Spinal and bulbar muscular atrophy is a neurodegenerative disease caused by extended CAG trinucleotide repeats in the androgen receptor gene,which encodes a ligand-dependent transcription facto r.The mutant androgen r...Spinal and bulbar muscular atrophy is a neurodegenerative disease caused by extended CAG trinucleotide repeats in the androgen receptor gene,which encodes a ligand-dependent transcription facto r.The mutant androgen receptor protein,characterized by polyglutamine expansion,is prone to misfolding and forms aggregates in both the nucleus and cytoplasm in the brain in spinal and bulbar muscular atrophy patients.These aggregates alter protein-protein interactions and compromise transcriptional activity.In this study,we reported that in both cultured N2a cells and mouse brain,mutant androgen receptor with polyglutamine expansion causes reduced expression of mesencephalic astrocyte-de rived neurotrophic factor.Overexpressio n of mesencephalic astrocyte-derived neurotrophic factor amelio rated the neurotoxicity of mutant androgen receptor through the inhibition of mutant androgen receptor aggregation.Conversely.knocking down endogenous mesencephalic astrocyte-derived neurotrophic factor in the mouse brain exacerbated neuronal damage and mutant androgen receptor aggregation.Our findings suggest that inhibition of mesencephalic astrocyte-derived neurotrophic factor expression by mutant androgen receptor is a potential mechanism underlying neurodegeneration in spinal and bulbar muscular atrophy.展开更多
Nuclear factor Y is a ubiquitous heterotrimeric transcription factor complex conserved across eukaryotes that binds to CCAAT boxes,one of the most common motifs found in gene promoters and enhancers.Over the last 30 y...Nuclear factor Y is a ubiquitous heterotrimeric transcription factor complex conserved across eukaryotes that binds to CCAAT boxes,one of the most common motifs found in gene promoters and enhancers.Over the last 30 years,research has revealed that the nuclear factor Y complex controls many aspects of brain development,including differentiation,axon guidance,homeostasis,disease,and most recently regeneration.However,a complete understanding of transcriptional regulatory networks,including how the nuclear factor Y complex binds to specific CCAAT boxes to perform its function remains elusive.In this review,we explore the nuclear factor Y complex’s role and mode of action during brain development,as well as how genomic technologies may expand understanding of this key regulator of gene expression.展开更多
Brain-derived neurotrophic factor is a crucial neurotrophic factor that plays a significant role in brain health. Although the vast majority of meta-analyses have confirmed that exercise interventions can increase bra...Brain-derived neurotrophic factor is a crucial neurotrophic factor that plays a significant role in brain health. Although the vast majority of meta-analyses have confirmed that exercise interventions can increase brain-derived neurotrophic factor levels in children and adolescents, the effects of specific types of exercise on brain-derived neurotrophic factor levels are still controversial. To address this issue, we used meta-analytic methods to quantitatively evaluate, analyze, and integrate relevant studies. Our goals were to formulate general conclusions regarding the use of exercise interventions, explore the physiological mechanisms by which exercise improves brain health and cognitive ability in children and adolescents, and provide a reliable foundation for follow-up research. We used the Pub Med, Web of Science, Science Direct, Springer, Wiley Online Library, Weipu, Wanfang, and China National Knowledge Infrastructure databases to search for randomized controlled trials examining the influences of exercise interventions on brain-derived neurotrophic factor levels in children and adolescents. The extracted data were analyzed using Review Manager 5.3. According to the inclusion criteria, we assessed randomized controlled trials in which the samples were mainly children and adolescents, and the outcome indicators were measured before and after the intervention. We excluded animal experiments, studies that lacked a control group, and those that did not report quantitative results. The mean difference(MD;before versus after intervention) was used to evaluate the effect of exercise on brain-derived neurotrophic factor levels in children and adolescents. Overall, 531 participants(60 children and 471 adolescents, 10.9–16.1 years) were included from 13 randomized controlled trials. Heterogeneity was evaluated using the Q statistic and I^(2) test provided by Review Manager software. The meta-analysis showed that there was no heterogeneity among the studies(P = 0.67, I^(2) = 0.00%). The combined effect of the interventions was significant(MD = 2.88, 95% CI: 1.53–4.22, P < 0.0001), indicating that the brain-derived neurotrophic factor levels of the children and adolescents in the exercise group were significantly higher than those in the control group. In conclusion, different types of exercise interventions significantly increased brain-derived neurotrophic factor levels in children and adolescents. However, because of the small sample size of this meta-analysis, more high-quality research is needed to verify our conclusions. This metaanalysis was registered at PROSPERO(registration ID: CRD42023439408).展开更多
After brain damage,regenerative angiogenesis and neurogenesis have been shown to occur simultaneously in mammals,suggesting a close link between these processes.However,the mechanisms by which these processes interact...After brain damage,regenerative angiogenesis and neurogenesis have been shown to occur simultaneously in mammals,suggesting a close link between these processes.However,the mechanisms by which these processes interact are not well understood.In this work,we aimed to study the correlation between angiogenesis and neurogenesis after a telencephalic stab wound injury.To this end,we used zebrafish as a relevant model of neuroplasticity and brain repair mechanisms.First,using the Tg(fli1:EGFP×mpeg1.1:mCherry)zebrafish line,which enables visualization of blood vessels and microglia respectively,we analyzed regenerative angiogenesis from 1 to 21 days post-lesion.In parallel,we monitored brain cell proliferation in neurogenic niches localized in the ventricular zone by using immunohistochemistry.We found that after brain damage,the blood vessel area and width as well as expression of the fli1 transgene and vascular endothelial growth factor(vegfaa and vegfbb)were increased.At the same time,neural stem cell proliferation was also increased,peaking between 3 and 5 days post-lesion in a manner similar to angiogenesis,along with the recruitment of microglia.Then,through pharmacological manipulation by injecting an anti-angiogenic drug(Tivozanib)or Vegf at the lesion site,we demonstrated that blocking or activating Vegf signaling modulated both angiogenic and neurogenic processes,as well as microglial recruitment.Finally,we showed that inhibition of microglia by clodronate-containing liposome injection or dexamethasone treatment impairs regenerative neurogenesis,as previously described,as well as injury-induced angiogenesis.In conclusion,we have described regenerative angiogenesis in zebrafish for the first time and have highlighted the role of inflammation in this process.In addition,we have shown that both angiogenesis and neurogenesis are involved in brain repair and that microglia and inflammation-dependent mechanisms activated by Vegf signaling are important contributors to these processes.This study paves the way for a better understanding of the effect of Vegf on microglia and for studies aimed at promoting angiogenesis to improve brain plasticity after brain injury.展开更多
Retinal aging has been recognized as a significant risk factor for various retinal disorders,including diabetic retinopathy,age-related macular degeneration,and glaucoma,following a growing understanding of the molecu...Retinal aging has been recognized as a significant risk factor for various retinal disorders,including diabetic retinopathy,age-related macular degeneration,and glaucoma,following a growing understanding of the molecular underpinnings of their development.This comprehensive review explores the mechanisms of retinal aging and investigates potential neuroprotective approaches,focusing on the activation of transcription factor EB.Recent meta-analyses have demonstrated promising outcomes of transcription factor EB-targeted strategies,such as exercise,calorie restriction,rapamycin,and metformin,in patients and animal models of these common retinal diseases.The review critically assesses the role of transcription factor EB in retinal biology during aging,its neuroprotective effects,and its therapeutic potential for retinal disorders.The impact of transcription factor EB on retinal aging is cell-specific,influencing metabolic reprogramming and energy homeostasis in retinal neurons through the regulation of mitochondrial quality control and nutrient-sensing pathways.In vascular endothelial cells,transcription factor EB controls important processes,including endothelial cell proliferation,endothelial tube formation,and nitric oxide levels,thereby influencing the inner blood-retinal barrier,angiogenesis,and retinal microvasculature.Additionally,transcription factor EB affects vascular smooth muscle cells,inhibiting vascular calcification and atherogenesis.In retinal pigment epithelial cells,transcription factor EB modulates functions such as autophagy,lysosomal dynamics,and clearance of the aging pigment lipofuscin,thereby promoting photoreceptor survival and regulating vascular endothelial growth factor A expression involved in neovascularization.These cell-specific functions of transcription factor EB significantly impact retinal aging mechanisms encompassing proteostasis,neuronal synapse plasticity,energy metabolism,microvasculature,and inflammation,ultimately offering protection against retinal aging and diseases.The review emphasizes transcription factor EB as a potential therapeutic target for retinal diseases.Therefore,it is imperative to obtain well-controlled direct experimental evidence to confirm the efficacy of transcription factor EB modulation in retinal diseases while minimizing its risk of adverse effects.展开更多
