A novel method for breaking emulsions with microporous membranes is presented.A membrane would act as a coalescer if its pore size is smaller than the emulsion droplets and if the dispersed phase has great affinity to...A novel method for breaking emulsions with microporous membranes is presented.A membrane would act as a coalescer if its pore size is smaller than the emulsion droplets and if the dispersed phase has great affinity to the membrane.It was observed that a hydrophilic membrane is able to break water in oil emulsions with high separation efficiency.Effects of the membrane pore size,membrane thickness,transmembrane pressure and emulsion composition on demulsification performance were investigated.It was found that the membrane pore size and transmembrane pressure affect demulsification performance remarkably while other factors have slight or almost no effect.展开更多
The efficient separation of water-in-oil emulsion is of significance in environment and energy filed,and it has become a world-wide challenge.Herein,we have presented a one-step,facile and low-cost approach to prepare...The efficient separation of water-in-oil emulsion is of significance in environment and energy filed,and it has become a world-wide challenge.Herein,we have presented a one-step,facile and low-cost approach to prepare superhydrophobic sands for efficient separation of water-in-oil emulsion.The as-prepared sand layers possessed a water contact angle higher than 151°,demonstrating their superior superhydrophobic property.Besides,the as-prepared sand layers could separate water-in-emulsions with separation efficiency up to 99.7%,which is superior to both traditional and superwettable filtration membranes.The effect of thickness of sand layer on separation performance was also investigated.The results showed that the filtration flux decreased with the increased of filtration thickness while the separation efficiency increased.The as-prepared sand layer proposed by this study is a processing candidate for separating water-in-oil emulsion in practical industry.Additionally,the as-prepared superhydrophobic sand fabrication method also provides an alternative for desert water storage.展开更多
Separation of oil/water mixtures, especially for the emulsified oil/water mixtures, is important because of the frequent occurrence of oil spill accidents. Utilizing superwetting porous membrane has become a promising...Separation of oil/water mixtures, especially for the emulsified oil/water mixtures, is important because of the frequent occurrence of oil spill accidents. Utilizing superwetting porous membrane has become a promising approach to separate either surfactant-free or surfactant-stabilized emulsions. Herein we report a facile and versatile strategy for preparing hydrophobic/under-oil superhydrophobic membranes by coating the skeletons of the membranes with the poly[(3,3,3- trifluoropropyl)methylsiloxane] (PTFPMS) nanoparticles. The obtained membranes could be used to separate various water- in-oil emulsions with high flux and separation efficiency. In addition, owning to the outstanding resistance of PTFPMS to the most organic solvents or oils, the modified membranes exhibited the excellent reusability and the antifouling properties that were critical in the practical applications. Many commercially available membranes can be modified by such a simple method.展开更多
Lycopene is very susceptible to degradation once released from the protective chromoplast environment.In this study,oil-in-water(O/W)nanoemulsions coupled with spray drying technology were applied for the encapsulatio...Lycopene is very susceptible to degradation once released from the protective chromoplast environment.In this study,oil-in-water(O/W)nanoemulsions coupled with spray drying technology were applied for the encapsulation and stabilization of lycopene extracted from tomato waste.Tomato extract was obtained by ultrasound-assisted extraction.Nanoemulsions were prepared by a high-speed rotor stator using isopropyl myristate as the oil phase and Pluronic F-127 as the emulsifier for the aqueous external phase.The effect of emulsification process parameters was investigated.Spray drying of the produced emulsions was attempted to obtain a stabilized dry powder after the addition of a coating agent.The effect of different coating agents(maltodextrin,inulin,gum arabic,pectin,whey and polyvinylpyrrolidone),drying temperature(120-170℃),and feed flow rate(3-9 ml·min^(-1))on the obtained particles was evaluated.Results revealed that the emulsion formulation of 20/80(O/W)with 1.5%(mass fraction)of Pluronic F-127 as stabilizer in the aqueous phase resulted in a stable nanoemulsion with droplet sizes in the range of 259-276 nm with a unimodal and sharp size distribution.The extract in the nanoemulsion was well protected at room temperature with a degradation rate of lycopene of about 50%during a month of storage time.The most stable emulsions were then processed by spray drying to obtain a dry powder.Spray drying was particularly successful when using maltodextrin as a coating agent,obtaining dried spherical particles with mean diameters of(4.87±0.17)μm with a smooth surface.The possibility of dissolving the spray dried powder in order to repristinate.The original emulsion was also successfully verified.展开更多
