitrogen(N).However,the radial mobility of N blurs the interannual variations in the long-term N records.Previous studies of the chemical extraction of tree rings before analysis had produced inconsistent results and it is still unclear whether it is necessary to pre-treat wood samples from specific tree species to remove soluble N compounds before determining theδ^(15)N values.We compared the effects of pre-treatment with organic solvents and hot ultrapure water on the N concentration andδ^(15)N of tree rings from endemic Qinghai spruce(Picea crassifolia)growing in the interior of the central Qilian Mountains,China,during the last 60 a.We assessed the effects of different preparation protocols on the removal of the labile N compounds and investigated the need to pre-treat wood samples before determining theδ^(15)N values of tree rings.Increasing trends of the tree-ring N concentration were consistently observed in both the extracted and unextracted wood samples.The total N removed by extraction with organic solvents was about 17.60%,with a significantly higher amount in the sapwood section(P<0.01).Theδ^(15)N values of tree rings decreased consistently from 1960 to 2019 in both the extracted and unextracted wood samples.Extraction with organic solvents increased theδ^(15)N values markedly by about 5.2‰and reduced the variations in theδ^(15)N series.However,extraction with hot ultrapure water had little effect,with only a slight decrease in theδ^(15)N values of about 0.5‰.Our results showed that the radial pattern in the inter-ring movement of N in Qinghai spruce was not minimized by extraction with either organic solvents or hot ultrapure water.It is unnecessary to conduct hot ultrapure water extraction for the wood samples from Qinghai spruce because of its negligible effect on the removal of the labile N.Theδ^(15)N variation trend of tree rings in the unextracted wood samples was not influenced by the heartwood-sapwood transition zone.We suggest that theδ^(15)N values of the unextracted wood samples of the climate-sensitive Qinghai spruce could be used to explore the ecophysiological dynamics while focusing on the long-term variations.
基金Supported by the National Natural Science Foundation of China(51674158,51704324,51934004)。
文摘Aiming at the synergistic rock-breaking mechanism of supercritical carbon dioxide(SC-CO_(2))jet pressure and tem-perature difference,a heat-fluid-solid calculation model of rock-breaking stress was established and verified to be effective,and the variations of jet flow field and rock stress with jet standoff distance of SC-CO_(2),water and nitrogen were studied.With the increase of jet standoff distance,the jet pressure of SC-CO_(2) decreases and the jet temperature difference increases.The SC-CO_(2) jet is higher in pressure than the nitrogen jet and differs little from the water jet.Temperature difference of SC-CO_(2) jet is 5 times that of water jet and more than 2.5 ti mes that of nitrogen jet when the jet standoff distance is larger than 10.The tem-perature stress is the main reason why SC-CO_(2) jet is superior to water and nitrogen jets in rock-breaking.The rock under the SC-CO_(2) jet has greater rock stress,effective rock-breaking jet standoff distance and rock-breaking area.The jet pressure plays a major role in rock-breaking when the jet standoff distance is small,while the jet temperature difference plays a major role in rock-breaking when the jet standoff distance is large.The SC-CO_(2) jet is an efficient volume rock-breaking method,which results in tensile and shear failure on the rock surface under short time jet and large area tensile failure inside the rock simultaneously under long time jet.
文摘Swine wastewater (SW) and olive mill wastewater (OMW) are two problematic wastes that have become major causes of health and environmental concerns. The main objective of the current work was to evaluate the efficiency of the co-digestion strategy for treatment of SW and OMW mixtures. Mesophilic batch reac-tors fed with mixtures of SW and OMW showed that the two adapted sludges Gadot and Prigat exhibited the best COD removal capacity and biogas production;therefore both were selected to seed up-flow anaerobic sludge blanket (UASB) continuous reactors. During 170 days of operation, both sludges Gadot and Prigat showed high biodegradation potential. The highest COD removal of 85-95% and biogas production of 0.55 L?g-1 COD were obtained at a mixture consisting of 33% OMW and 67% SW. Under these conditions, an organic load of 28,000 mg?L-1 COD was reduced to 1,500-3,500 mg?L-1. These results strongly suggest that co-digestion technology using UASB reactors is a highly reliable and promising technology for wastewater treatment and biogas production.