During the development of the nervous system,there is an overproduction of neurons and synapses.Hebbian competition between neighboring nerve endings and synapses performing different activity levels leads to their el...During the development of the nervous system,there is an overproduction of neurons and synapses.Hebbian competition between neighboring nerve endings and synapses performing different activity levels leads to their elimination or strengthening.We have extensively studied the involvement of the brain-derived neurotrophic factor-Tropomyosin-related kinase B receptor neurotrophic retrograde pathway,at the neuromuscular junction,in the axonal development and synapse elimination process versus the synapse consolidation.The purpose of this review is to describe the neurotrophic influence on developmental synapse elimination,in relation to other molecular pathways that we and others have found to regulate this process.In particular,we summarize our published results based on transmitter release analysis and axonal counts to show the different involvement of the presynaptic acetylcholine muscarinic autoreceptors,coupled to downstream serine-threonine protein kinases A and C(PKA and PKC)and voltage-gated calcium channels,at different nerve endings in developmental competition.The dynamic changes that occur simultaneously in several nerve terminals and synapses converge across a postsynaptic site,influence each other,and require careful studies to individualize the mechanisms of specific endings.We describe an activity-dependent balance(related to the extent of transmitter release)between the presynaptic muscarinic subtypes and the neurotrophin-mediated TrkB/p75NTR pathways that can influence the timing and fate of the competitive interactions between the different axon terminals.The downstream displacement of the PKA/PKC activity ratio to lower values,both in competing nerve terminals and at postsynaptic sites,plays a relevant role in controlling the elimination of supernumerary synapses.Finally,calcium entry through L-and P/Q-subtypes of voltage-gated calcium channels(both channels are present,together with the N-type channel in developing nerve terminals)contributes to reduce transmitter release and promote withdrawal of the most unfavorable nerve terminals during elimination(the weakest in acetylcholine release and those that have already become silent).The main findings contribute to a better understanding of punishment-rewarding interactions between nerve endings during development.Identifying the molecular targets and signaling pathways that allow synapse consolidation or withdrawal of synapses in different situations is important for potential therapies in neurodegenerative diseases.展开更多
Interferon regulatory factor 7 plays a crucial role in the innate immune response.However,whether interferon regulatory factor 7-mediated signaling contributes to Parkinson's disease remains unknown.Here we report...Interferon regulatory factor 7 plays a crucial role in the innate immune response.However,whether interferon regulatory factor 7-mediated signaling contributes to Parkinson's disease remains unknown.Here we report that interferon regulatory factor 7 is markedly up-regulated in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of Parkinson's disease and co-localizes with microglial cells.Both the selective cyclic guanosine monophosphate adenosine monophosphate synthase inhibitor RU.521 and the stimulator of interferon genes inhibitor H151 effectively suppressed interferon regulatory factor 7 activation in BV2 microglia exposed to 1-methyl-4-phenylpyridinium and inhibited transformation of mouse BV2 microglia into the neurotoxic M1 phenotype.In addition,si RNA-mediated knockdown of interferon regulatory factor 7 expression in BV2 microglia reduced the expression of inducible nitric oxide synthase,tumor necrosis factorα,CD16,CD32,and CD86 and increased the expression of the anti-inflammatory markers ARG1 and YM1.Taken together,our findings indicate that the cyclic guanosine monophosphate adenosine monophosphate synthase-stimulator of interferon genes-interferon regulatory factor 7 pathway plays a crucial role in the pathogenesis of Parkinson's disease.展开更多
Efficient and reliable subcarrier power joint allocation is served as a promising problem in cognitive OFDM-based Cognitive Radio Networks (CRN). This paper focuses on optimal subcarrier allocation for OFDM-based CRN....Efficient and reliable subcarrier power joint allocation is served as a promising problem in cognitive OFDM-based Cognitive Radio Networks (CRN). This paper focuses on optimal subcarrier allocation for OFDM-based CRN. We mainly propose subcarrier allocation scheme denoted as Worst Subcarrier Avoiding Water-filling (WSAW), which is based on Rate Adaptive (RA) criterion and three constraints are considered in CRN. The algorithm divides the assignment procedure into two phases. The first phase is an initial subcarrier allocation based on the idea of avoiding selecting the worst subcarrier in order to maximize the transmission rate; while the second phase is an iterative adjustment process which is realized by swapping pairs of subcarriers between arbitrary users. The proposed scheme could assign subcarriers in accordance with channel coherence time. Hence, real time subcarrier allocation could be implemented. Simulation results show that, comparing with the similar existing algorithms, the proposed scheme could achieve larger capacity and a near-optimal BER performance.展开更多
There are many water-filling factors in Xiaotun Coal Mine, such as effective precipitation, goaf water, mining-induced fissure zone, surface water system, aquifers and tectonics. For different mining levels, the relat...There are many water-filling factors in Xiaotun Coal Mine, such as effective precipitation, goaf water, mining-induced fissure zone, surface water system, aquifers and tectonics. For different mining levels, the relative importance of these factors is different, and the water-filling condition is changed accordingly. So it is urgent to make it clear for mining. To ensure the safety of mining, we build a system of preventing mine water-filling using detailed AHP (analytical hierarchy process) calculation. This system is based on the analysis of mine water-filling factors in order to define the relative importance of the factors. Decision-makers use it as a strong scientific basis for Xiaotun Coal Mine.The method offered in this paper has been proved to be very applicable.展开更多
BACKGROUND Intensive care unit-acquired weakness(ICU-AW)is a common complication that significantly impacts the patient's recovery process,even leading to adverse outcomes.Currently,there is a lack of effective pr...BACKGROUND Intensive care unit-acquired weakness(ICU-AW)is a common complication that significantly impacts the patient's recovery process,even leading to adverse outcomes.Currently,there is a lack of effective preventive measures.AIM To identify significant risk factors for ICU-AW through iterative machine learning techniques and offer recommendations for its prevention and treatment.METHODS Patients were categorized into ICU-AW and non-ICU-AW groups on the 14th day post-ICU admission.Relevant data from the initial 14 d of ICU stay,such as age,comorbidities,sedative dosage,vasopressor dosage,duration of mechanical ventilation,length of ICU stay,and rehabilitation therapy,were gathered.The relationships between these variables and ICU-AW were examined.Utilizing iterative machine learning techniques,a multilayer perceptron neural network model was developed,and its predictive performance for ICU-AW was assessed using the receiver operating characteristic curve.RESULTS Within the ICU-AW group,age,duration of mechanical ventilation,lorazepam dosage,adrenaline dosage,and length of ICU stay were significantly higher than in the non-ICU-AW group.Additionally,sepsis,multiple organ dysfunction syndrome,hypoalbuminemia,acute heart failure,respiratory failure,acute kidney injury,anemia,stress-related gastrointestinal bleeding,shock,hypertension,coronary artery disease,malignant tumors,and rehabilitation therapy ratios were significantly higher in the ICU-AW group,demonstrating statistical significance.The most influential factors contributing to ICU-AW were identified as the length of ICU stay(100.0%)and the duration of mechanical ventilation(54.9%).The neural network model predicted ICU-AW with an area under the curve of 0.941,sensitivity of 92.2%,and specificity of 82.7%.CONCLUSION The main factors influencing ICU-AW are the length of ICU stay and the duration of mechanical ventilation.A primary preventive strategy,when feasible,involves minimizing both ICU stay and mechanical ventilation duration.展开更多