Membrane separation strategies offer promising platform for the emulsion separation.However,the low mechanical strength of membrane separation layers and the trade-off between separation flux and efficiency present si...Membrane separation strategies offer promising platform for the emulsion separation.However,the low mechanical strength of membrane separation layers and the trade-off between separation flux and efficiency present significant challenges.In this study,we report a CFM@UiO-66-NH_(2)membrane with high separation flux,efficiency and stability,through utilizing a robust anti-abrasion collagen fiber membrane(CFM)as the multifunctional support and UiO-66-NH_(2)by an in-situ growth as the separation layer.The high mechanical strength of the CFM compensated for the weakness of the separation layer,while the charge-breaking effect of UiO-66-NH_(2),along with the size sieving of its constituent separating layers and the capillary effect of the collagen fibers,contributed to the potential for efficient separation.Additionally,the CFM@UiO-66-NH_(2)membrane exhibited superhydrophilic properties,making it suitable for separating oil-in-water microemulsions and nanoemulsions stabilized by anionic surfactants.The membrane demonstrated remarkable separation efficiencies of up to 99.960%and a separation flux of370.05 L·m^(-2)·h^(-1).Moreover,it exhibits stability,durability,and abrasion resistance,maintaining excellent separation performance even when exposed to strong acids and alkalis without any damage to its structure and performance.After six cycles of reuse,it achieved a separation flux of 417.97 L·m^(-2)·h^(-1)and a separation efficiency of 99.747%.Furthermore,after undergoing 500 cycles of strong abrasion,the separation flux remained at 124.39 L·m^(-2)·h^(-1),with a separation efficiency of 99.992%.These properties make it suitable for the long-term use in harsh operating environments.We attribute these properties to the electrostatic effect resulting from the amino group on UiO-66-NH_(2)and its in-situ growth on the CFM,which forms a size-screening separation layer.Our work highlights the potential of the CFM@UiO-66-NH_(2)membrane as an environmentally friendly size-screening material for the efficient emulsion wastewater separation.展开更多
Marine oil spill emulsions are difficult to recover,and the damage to the environment is not easy to eliminate.The use of remote sensing to accurately identify oil spill emulsions is highly important for the protectio...Marine oil spill emulsions are difficult to recover,and the damage to the environment is not easy to eliminate.The use of remote sensing to accurately identify oil spill emulsions is highly important for the protection of marine environments.However,the spectrum of oil emulsions changes due to different water content.Hyperspectral remote sensing and deep learning can use spectral and spatial information to identify different types of oil emulsions.Nonetheless,hyperspectral data can also cause information redundancy,reducing classification accuracy and efficiency,and even overfitting in machine learning models.To address these problems,an oil emulsion deep-learning identification model with spatial-spectral feature fusion is established,and feature bands that can distinguish between crude oil,seawater,water-in-oil emulsion(WO),and oil-in-water emulsion(OW)are filtered based on a standard deviation threshold–mutual information method.Using oil spill airborne hyperspectral data,we conducted identification experiments on oil emulsions in different background waters and under different spatial and temporal conditions,analyzed the transferability of the model,and explored the effects of feature band selection and spectral resolution on the identification of oil emulsions.The results show the following.(1)The standard deviation–mutual information feature selection method is able to effectively extract feature bands that can distinguish between WO,OW,oil slick,and seawater.The number of bands was reduced from 224 to 134 after feature selection on the Airborne Visible Infrared Imaging Spectrometer(AVIRIS)data and from 126 to 100 on the S185 data.