基金This study was supported by the Czech Academy of Sciences(L200961602,MSM200961606,Otevrená věda,fellowship No.1.062)by the European Regional Development Fund-Project"Research of key soil water ecosystem interactions at the SoWa Research Infrastructure"(No.CZ.02.1.01/0.0/0.0/16_013/0001782).
文摘Temperate coniferous forest soils are considered important sinks of soil organic carbon(C).Fresh C inputs may,however,affect soil microbial activity,leading to increased organic matter decomposition and carbon dioxide production.Litter consists of labile and recalcitrant fractions which are thought to be utilized by distinct microbial communities and at different rates during the growing season.In this study,we incubated the whole litter(LC+RC),the labile(LC)and the recalcitrant(RC)fractions with the coniferous soil at two temperatures representing spring/autumn(10℃)and summer(20℃)for one month.Soil respiration and microbial community composition were regularly determined using phospholipid fatty acids as biomarkers.The LC fraction greatly increased soil respiration at the beginning of the incubation period but this effect was rather short-term.The effect of the RC fraction persisted longer and,together with the LC+RC fraction,respiration increased during the whole incubation period.Decomposition of the RC fraction was more strongly affected by higher temperatures than decomposition of the more labile fractions(LC and LC+RC).However,when we consider the relative increase in soil respiration compared to the dH2 O treatment,respiration increased more at a lower temperature,suggesting that available C is more important for microbial metabolism at lower temperatures.Although C was added only once in our study,no changes in microbial community composition were detected,possibly because the microbial community is adapted to relatively low amounts of additional C such as the amounts naturally found in litter.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Nos.2013GB109005,2009GB106004)National Natural Science Foundation of China(Nos.11175035,10875023)the Fundamental Research Funds for the Central Universities of China(DUT 12ZD(G)01,DUT 11ZD(G)06)
文摘In this paper, a low pressure Ar/N2 shock plasma jet with clearly multicycle al- ternating zones produced by a DC cascade arc discharge has been investigated by an emission spectral method combined with Abel inversion analysis. Plasma emission intensity, electron, vi- brational and rotational temperatures of the shock plasma have been measured in the expansion and compression zones. The results indicate that the ranges of the measured electron temperature, vibrational temperature and rotational temperature are 1.1 eV to 1.6 eV, 0.2 eV to 0.7 eV and 0.19 eV to 0.22 eV, respectively, and it is found for the first time that the vibrational and rota- tional temperatures increase while the electron temperature decreases in the compression zones. The electron temperature departs from the vibrational and the rotational temperatures due to non-equilibrium plasma effects. Electrons and heavy particles could not completely exchange energy via collisions in the shock plasma jet under the low pressure of 620 Pa or so.
基金This work was supported partially by the State Key Project of the Nineth Five-Year Plan (Grant No. 95-926-03-01) the National Natu- ral Science Foundation of China (Grant No. 49902014) and the Open Laboratory of Marginal Sea Geology and Paleoenvironm
文摘A Porites lutea core from Yongshu Reef of Nansha Islands covering 50 years growth history was ana-ly/ed for oxygen isotopic composition with monthly and seasonally resolution. The calibration of the δ18O with the instrumental temperature indicated that the coral δ18O is a good indicator for sea surface temperature (SST) and air temperature (t). It can be used to reconstruct the SST and air temperature of the Yongshu Reef sea area. In addition, the coral δ18O provides signatures for the intensity of the East Asia monsoon and it is a record for the activities of El Nino events. With the calibrated SST and air temperature formulas, the most recent fifty years SST and air temperature were reconstructed based on the coral δ18O, thus back up the understanding of the climate of Nansha Islands to 1950. far beyond the limit of the instrumental recording since September 1988. It was found that, in general, increasing 1℃ air temperature results in 0.24‰decrease in skeletal δ18O.