Brain-derived neurotrophic factor signaling via its receptor tro pomyosin receptor kinase B regulates several crucial physiological processes.It has been shown to act in the brain,promoting neuronal survival,growth,an...Brain-derived neurotrophic factor signaling via its receptor tro pomyosin receptor kinase B regulates several crucial physiological processes.It has been shown to act in the brain,promoting neuronal survival,growth,and plasticity as well as in the rest of the body where it is involved in regulating for instance aspects of the metabolism.Due to its crucial and very pleiotro pic activity,reduction of brain-derived neurotrophic factor levels and alterations in the brain-derived neurotrophic factor/tropomyosin receptor kinase B signaling have been found to be associated with a wide spectrum of neurological diseases.Howeve r,because of its poor bioavailability and pharmacological properties,brain-derived neurotrophic factor itself has a very low therapeutic value.Moreover,the concomitant binding of exogenous brain-derived neurotrophic factor to the p75 neurotrophin receptor has the potential to elicit several unwanted and deleterious side effects.Therefo re,developing tools and approaches to specifically promote tropomyosin receptor kinase B signaling has become an important goal of translational research.Among the newly developed tools are different categories of tropomyosin receptor kinase B receptor agonist molecules.In this review,we give a comprehensive description of the diffe rent tro pomyosin receptor kinase B receptor agonist drugs developed so far and of the res ults of their application in animal models of several neurological diseases.Moreover,we discuss the main benefits of tropomyosin receptor kinase B receptor agonists,concentrating especially on the new tropomyosin receptor kinase B agonist antibodies.The benefits observed both in vitro and in vivo upon application of tropomyosin receptor kinase B receptor agonist drugs seem to predominantly depend on their general neuroprotective activity and their ability to promote neuronal plasticity.Moreover,tro pomyosin receptor kinase B agonist antibodies have been shown to specifically bind the tropomyosin receptor kinase B receptor and not p75 neurotrophin receptor.Therefore,while,based on the current knowledge,the tropomyosin receptor kinase B receptor agonists do not seem to have the potential to reve rse the disease pathology per se,promoting brainderived neurotrophic factor/tro pomyosin receptor kinase B signaling still has a very high therapeutic relevance.展开更多
AIM:To explore the effects of hepatocyte growth factor(HGF)on retinal pigment epithelium(RPE)cell behaviors.METHODS:The human adult retinal pigment epithelial cell line-19(ARPE-19)were treated by HGF or mesenchymalepi...AIM:To explore the effects of hepatocyte growth factor(HGF)on retinal pigment epithelium(RPE)cell behaviors.METHODS:The human adult retinal pigment epithelial cell line-19(ARPE-19)were treated by HGF or mesenchymalepithelial transition factor(MET)inhibitor SU11274 in vitro.Cell viability was detected by a Cell Counting Kit-8 assay.Cell proliferation and motility was detected by a bromodeoxyuridine incorporation assay and a wound healing assay,respectively.The expression levels of MET,phosphorylated MET,protein kinase B(AKT),and phosphorylated AKT proteins were determined by Western blot assay.The MET and phosphorylated MET proteins were also determined by immunofluorescence assay.RESULTS:HGF increased ARPE-19 cells’viability,proliferation and migration,and induced an increase of phosphorylated MET and phosphorylated AKT proteins.SU11274 significantly reduced cell viability,proliferation,and migration and decreased the expression of MET and AKT proteins.SU11274 suppressed HGF-induced increase of viability,proliferation,and migration in ARPE-19 cells.Additionally,SU11274 also blocked HGF-induced phosphorylation of MET and AKT proteins.CONCLUSION:HGF enhances cellular viability,proliferation,and migration in RPE cells through the MET/AKT signaling pathway,whereas this enhancement is suppressed by the MET inhibitor SU11274.HGF-induced MET/AKT signaling might be a vital contributor of RPE cells survival.展开更多
Macrophage migration inhibitory factor(MIF),a multifunctional cytokine,is secreted by various cells and participates in inflammatory reactions,including innate and adaptive immunity.There are some evidences that MIF i...Macrophage migration inhibitory factor(MIF),a multifunctional cytokine,is secreted by various cells and participates in inflammatory reactions,including innate and adaptive immunity.There are some evidences that MIF is involved in many vitreoretinal diseases.For example,MIF can exacerbate many types of uveitis;measurements of MIF levels can be used to monitor the effectiveness of uveitis treatment.MIF also alleviates trauma-induced and glaucoma-induced optic nerve damage.Furthermore,MIF is critical for retinal/choroidal neovascularization,especially complex neovascularization.MIF exacerbates retinal degeneration;thus,anti-MIF therapy may help to mitigate retinal degeneration.MIF protects uveal melanoma from attacks by natural killer cells.The mechanism underlying the effects of MIF in these diseases has been demonstrated:it binds to cluster of differentiation 74,inhibits the c-Jun N-terminal kinase pathway,and triggers mitogen-activated protein kinases,extracellular signal-regulated kinase-1/2,and the phosphoinositide-3-kinase/Akt pathway.MIF also upregulates Toll-like receptor 4 and activates the nuclear factor kappa-B signaling pathway.This review focuses on the structure and function of MIF and its receptors,including the effects of MIF on uveal inflammation,retinal degeneration,optic neuropathy,retinal/choroidal neovascularization,and uveal melanoma.展开更多
Rural settlement is the basic spatial unit for compact communities in rural area. Scientific exploration of spatial-temporal differentiation and its influencing factors is the premise of spatial layout rationalization...Rural settlement is the basic spatial unit for compact communities in rural area. Scientific exploration of spatial-temporal differentiation and its influencing factors is the premise of spatial layout rationalization. Based on land use data of Liangshan Yi Autonomous Prefecture(hereinafter referred to as Liangshan Prefecture) in Sichuan Province, China from 1980 to 2020, compactness index, fractal dimension, imbalance index, location entropy and the optimal parameters-based geographical detector(OPGD) model are used to analyze the spatial-temporal evolution of the morphological characteristics of rural settlements, and to explore the influence of natural geographical factors, socioeconomic factors, and policy factors on the spatial differentiation of rural settlements. The results show that:(1) From 1980 to 2020, the rural settlements area in Liangshan Prefecture increased by 15.96 km^(2). In space, the rural settlements are generally distributed in a local aggregation, dense in the middle and sparse around the periphery. In 2015, the spatial density and expansion index of rural settlements reached the peak.(2) From 1980 to 2020, the compactness index decreased from 0.7636 to 0.7496, the fractal dimension increased from 1.0283 to 1.0314, and the fragmentation index decreased from 0.1183 to 0.1047. The spatial morphological structure of rural settlements tended to be loose, the shape contour tended to be complex, the degree of fragmentation decreased, and the spatial distribution was significantly imbalanced.(3) The results of OPGD detection in 2015 show that the influence of each factor is slope(0.2371) > traffic accessibility(0.2098) > population(0.1403) > regional GDP(0.1325) > elevation(0.0987) > poverty alleviation(0). The results of OPGD detection in 2020 show that the influence of each factor is slope(0.2339) > traffic accessibility(0.2198) > population(0.1432) > regional GDP(0.1219) > poverty alleviation(0.0992) > elevation(0.093). Natural geographical factors(slope and elevation) are the basic factors affecting the spatial distribution of rural settlements, and rural settlements are widely distributed in the river valley plain and the second half mountain area. Socioeconomic factors(traffic accessibility, population, and regional GDP) have a greater impact on the spatial distribution of rural settlements, which is an important factor affecting the spatial distribution of rural settlements. Policy factors such as poverty alleviation relocation have an indispensable impact on the spatial distribution of rural settlements. The research results can provide decisionmaking basis for the spatial arrangement of rural settlements in Liangshan Prefecture, and optimize the implementation of rural revitalization policies.展开更多
Approximately 20%of colorectal cancer(CRC)patients present with metastasis at diagnosis.Among Stage I-III CRC patients who undergo surgical resection,18%typically suffer from distal metastasis within the first three y...Approximately 20%of colorectal cancer(CRC)patients present with metastasis at diagnosis.Among Stage I-III CRC patients who undergo surgical resection,18%typically suffer from distal metastasis within the first three years following initial treatment.The median survival duration after the diagnosis of metastatic CRC(mCRC)is only 9 mo.mCRC is traditionally considered to be an advanced stage malignancy or is thought to be caused by incomplete resection of tumor tissue,allowing cancer cells to spread from primary to distant organs;however,increa-sing evidence suggests that the mCRC process can begin early in tumor development.CRC patients present with high heterogeneity and diverse cancer phenotypes that are classified on the basis of molecular and morphological alterations.Different genomic and nongenomic events can induce subclone diversity,which leads to cancer and metastasis.Throughout the course of mCRC,metastatic cascades are associated with invasive cancer cell migration through the circulatory system,extravasation,distal seeding,dormancy,and reactivation,with each step requiring specific molecular functions.However,cancer cells presenting neoantigens can be recognized and eliminated by the immune system.In this review,we explain the biological factors that drive CRC metastasis,namely,genomic instability,epigenetic instability,the metastatic cascade,the cancer-immunity cycle,and external lifestyle factors.Despite remarkable progress in CRC research,the role of molecular classification in therapeutic intervention remains unclear.This review shows the driving factors of mCRC which may help in identifying potential candidate biomarkers that can improve the diagnosis and early detection of mCRC cases.展开更多