基金Supported by the National High Technology Research and Development Program(863 Program)of China(No.2006AA06Z359)the National Environmental Protection Public Welfare Science and Technology Research Program of China(No.201009041)the Special Foundation for Young Scientists of Anhui Province,China(No.2010SQRL150)
文摘Carbon of humus acids(HSAC) and dissolved organic carbon(DOC) are the most active forms of soil organic carbon(SOC) and play an important role in global carbon recycling. We investigated the concentrations of HSAC,water-soluble organic carbon(WSOC),hot water-extractable organic carbon(HWOC) and SOC in soils under different vegetation types of four copper mine tailings sites with differing vegetation succession time periods in Tongling,China. The concentrations of HSAC,WSOC,HWOC and SOC increased with vegetation succession. WSOC concentration increased with the accumulation of SOC in the tailings,and a linearly positive correlation existed between the concentrations of HSAC and SOC in the tailings. However,the percentages of HSAC and DOC in the SOC decreased during vegetation succession. The rate of SOC accumulation was higher when the succession time was longer than 20 years,whereas the speeds of soil organic matter(SOM) decomposition and humification were slow,and the concentrations of HSAC and DOC increased slowly in the tailings. The percentage of carbon of humic acid(HAC) in HSAC increased with vegetation succession,and the values of humification index(HI),HAC/carbon of fulvic acid,also increased with the accumulation of HSAC and SOC in soils of the tailings sites. However,the HI value in the each of the tailings was less than 0.50. The humification rate of SOM was lower than the accumulation rate of SOM,and the level of soil fertility was still very low in the tailings even after 40 years of natural restoration.
基金supported by the National Natural Science Foundation of China (Grant No.40830597)the Public Welfare Research Project of China (Grant No.GYHY200806021)
文摘Little is known about the surface energy balance problem for a complex underlying surface.Taking data from the Loess Plateau Land-surface Processes Experiment(LOPEX) and investigating the characteristics of the surface energy balance over a complex underlying surface,this paper calculates the soil heat storage and vertical sensible heat advection,analyzes their contributions to the surface energy imbalance,and discusses the mechanism by which the vertical velocity and temperature gradient in the surface layer affect the vertical sensible heat advection transfer.We found that the vertical velocity in the surface layer provides the necessary dynamic power for vertical sensible heat advection,and a relatively strong temperature gradient is the energy source generating vertical sensible heat advection.Under an ascending condition,the effect of vertical sensible heat advection on the surface energy budget is more obvious.It is also found that when the soil heat storage term and the vertical sensible heat advection term are added to the energy balance equation,the imbalance significantly improves.The peak of average diurnal residuals decreases from 125.1 to 41.5 W m-2,the daily average absolute value of residuals falls from 59.0 to 26.4 W m-2,and the surface energy balance closure increases from 78.4% to 94.0%.
基金Supported by the Shandong Provincial Doctoral Foundation of China(Nos.2007BS08013 and BS2012NY011)
文摘When humic acid (HA) and phosphorus (P) fertilizer are simultaneously applied to soil, HA may affect the movement of P. A laboratory incubation experiment was conducted to quantify the effects of a commercial HA product co-applied with monocalcium phosphate (MCP) on the distance of P movement and the concentration of P in various forms at different distances from the P fertilizer application site in a calcareous soil from northern China. Fertilizer MCP (at a rate equivalent to 26.6 kg P ha-1 ) was applied alone or in combination with HA (at 254.8 kg HA ha-1 ) to the surface of soil packed in cylinders (150 mm high and 50 mm internal diameter), and then incubated at 320 g kg-1 moisture content for 7 and 28 d periods. Extraction and analysis of each 2 mm soil layer in columns showed that the addition of HA to MCP increased the distance of P movement and the concentrations of water-extractable P, acid-extractable P and Olsen P in soil. The addition of HA to MCP could enhance P availability by increasing the distance of P movement and the concentration of extractable P in soil surrounding the P fertilizer.