In this paper, STC with water-filling transmit power distribution in MISO system is proposed when the partial channel information feedback is possible, for example, at slow fading scenario. The performances of the wat...In this paper, STC with water-filling transmit power distribution in MISO system is proposed when the partial channel information feedback is possible, for example, at slow fading scenario. The performances of the water-filling STC including water-filling STTC and water-filling STBC are analyzed. Performance comparison of the Ungerboeck's 2/3 trellis coded 8PSK modulated 2-STBC and 2-STTCs with QPSK is given out in different channel correlation.展开更多
Sortilin-related receptor 1(SORL1)is a critical gene associated with late-onset Alzheimer’s disease.SORL1 contributes to the development and progression of this neurodegenerative condition by affecting the transport ...Sortilin-related receptor 1(SORL1)is a critical gene associated with late-onset Alzheimer’s disease.SORL1 contributes to the development and progression of this neurodegenerative condition by affecting the transport and metabolism of intracellularβ-amyloid precursor protein.To better understand the underlying mechanisms of SORL1 in the pathogenesis of late-onset Alzheimer s disease,in this study,we established a mouse model of SorI1 gene knockout using cluste red regularly inters paced short palindro mic repeats-associated protein 9 technology.We found that Sorl1-knocko ut mice displayed deficits in learning and memory.Furthermore,the expression of brain-derived neurotrophic factor was significantly downregulated in the hippocampus and co rtex,and amyloidβ-protein deposits were observed in the brains of 5orl1-knockout mice.In vitro,hippocampal neuronal cell synapses from homozygous Sorl1-knockout mice were impaired.The expression of synaptic proteins,including Drebrin and NR2B,was significantly reduced,and also their colocalization.Additionally,by knocking out the Sorl1 gene in N2a cells,we found that expression of the N-methyl-D-aspartate receptor,NR2B,and cyclic adenosine monophosphate-response element binding protein was also inhibited.These findings suggest that SORL1 participates in the pathogenesis of late-onset Alzheimer s disease by regulating the N-methyl-D-aspartate receptor NR2B/cyclic adenosine monophosphate-response element binding protein signaling axis.展开更多
Transcription factors(TFs)play essential roles in transcriptional reprogramming during activation of plant immune responses to pathogens.OsSPL10(SQUAMOSA promoter binding protein-like10)is an important TF regulating t...Transcription factors(TFs)play essential roles in transcriptional reprogramming during activation of plant immune responses to pathogens.OsSPL10(SQUAMOSA promoter binding protein-like10)is an important TF regulating trichome development and salt tolerance in rice.Here we report that knockout of OsSPL10 reduces whereas its overexpression enhances rice resistance to blast disease.OsSPL10 positively regulates chitin-induced immune responses including reactive oxygen species(ROS)burst and callose deposition.We show that OsSPL10 physically associates with OsJAmyb,an important TF involved in jasmonic acid(JA)signaling,and positively regulates its protein stability.We then prove that OsJAmyb positively regulates resistance to blast.Our results reveal a molecular module consisting of OsSPL10 and OsJAmyb that positively regulates blast resistance.展开更多
The high-quality development of the construction industry fundamentally stems from the significant improvement of total factor productivity.Therefore,it is of crucial significance for promoting the development of the ...The high-quality development of the construction industry fundamentally stems from the significant improvement of total factor productivity.Therefore,it is of crucial significance for promoting the development of the construction industry to a higher level by scientifically and accurately measuring the total factor productivity of the construction industry and deeply analyzing the influencing factors behind it.Based on a comprehensive consideration of research methods and influencing factors,this paper systematically reviews the existing relevant literature on total factor productivity in the construction industry,aiming to reveal the current research development trend in this field and point out potential problems.This effort aims to provide a solid theoretical foundation and valuable reference for further in-depth research,and jointly promote the continuous progress and development of total factor productivity research in the construction industry.展开更多
BACKGROUND Age is a significant risk factor of diabetes mellitus(DM).With the develop of population aging,the incidence of DM remains increasing.Understanding the epidemiology of DM among elderly individuals in a cert...BACKGROUND Age is a significant risk factor of diabetes mellitus(DM).With the develop of population aging,the incidence of DM remains increasing.Understanding the epidemiology of DM among elderly individuals in a certain area contributes to the DM interventions for the local elderly individuals with high risk of DM.AIM To explore the prevalence of DM among elderly individuals in the Lugu community and analyze the related risk factors to provide a valid scientific basis for the health management of elderly individuals.METHODS A total of 4816 elderly people who came to the community for physical examination were retrospectively analyzed.The prevalence of DM among the elderly was calculated.The individuals were divided into a DM group and a non-DM group according to the diagnosis of DM to compare the differences in diastolic blood pressure(DBP)and systolic blood pressure(SBP),fasting blood glucose,body mass index(BMI),waist-to-hip ratio(WHR)and incidence of hypertension(HT),coronary heart disease(CHD),and chronic kidney disease(CKD).RESULTS DM was diagnosed in 32.70%of the 4816 elderly people.The BMI of the DM group(25.16±3.35)was greater than that of the non-DM group(24.61±3.78).The WHR was 0.90±0.04 in the non-DM group and 0.90±0.03 in the DM group,with no significant difference.The left SBP and SBP in the DM group were 137.9 mmHg±11.92 mmHg and 69.95 mmHg±7.75 mmHg,respectively,while they were 126.6 mmHg±12.44 mmHg and 71.15 mmHg±12.55 mmHg,respectively,in the non-DM group.These findings indicate higher SBP and lower DBP in DM patients than in those without DM.In the DM group,1274 patients were diagnosed with HT,accounting for 80.89%.Among the 3241 non-DM patients,1743(53.78%)were hypertensive and 1498(46.22%)were nonhypertensive.The DM group had more cases of HT than did the non-DM group.There were more patients with CHD or CKD in the DM group than in the non-DM group.There were more patients who drank alcohol more frequently(≥3 times)in the DM group than in the non-DM group.CONCLUSION Older adults in the Lugu community are at a greater risk of DM.In elderly individuals,DM is closely related to high BMI and HT,CHD,and CKD.Physical examinations should be actively carried out for elderly people to determine their BMI,SBP,DBP,and other signs,and sufficient attention should be given to abnormalities in the above signs before further diagnosis.展开更多
基金supported by the National Key R&D Program of China,No.2021YFA0805200(to SY)the National Natural Science Foundation of China,No.31970954(to SY)two grants from the Department of Science and Technology of Guangdong Province,Nos.2021ZT09Y007,2020B121201006(both to XJL)。
文摘Spinal and bulbar muscular atrophy is a neurodegenerative disease caused by extended CAG trinucleotide repeats in the androgen receptor gene,which encodes a ligand-dependent transcription facto r.The mutant androgen receptor protein,characterized by polyglutamine expansion,is prone to misfolding and forms aggregates in both the nucleus and cytoplasm in the brain in spinal and bulbar muscular atrophy patients.These aggregates alter protein-protein interactions and compromise transcriptional activity.In this study,we reported that in both cultured N2a cells and mouse brain,mutant androgen receptor with polyglutamine expansion causes reduced expression of mesencephalic astrocyte-de rived neurotrophic factor.Overexpressio n of mesencephalic astrocyte-derived neurotrophic factor amelio rated the neurotoxicity of mutant androgen receptor through the inhibition of mutant androgen receptor aggregation.Conversely.knocking down endogenous mesencephalic astrocyte-derived neurotrophic factor in the mouse brain exacerbated neuronal damage and mutant androgen receptor aggregation.Our findings suggest that inhibition of mesencephalic astrocyte-derived neurotrophic factor expression by mutant androgen receptor is a potential mechanism underlying neurodegeneration in spinal and bulbar muscular atrophy.