基金supported by the Swiss National Science Foundation (No. 207021-109689/1)
文摘The application of organic amendments on soils poor in organic matter(OM) can improve long-term soil fertility, but may also enhance the mineralization of native soil organic matter. Three organic amendments, compost, sewage sludge and horse manure, used by urban market gardeners in Dakar, Senegal were analyzed for their OM maturity. Their fate was evaluated in a 45-d agronomic trial in a sandy Arenosol with lettuce. In each case, water-extractable organic matter(WEOM) and humic-like substances(HLS)were isolated from raw amendments and amended soils, and characterized using ultraviolet-visible(UV/Vis) spectroscopy. Results highlighted the general more aromatic character of HLS and WEOM fractions extracted from compost compared to the other two amendments. When applied to soils, however, these differences were not clearly observed. The aromaticity and humification degree of the labile fraction(WEOM) increased with depth in the first 30 cm for all amendments. This indicated the high lixiviation rates that fresh OM underwent in the studied sandy soil. Finally, a statistical analysis of the results was able to discriminate between surface and deeper horizons and between amended- and non-amended soil samples. Spectroscopic indices showed indeed strong increase/decrease with depth linked with the mineralization/humification processes that the fresh OM from amendments underwent during the 45 d of the agronomic trial. This study highlights the potential of spectroscopic techniques to study agricultural amendment organic matter fractions and their fate in soils.
基金supported by the National Basic Research Program (973) of China (No. 2012CB719801)the National High Technology Research and Development Program (863) of China (No. 2012AA063504)+1 种基金the Key Special Program on the Science and Technology for the Pollution Control and Treatment of Water Bodies (No. 2011ZX07303-004-03)the Fok Ying-Tong Education Foundation (No. 132012), and the Program of Shanghai Subject Chief Scientist (No. 10XD1404200)
文摘Biochar has received increasing attention due to its applications as a soil amendment. Here, the chemical properties of solid and water-extractable fractions of four biochar samples were investigated. The results showed that wood biochar and bamboo biochar samples were 60%-80% more hydrophobic than those of rice husk biochar and rice husk ash. In addition, the acidity was 3.88 mmol/g from the total functional groups and 1.03 mmol/g from the carboxyl groups/lactones/phenols found in the wood biochar sample, which were about 1.5 times greater than those of the bamboo biochar sample. These functional groups could be used to determine the sorptive capacity of biochar for ionic solutes and water content and to increase the degradation of compost organics. The wood biochar sample was found to have the most humification materials (fulvic acid-like material + humic acid-like material) in the water-extractable fraction, which was 3-10 times higher than that in the rice husk biochar and rice husk ash; humified materials were not detected in the bamboo biochar sample. Humification materials in biochar may be involved in increasing the proportion of humic acid-like materials in humic-like substances within the compost product. Wood biochar had better hydrophobic, sorptive, aromatic, and humification properties compared to other biochars, suggesting that it may be used in composting in order to exert its effect as both a bulking agent and a composting amendment during the solid waste composting process.