基金supported by National Health and Medical Research Council GNT1105374,GNT1137645,GNT2000766 and veski Innovation Fellowship(VIF23)to RP.
文摘Nuclear factor Y is a ubiquitous heterotrimeric transcription factor complex conserved across eukaryotes that binds to CCAAT boxes,one of the most common motifs found in gene promoters and enhancers.Over the last 30 years,research has revealed that the nuclear factor Y complex controls many aspects of brain development,including differentiation,axon guidance,homeostasis,disease,and most recently regeneration.However,a complete understanding of transcriptional regulatory networks,including how the nuclear factor Y complex binds to specific CCAAT boxes to perform its function remains elusive.In this review,we explore the nuclear factor Y complex’s role and mode of action during brain development,as well as how genomic technologies may expand understanding of this key regulator of gene expression.
基金supported by the STI 2030-Major Projects,No. 2021ZD0200500 (to XS)。
文摘Brain-derived neurotrophic factor is a crucial neurotrophic factor that plays a significant role in brain health. Although the vast majority of meta-analyses have confirmed that exercise interventions can increase brain-derived neurotrophic factor levels in children and adolescents, the effects of specific types of exercise on brain-derived neurotrophic factor levels are still controversial. To address this issue, we used meta-analytic methods to quantitatively evaluate, analyze, and integrate relevant studies. Our goals were to formulate general conclusions regarding the use of exercise interventions, explore the physiological mechanisms by which exercise improves brain health and cognitive ability in children and adolescents, and provide a reliable foundation for follow-up research. We used the Pub Med, Web of Science, Science Direct, Springer, Wiley Online Library, Weipu, Wanfang, and China National Knowledge Infrastructure databases to search for randomized controlled trials examining the influences of exercise interventions on brain-derived neurotrophic factor levels in children and adolescents. The extracted data were analyzed using Review Manager 5.3. According to the inclusion criteria, we assessed randomized controlled trials in which the samples were mainly children and adolescents, and the outcome indicators were measured before and after the intervention. We excluded animal experiments, studies that lacked a control group, and those that did not report quantitative results. The mean difference(MD;before versus after intervention) was used to evaluate the effect of exercise on brain-derived neurotrophic factor levels in children and adolescents. Overall, 531 participants(60 children and 471 adolescents, 10.9–16.1 years) were included from 13 randomized controlled trials. Heterogeneity was evaluated using the Q statistic and I^(2) test provided by Review Manager software. The meta-analysis showed that there was no heterogeneity among the studies(P = 0.67, I^(2) = 0.00%). The combined effect of the interventions was significant(MD = 2.88, 95% CI: 1.53–4.22, P < 0.0001), indicating that the brain-derived neurotrophic factor levels of the children and adolescents in the exercise group were significantly higher than those in the control group. In conclusion, different types of exercise interventions significantly increased brain-derived neurotrophic factor levels in children and adolescents. However, because of the small sample size of this meta-analysis, more high-quality research is needed to verify our conclusions. This metaanalysis was registered at PROSPERO(registration ID: CRD42023439408).
基金supported by European Regional Development Funds RE0022527 ZEBRATOX(EU-Région Réunion-French State national counterpart,to Nicolas Diotel and Jean-Loup Bascands).
文摘After brain damage,regenerative angiogenesis and neurogenesis have been shown to occur simultaneously in mammals,suggesting a close link between these processes.However,the mechanisms by which these processes interact are not well understood.In this work,we aimed to study the correlation between angiogenesis and neurogenesis after a telencephalic stab wound injury.To this end,we used zebrafish as a relevant model of neuroplasticity and brain repair mechanisms.First,using the Tg(fli1:EGFP×mpeg1.1:mCherry)zebrafish line,which enables visualization of blood vessels and microglia respectively,we analyzed regenerative angiogenesis from 1 to 21 days post-lesion.In parallel,we monitored brain cell proliferation in neurogenic niches localized in the ventricular zone by using immunohistochemistry.We found that after brain damage,the blood vessel area and width as well as expression of the fli1 transgene and vascular endothelial growth factor(vegfaa and vegfbb)were increased.At the same time,neural stem cell proliferation was also increased,peaking between 3 and 5 days post-lesion in a manner similar to angiogenesis,along with the recruitment of microglia.Then,through pharmacological manipulation by injecting an anti-angiogenic drug(Tivozanib)or Vegf at the lesion site,we demonstrated that blocking or activating Vegf signaling modulated both angiogenic and neurogenic processes,as well as microglial recruitment.Finally,we showed that inhibition of microglia by clodronate-containing liposome injection or dexamethasone treatment impairs regenerative neurogenesis,as previously described,as well as injury-induced angiogenesis.In conclusion,we have described regenerative angiogenesis in zebrafish for the first time and have highlighted the role of inflammation in this process.In addition,we have shown that both angiogenesis and neurogenesis are involved in brain repair and that microglia and inflammation-dependent mechanisms activated by Vegf signaling are important contributors to these processes.This study paves the way for a better understanding of the effect of Vegf on microglia and for studies aimed at promoting angiogenesis to improve brain plasticity after brain injury.
基金supported by the Start-up Fund for new faculty from the Hong Kong Polytechnic University(PolyU)(A0043215)(to SA)the General Research Fund and Research Impact Fund from the Hong Kong Research Grants Council(15106018,R5032-18)(to DYT)+1 种基金the Research Center for SHARP Vision in PolyU(P0045843)(to SA)the InnoHK scheme from the Hong Kong Special Administrative Region Government(to DYT).