文摘Diuron is frequently detected in surface- and groundwater under the vineyards, where organic amendments are often used, in Burgundy of France. Undisturbed column experiments were conducted to study the influence of three composted organic amendments on diuron leaching through columns of two vineyard soils from Vosne-Roman′ee(VR, calcareous Cambisol) and Beaujolais(Bj, sandy Leptosol), France. Bromide(used as non-reactive tracer) and diuron breakthrough curves(BTCs) were analyzed using convectivedispersive equation(CDE), two-region(mobile-immobile, MIM) and two-site models. No influence of the composts was observed on the bromide recovery rates. The CDE model described well the bromide BTCs for all columns of the Bj soil and seven of the VR soil, suggesting a homogeneous water flow. However, for five VR soil columns, the MIM model fitted better, suggesting a partition of the water flow(15%–50% of matrix flow). The texture, the coarse material content and the tillage of the VR soil could explain this heterogeneity. However, for all columns, diuron leaching was greater through the Bj soil(46%–68%) than the VR soil(28%–39%). The compost addition resulted in a contrasting effect on diuron leaching: no difference or a decrease was observed for the VR soil, probably due to an increase of adsorption sites, whereas no difference or an increase was observed for the Bj soil possibly because of interactions and/or competition of diuron with the compost water-extractable organic matter which could facilitate its transport. All the diuron BTCs were best described using the two-site model, suggesting a large proportion of time-dependent sorption sites(30%–50%). The soil type and the nature of the amendments had contrasting influences on diuron transport. Composts with a high water-soluble fraction must be avoided in sandy soils to reduce the risk of groundwater contamination.
文摘Carbon fractions in soils apparently vary not only in space, but also over time. A lack of knowledge on the seasonal variability of labile carbon fractions under arable land hampers the reliability and comparability of soil organic carbon(SOC) surveys from different studies. Therefore, we studied the seasonal variability of two SOC fractions, particulate organic matter(POM) and dissolved organic carbon(DOC), under maize cropping: POM was determined as the SOC content in particle-size fractions, and DOC was measured as the water-extractable SOC(WESOC) of air-dried soil. Ammonium, nitrate, and water-extractable nitrogen were measured as potential regulating factors of WESOC formation because carbon and nitrogen cycles in soils are strongly connected. There was a significant annual variation of WESOC(coefficient of variation(CV) = 30%). Temporal variations of SOC in particle-size fractions were smaller than those of WESOC. The stocks of SOC in particle-size fractions decreased with decreasing particle sizes, exhibiting a CV of 20%for the coarse sand-size fraction(250–2 000 μm), of 9% for the fine sand-size fraction(50–250 μm), and of 5% for the silt-size fraction(20–50 μm). The WESOC and SOC in particle-size fractions both peaked in March and reached the minimum in May/June and August, respectively. These results indicate the importance of the time of soil sampling during the course of a year, especially when investigating WESOC.
基金The work was supported by JPSS Proving Ground and Risk Reduction (PGRR) program (Project No. NA11OAR4320199), the National Natural Science Foundation of China (Grant No. 41505086) and National Oceanic and Atmospheric Administration (NOAA) under Grant NA14NES4320003.
文摘Measurements of brightness temperatures from Advanced Microwave Sounding Unit-A (AMSU-A) temperature sounding instruments onboard NOAA Polar- orbiting Operational Environmental Satellites (POES) have been extensively used for studying atmospheric temperature trends over the past several decades. Inter- sensor biases, orbital drifts and diurnal variations of atmospheric and surface temperatures must be considered before using a merged long-term time series of AMSU-A measurements from NOAA- 15, - 18, - 19 and MetOp-A. We study the impacts of the orbital drift and orbital differences of local equator crossing times (LECTs) on temperature trends derivable from AMSU-A using near-nadir observa- tions from NOAA-15, NOAA-18, NOAA-19, and MetOp-A during 1998 - 2014 over the Amazon rainforest. The double difference method is firstly applied to estimation of inter-sensor biases between any two satellites during their overlapping time period. The inter-calibrated observations are then used to generate a monthly mean diurnal cycle of brightness temperature for each AMSU-A channel. A diurnal correction is finally applied each channel to obtain AMSU-A data valid at the same local time. Impacts of the inter-sensor bias correction and diurnal correction on the AMSU-A derived long-term atmospheric temperature trends are separately quantified and compared with those derived from original data. It is shown that the orbital drift and differences of LECT among different POESs induce a large uncertainty in AMSU-A derived long-term warming/cooling trends. After applying an inter-sensor bias correction and a diurnal correction, the warming trends at different local times, which are approximately the same, are smaller by half than the trends derived without applying these corrections.