文摘Retinal aging has been recognized as a significant risk factor for various retinal disorders,including diabetic retinopathy,age-related macular degeneration,and glaucoma,following a growing understanding of the molecular underpinnings of their development.This comprehensive review explores the mechanisms of retinal aging and investigates potential neuroprotective approaches,focusing on the activation of transcription factor EB.Recent meta-analyses have demonstrated promising outcomes of transcription factor EB-targeted strategies,such as exercise,calorie restriction,rapamycin,and metformin,in patients and animal models of these common retinal diseases.The review critically assesses the role of transcription factor EB in retinal biology during aging,its neuroprotective effects,and its therapeutic potential for retinal disorders.The impact of transcription factor EB on retinal aging is cell-specific,influencing metabolic reprogramming and energy homeostasis in retinal neurons through the regulation of mitochondrial quality control and nutrient-sensing pathways.In vascular endothelial cells,transcription factor EB controls important processes,including endothelial cell proliferation,endothelial tube formation,and nitric oxide levels,thereby influencing the inner blood-retinal barrier,angiogenesis,and retinal microvasculature.Additionally,transcription factor EB affects vascular smooth muscle cells,inhibiting vascular calcification and atherogenesis.In retinal pigment epithelial cells,transcription factor EB modulates functions such as autophagy,lysosomal dynamics,and clearance of the aging pigment lipofuscin,thereby promoting photoreceptor survival and regulating vascular endothelial growth factor A expression involved in neovascularization.These cell-specific functions of transcription factor EB significantly impact retinal aging mechanisms encompassing proteostasis,neuronal synapse plasticity,energy metabolism,microvasculature,and inflammation,ultimately offering protection against retinal aging and diseases.The review emphasizes transcription factor EB as a potential therapeutic target for retinal diseases.Therefore,it is imperative to obtain well-controlled direct experimental evidence to confirm the efficacy of transcription factor EB modulation in retinal diseases while minimizing its risk of adverse effects.
基金supported by Catalan Government,Nos.2014SGR344(to JT),2017SGR704(to JT),2021SGR01214(to MAL)MCIN/AEI/10.13039/501100011033/by“ERDF A way of making Europe,”Nos.SAF2015-67143(to JT),PID2019-106332GB-I00(to JT and MAL)and PID2022-141252NB-I00(to MAL).
文摘During the development of the nervous system,there is an overproduction of neurons and synapses.Hebbian competition between neighboring nerve endings and synapses performing different activity levels leads to their elimination or strengthening.We have extensively studied the involvement of the brain-derived neurotrophic factor-Tropomyosin-related kinase B receptor neurotrophic retrograde pathway,at the neuromuscular junction,in the axonal development and synapse elimination process versus the synapse consolidation.The purpose of this review is to describe the neurotrophic influence on developmental synapse elimination,in relation to other molecular pathways that we and others have found to regulate this process.In particular,we summarize our published results based on transmitter release analysis and axonal counts to show the different involvement of the presynaptic acetylcholine muscarinic autoreceptors,coupled to downstream serine-threonine protein kinases A and C(PKA and PKC)and voltage-gated calcium channels,at different nerve endings in developmental competition.The dynamic changes that occur simultaneously in several nerve terminals and synapses converge across a postsynaptic site,influence each other,and require careful studies to individualize the mechanisms of specific endings.We describe an activity-dependent balance(related to the extent of transmitter release)between the presynaptic muscarinic subtypes and the neurotrophin-mediated TrkB/p75NTR pathways that can influence the timing and fate of the competitive interactions between the different axon terminals.The downstream displacement of the PKA/PKC activity ratio to lower values,both in competing nerve terminals and at postsynaptic sites,plays a relevant role in controlling the elimination of supernumerary synapses.Finally,calcium entry through L-and P/Q-subtypes of voltage-gated calcium channels(both channels are present,together with the N-type channel in developing nerve terminals)contributes to reduce transmitter release and promote withdrawal of the most unfavorable nerve terminals during elimination(the weakest in acetylcholine release and those that have already become silent).The main findings contribute to a better understanding of punishment-rewarding interactions between nerve endings during development.Identifying the molecular targets and signaling pathways that allow synapse consolidation or withdrawal of synapses in different situations is important for potential therapies in neurodegenerative diseases.
基金supported by the National Natural Science Foundation of China,Nos.82171429,81771384a grant from Wuxi Municipal Health Commission,No.1286010241190480(all to YS)。
文摘Interferon regulatory factor 7 plays a crucial role in the innate immune response.However,whether interferon regulatory factor 7-mediated signaling contributes to Parkinson's disease remains unknown.Here we report that interferon regulatory factor 7 is markedly up-regulated in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of Parkinson's disease and co-localizes with microglial cells.Both the selective cyclic guanosine monophosphate adenosine monophosphate synthase inhibitor RU.521 and the stimulator of interferon genes inhibitor H151 effectively suppressed interferon regulatory factor 7 activation in BV2 microglia exposed to 1-methyl-4-phenylpyridinium and inhibited transformation of mouse BV2 microglia into the neurotoxic M1 phenotype.In addition,si RNA-mediated knockdown of interferon regulatory factor 7 expression in BV2 microglia reduced the expression of inducible nitric oxide synthase,tumor necrosis factorα,CD16,CD32,and CD86 and increased the expression of the anti-inflammatory markers ARG1 and YM1.Taken together,our findings indicate that the cyclic guanosine monophosphate adenosine monophosphate synthase-stimulator of interferon genes-interferon regulatory factor 7 pathway plays a crucial role in the pathogenesis of Parkinson's disease.
基金Supported by the National Natural Science Foundation of China (NSFC) (No. 61102066)the China Postdoctoral Science Foundation (Grant No. 2012M511365)the Scientific Research Project of Zhejiang Provincial Education Department (No. Y201119890)
文摘Efficient and reliable subcarrier power joint allocation is served as a promising problem in cognitive OFDM-based Cognitive Radio Networks (CRN). This paper focuses on optimal subcarrier allocation for OFDM-based CRN. We mainly propose subcarrier allocation scheme denoted as Worst Subcarrier Avoiding Water-filling (WSAW), which is based on Rate Adaptive (RA) criterion and three constraints are considered in CRN. The algorithm divides the assignment procedure into two phases. The first phase is an initial subcarrier allocation based on the idea of avoiding selecting the worst subcarrier in order to maximize the transmission rate; while the second phase is an iterative adjustment process which is realized by swapping pairs of subcarriers between arbitrary users. The proposed scheme could assign subcarriers in accordance with channel coherence time. Hence, real time subcarrier allocation could be implemented. Simulation results show that, comparing with the similar existing algorithms, the proposed scheme could achieve larger capacity and a near-optimal BER performance.
文摘There are many water-filling factors in Xiaotun Coal Mine, such as effective precipitation, goaf water, mining-induced fissure zone, surface water system, aquifers and tectonics. For different mining levels, the relative importance of these factors is different, and the water-filling condition is changed accordingly. So it is urgent to make it clear for mining. To ensure the safety of mining, we build a system of preventing mine water-filling using detailed AHP (analytical hierarchy process) calculation. This system is based on the analysis of mine water-filling factors in order to define the relative importance of the factors. Decision-makers use it as a strong scientific basis for Xiaotun Coal Mine.The method offered in this paper has been proved to be very applicable.
基金Supported by Science and Technology Support Program of Qiandongnan Prefecture,No.Qiandongnan Sci-Tech Support[2021]12Guizhou Province High-Level Innovative Talent Training Program,No.Qiannan Thousand Talents[2022]201701.
文摘BACKGROUND Intensive care unit-acquired weakness(ICU-AW)is a common complication that significantly impacts the patient's recovery process,even leading to adverse outcomes.Currently,there is a lack of effective preventive measures.AIM To identify significant risk factors for ICU-AW through iterative machine learning techniques and offer recommendations for its prevention and treatment.METHODS Patients were categorized into ICU-AW and non-ICU-AW groups on the 14th day post-ICU admission.Relevant data from the initial 14 d of ICU stay,such as age,comorbidities,sedative dosage,vasopressor dosage,duration of mechanical ventilation,length of ICU stay,and rehabilitation therapy,were gathered.The relationships between these variables and ICU-AW were examined.Utilizing iterative machine learning techniques,a multilayer perceptron neural network model was developed,and its predictive performance for ICU-AW was assessed using the receiver operating characteristic curve.RESULTS Within the ICU-AW group,age,duration of mechanical ventilation,lorazepam dosage,adrenaline dosage,and length of ICU stay were significantly higher than in the non-ICU-AW group.Additionally,sepsis,multiple organ dysfunction syndrome,hypoalbuminemia,acute heart failure,respiratory failure,acute kidney injury,anemia,stress-related gastrointestinal bleeding,shock,hypertension,coronary artery disease,malignant tumors,and rehabilitation therapy ratios were significantly higher in the ICU-AW group,demonstrating statistical significance.The most influential factors contributing to ICU-AW were identified as the length of ICU stay(100.0%)and the duration of mechanical ventilation(54.9%).The neural network model predicted ICU-AW with an area under the curve of 0.941,sensitivity of 92.2%,and specificity of 82.7%.CONCLUSION The main factors influencing ICU-AW are the length of ICU stay and the duration of mechanical ventilation.A primary preventive strategy,when feasible,involves minimizing both ICU stay and mechanical ventilation duration.
文摘Brain-derived neurotrophic factor signaling via its receptor tro pomyosin receptor kinase B regulates several crucial physiological processes.It has been shown to act in the brain,promoting neuronal survival,growth,and plasticity as well as in the rest of the body where it is involved in regulating for instance aspects of the metabolism.Due to its crucial and very pleiotro pic activity,reduction of brain-derived neurotrophic factor levels and alterations in the brain-derived neurotrophic factor/tropomyosin receptor kinase B signaling have been found to be associated with a wide spectrum of neurological diseases.Howeve r,because of its poor bioavailability and pharmacological properties,brain-derived neurotrophic factor itself has a very low therapeutic value.Moreover,the concomitant binding of exogenous brain-derived neurotrophic factor to the p75 neurotrophin receptor has the potential to elicit several unwanted and deleterious side effects.Therefo re,developing tools and approaches to specifically promote tropomyosin receptor kinase B signaling has become an important goal of translational research.Among the newly developed tools are different categories of tropomyosin receptor kinase B receptor agonist molecules.In this review,we give a comprehensive description of the diffe rent tro pomyosin receptor kinase B receptor agonist drugs developed so far and of the res ults of their application in animal models of several neurological diseases.Moreover,we discuss the main benefits of tropomyosin receptor kinase B receptor agonists,concentrating especially on the new tropomyosin receptor kinase B agonist antibodies.The benefits observed both in vitro and in vivo upon application of tropomyosin receptor kinase B receptor agonist drugs seem to predominantly depend on their general neuroprotective activity and their ability to promote neuronal plasticity.Moreover,tro pomyosin receptor kinase B agonist antibodies have been shown to specifically bind the tropomyosin receptor kinase B receptor and not p75 neurotrophin receptor.Therefore,while,based on the current knowledge,the tropomyosin receptor kinase B receptor agonists do not seem to have the potential to reve rse the disease pathology per se,promoting brainderived neurotrophic factor/tro pomyosin receptor kinase B signaling still has a very high therapeutic relevance.
基金the Natural Science Foundation of Shaanxi Province(No.2022JM-521)the Science and Technology Plan Project of Xi’an(No.21YXYJ0031).
文摘AIM:To explore the effects of hepatocyte growth factor(HGF)on retinal pigment epithelium(RPE)cell behaviors.METHODS:The human adult retinal pigment epithelial cell line-19(ARPE-19)were treated by HGF or mesenchymalepithelial transition factor(MET)inhibitor SU11274 in vitro.Cell viability was detected by a Cell Counting Kit-8 assay.Cell proliferation and motility was detected by a bromodeoxyuridine incorporation assay and a wound healing assay,respectively.The expression levels of MET,phosphorylated MET,protein kinase B(AKT),and phosphorylated AKT proteins were determined by Western blot assay.The MET and phosphorylated MET proteins were also determined by immunofluorescence assay.RESULTS:HGF increased ARPE-19 cells’viability,proliferation and migration,and induced an increase of phosphorylated MET and phosphorylated AKT proteins.SU11274 significantly reduced cell viability,proliferation,and migration and decreased the expression of MET and AKT proteins.SU11274 suppressed HGF-induced increase of viability,proliferation,and migration in ARPE-19 cells.Additionally,SU11274 also blocked HGF-induced phosphorylation of MET and AKT proteins.CONCLUSION:HGF enhances cellular viability,proliferation,and migration in RPE cells through the MET/AKT signaling pathway,whereas this enhancement is suppressed by the MET inhibitor SU11274.HGF-induced MET/AKT signaling might be a vital contributor of RPE cells survival.
基金supported by the Key Program of Natural Science Foundation of Shaanxi Province,No.2021JZ-60(to HZ)。
文摘Macrophage migration inhibitory factor(MIF),a multifunctional cytokine,is secreted by various cells and participates in inflammatory reactions,including innate and adaptive immunity.There are some evidences that MIF is involved in many vitreoretinal diseases.For example,MIF can exacerbate many types of uveitis;measurements of MIF levels can be used to monitor the effectiveness of uveitis treatment.MIF also alleviates trauma-induced and glaucoma-induced optic nerve damage.Furthermore,MIF is critical for retinal/choroidal neovascularization,especially complex neovascularization.MIF exacerbates retinal degeneration;thus,anti-MIF therapy may help to mitigate retinal degeneration.MIF protects uveal melanoma from attacks by natural killer cells.The mechanism underlying the effects of MIF in these diseases has been demonstrated:it binds to cluster of differentiation 74,inhibits the c-Jun N-terminal kinase pathway,and triggers mitogen-activated protein kinases,extracellular signal-regulated kinase-1/2,and the phosphoinositide-3-kinase/Akt pathway.MIF also upregulates Toll-like receptor 4 and activates the nuclear factor kappa-B signaling pathway.This review focuses on the structure and function of MIF and its receptors,including the effects of MIF on uveal inflammation,retinal degeneration,optic neuropathy,retinal/choroidal neovascularization,and uveal melanoma.
基金funded by the National Natural Science Foundation of China (Grant Nos. 41971015)Doctoral research program of China West Normal University (Grant Nos.19E067)。
文摘Rural settlement is the basic spatial unit for compact communities in rural area. Scientific exploration of spatial-temporal differentiation and its influencing factors is the premise of spatial layout rationalization. Based on land use data of Liangshan Yi Autonomous Prefecture(hereinafter referred to as Liangshan Prefecture) in Sichuan Province, China from 1980 to 2020, compactness index, fractal dimension, imbalance index, location entropy and the optimal parameters-based geographical detector(OPGD) model are used to analyze the spatial-temporal evolution of the morphological characteristics of rural settlements, and to explore the influence of natural geographical factors, socioeconomic factors, and policy factors on the spatial differentiation of rural settlements. The results show that:(1) From 1980 to 2020, the rural settlements area in Liangshan Prefecture increased by 15.96 km^(2). In space, the rural settlements are generally distributed in a local aggregation, dense in the middle and sparse around the periphery. In 2015, the spatial density and expansion index of rural settlements reached the peak.(2) From 1980 to 2020, the compactness index decreased from 0.7636 to 0.7496, the fractal dimension increased from 1.0283 to 1.0314, and the fragmentation index decreased from 0.1183 to 0.1047. The spatial morphological structure of rural settlements tended to be loose, the shape contour tended to be complex, the degree of fragmentation decreased, and the spatial distribution was significantly imbalanced.(3) The results of OPGD detection in 2015 show that the influence of each factor is slope(0.2371) > traffic accessibility(0.2098) > population(0.1403) > regional GDP(0.1325) > elevation(0.0987) > poverty alleviation(0). The results of OPGD detection in 2020 show that the influence of each factor is slope(0.2339) > traffic accessibility(0.2198) > population(0.1432) > regional GDP(0.1219) > poverty alleviation(0.0992) > elevation(0.093). Natural geographical factors(slope and elevation) are the basic factors affecting the spatial distribution of rural settlements, and rural settlements are widely distributed in the river valley plain and the second half mountain area. Socioeconomic factors(traffic accessibility, population, and regional GDP) have a greater impact on the spatial distribution of rural settlements, which is an important factor affecting the spatial distribution of rural settlements. Policy factors such as poverty alleviation relocation have an indispensable impact on the spatial distribution of rural settlements. The research results can provide decisionmaking basis for the spatial arrangement of rural settlements in Liangshan Prefecture, and optimize the implementation of rural revitalization policies.
文摘Approximately 20%of colorectal cancer(CRC)patients present with metastasis at diagnosis.Among Stage I-III CRC patients who undergo surgical resection,18%typically suffer from distal metastasis within the first three years following initial treatment.The median survival duration after the diagnosis of metastatic CRC(mCRC)is only 9 mo.mCRC is traditionally considered to be an advanced stage malignancy or is thought to be caused by incomplete resection of tumor tissue,allowing cancer cells to spread from primary to distant organs;however,increa-sing evidence suggests that the mCRC process can begin early in tumor development.CRC patients present with high heterogeneity and diverse cancer phenotypes that are classified on the basis of molecular and morphological alterations.Different genomic and nongenomic events can induce subclone diversity,which leads to cancer and metastasis.Throughout the course of mCRC,metastatic cascades are associated with invasive cancer cell migration through the circulatory system,extravasation,distal seeding,dormancy,and reactivation,with each step requiring specific molecular functions.However,cancer cells presenting neoantigens can be recognized and eliminated by the immune system.In this review,we explain the biological factors that drive CRC metastasis,namely,genomic instability,epigenetic instability,the metastatic cascade,the cancer-immunity cycle,and external lifestyle factors.Despite remarkable progress in CRC research,the role of molecular classification in therapeutic intervention remains unclear.This review shows the driving factors of mCRC which may help in identifying potential candidate biomarkers that can improve the diagnosis and early detection of mCRC cases.
文摘In this paper, STC with water-filling transmit power distribution in MISO system is proposed when the partial channel information feedback is possible, for example, at slow fading scenario. The performances of the water-filling STC including water-filling STTC and water-filling STBC are analyzed. Performance comparison of the Ungerboeck's 2/3 trellis coded 8PSK modulated 2-STBC and 2-STTCs with QPSK is given out in different channel correlation.
基金supported by the Community Development Office of Hunan Provincial Science and Technology DepartmentChina,Nos.2020SK53613(to DH),21JJ31006(to DH)the Fundamental Research Funds of Central South University,Nos.CX20220375(to TX),2023zzts215(to MZ)。
文摘Sortilin-related receptor 1(SORL1)is a critical gene associated with late-onset Alzheimer’s disease.SORL1 contributes to the development and progression of this neurodegenerative condition by affecting the transport and metabolism of intracellularβ-amyloid precursor protein.To better understand the underlying mechanisms of SORL1 in the pathogenesis of late-onset Alzheimer s disease,in this study,we established a mouse model of SorI1 gene knockout using cluste red regularly inters paced short palindro mic repeats-associated protein 9 technology.We found that Sorl1-knocko ut mice displayed deficits in learning and memory.Furthermore,the expression of brain-derived neurotrophic factor was significantly downregulated in the hippocampus and co rtex,and amyloidβ-protein deposits were observed in the brains of 5orl1-knockout mice.In vitro,hippocampal neuronal cell synapses from homozygous Sorl1-knockout mice were impaired.The expression of synaptic proteins,including Drebrin and NR2B,was significantly reduced,and also their colocalization.Additionally,by knocking out the Sorl1 gene in N2a cells,we found that expression of the N-methyl-D-aspartate receptor,NR2B,and cyclic adenosine monophosphate-response element binding protein was also inhibited.These findings suggest that SORL1 participates in the pathogenesis of late-onset Alzheimer s disease by regulating the N-methyl-D-aspartate receptor NR2B/cyclic adenosine monophosphate-response element binding protein signaling axis.
基金supported by grants from Natural Science Foundation Key Program of Fujian Province(2023J02011)National Natural Science Foundation of China(31970281,31671668)+1 种基金a Sino-German Mobility Program funded jointly by National Natural Science Foundation of ChinaGerman Research Foundation(M-0275).
文摘Transcription factors(TFs)play essential roles in transcriptional reprogramming during activation of plant immune responses to pathogens.OsSPL10(SQUAMOSA promoter binding protein-like10)is an important TF regulating trichome development and salt tolerance in rice.Here we report that knockout of OsSPL10 reduces whereas its overexpression enhances rice resistance to blast disease.OsSPL10 positively regulates chitin-induced immune responses including reactive oxygen species(ROS)burst and callose deposition.We show that OsSPL10 physically associates with OsJAmyb,an important TF involved in jasmonic acid(JA)signaling,and positively regulates its protein stability.We then prove that OsJAmyb positively regulates resistance to blast.Our results reveal a molecular module consisting of OsSPL10 and OsJAmyb that positively regulates blast resistance.
基金Supported by School-level Natural Science Project of Jiangxi University of Technology(232ZRYB02).
文摘The high-quality development of the construction industry fundamentally stems from the significant improvement of total factor productivity.Therefore,it is of crucial significance for promoting the development of the construction industry to a higher level by scientifically and accurately measuring the total factor productivity of the construction industry and deeply analyzing the influencing factors behind it.Based on a comprehensive consideration of research methods and influencing factors,this paper systematically reviews the existing relevant literature on total factor productivity in the construction industry,aiming to reveal the current research development trend in this field and point out potential problems.This effort aims to provide a solid theoretical foundation and valuable reference for further in-depth research,and jointly promote the continuous progress and development of total factor productivity research in the construction industry.
基金Supported by the Capital’s Funds for Health Improvement and Research,No.2023-3S-002.
文摘BACKGROUND Age is a significant risk factor of diabetes mellitus(DM).With the develop of population aging,the incidence of DM remains increasing.Understanding the epidemiology of DM among elderly individuals in a certain area contributes to the DM interventions for the local elderly individuals with high risk of DM.AIM To explore the prevalence of DM among elderly individuals in the Lugu community and analyze the related risk factors to provide a valid scientific basis for the health management of elderly individuals.METHODS A total of 4816 elderly people who came to the community for physical examination were retrospectively analyzed.The prevalence of DM among the elderly was calculated.The individuals were divided into a DM group and a non-DM group according to the diagnosis of DM to compare the differences in diastolic blood pressure(DBP)and systolic blood pressure(SBP),fasting blood glucose,body mass index(BMI),waist-to-hip ratio(WHR)and incidence of hypertension(HT),coronary heart disease(CHD),and chronic kidney disease(CKD).RESULTS DM was diagnosed in 32.70%of the 4816 elderly people.The BMI of the DM group(25.16±3.35)was greater than that of the non-DM group(24.61±3.78).The WHR was 0.90±0.04 in the non-DM group and 0.90±0.03 in the DM group,with no significant difference.The left SBP and SBP in the DM group were 137.9 mmHg±11.92 mmHg and 69.95 mmHg±7.75 mmHg,respectively,while they were 126.6 mmHg±12.44 mmHg and 71.15 mmHg±12.55 mmHg,respectively,in the non-DM group.These findings indicate higher SBP and lower DBP in DM patients than in those without DM.In the DM group,1274 patients were diagnosed with HT,accounting for 80.89%.Among the 3241 non-DM patients,1743(53.78%)were hypertensive and 1498(46.22%)were nonhypertensive.The DM group had more cases of HT than did the non-DM group.There were more patients with CHD or CKD in the DM group than in the non-DM group.There were more patients who drank alcohol more frequently(≥3 times)in the DM group than in the non-DM group.CONCLUSION Older adults in the Lugu community are at a greater risk of DM.In elderly individuals,DM is closely related to high BMI and HT,CHD,and CKD.Physical examinations should be actively carried out for elderly people to determine their BMI,SBP,DBP,and other signs,and sufficient attention should be given to abnormalities in the above signs before further diagnosis.