(2)With feature selection,the overall accuracy and Kappa of the identification results for the training area are 91.80%and 0.86,respectively,improved by 2.62%and 0.04,and the overall accuracy and Kappa of the identification results for the migration area are 86.53%and 0.80,respectively,improved by 3.45%and 0.05.(3)The oil emulsion identification model has a certain degree of transferability and can effectively identify oil spill emulsions for AVIRIS data at different times and locations,with an overall accuracy of more than 80%,Kappa coefficient of more than 0.7,and F1 score of 0.75 or more for each category.(4)As the spectral resolution decreasing,the model yields different degrees of misclassification for areas with a mixed distribution of oil slick and seawater or mixed distribution of WO and OW.Based on the above experimental results,we demonstrate that the oil emulsion identification model with spatial–spectral feature fusion achieves a high accuracy rate in identifying oil emulsion using airborne hyperspectral data,and can be applied to images under different spatial and temporal conditions.Furthermore,we also elucidate the impact of factors such as spectral resolution and background water bodies on the identification process.These findings provide new reference for future endeavors in automated marine oil spill detection.展开更多
The purpose of study was to evaluate the effect of four powder including titanium dioxide,bismuth oxychloride,silica,and kaolin on the properties of the liquid crystal emulsions.The results show that the addition of t...The purpose of study was to evaluate the effect of four powder including titanium dioxide,bismuth oxychloride,silica,and kaolin on the properties of the liquid crystal emulsions.The results show that the addition of titanium dioxide and bismuth oxychloride had no obvious effect on the liquid crystal structure.In addition,the addition of Kaolin and silica have an effect on the stability of the liquid crystal structure.Sensory evaluation and Texture analyzer results shown that the addition of titanium dioxide and bismuth oxychloride had no obvious effect on the spreadability of liquid crystal system.The addition of silica and Kaolin was increased the hardness and adhesive of the liquid crystal system.Rheological experiments shown that the kaolin system had lower structural stability.the system with titanium dioxide,bismuth oxychloride,and silica has good stability.This paper provides data support for the application of powders in the formulation of liquid crystal system,which aims to provide a data basis for the preparation and applications of liquid crystal emulsion.展开更多
Compared to conventional emulsions, gel-emulsions have a higher internal phase volume fraction, unique structures and properties, higher viscosity, and tunable internal structures. These advantages make them widely ap...Compared to conventional emulsions, gel-emulsions have a higher internal phase volume fraction, unique structures and properties, higher viscosity, and tunable internal structures. These advantages make them widely applicable in the cosmetics industry, food industry, aerospace, and biomedicine, with significant potential in the development of new materials and high-performance products. The factors affecting the stability of gel-emulsions, as well as the types of stabilizers required for their preparation (including solid particles, surfactants, and small molecule gelators), and the corresponding preparation methods (including the one-step method, two-step method, and phase inversion method) are reviewed in this article. The applications of gel-emulsions in porous materials, food, cosmetics, and stimuli-responsive materials are introduced, and future research directions are also discussed.展开更多
The functional fractions (acid, basic, amphoteric and neutral fractions) are isolated from the Liaohe Du-84 heavy crude oil and Shengli Gudao Kenxi heavy crude oil by ion-exchange chromatography, but the conventional...The functional fractions (acid, basic, amphoteric and neutral fractions) are isolated from the Liaohe Du-84 heavy crude oil and Shengli Gudao Kenxi heavy crude oil by ion-exchange chromatography, but the conventional fractions (saturates, aromatics, resins and asphaltenes) are also isolated from the heavy crude oil. These components have been characterized by spectroscopic methods (FT-IR), namely acid number, basic nitrogen number, ultimate analysis and molecular weight measurements using vapor pressure osmometry (VPO). The ion-exchange chromatography method based on separation by a functional group induces a little change on the nature of the crudes and reasonable mass balances can be easily obtained.展开更多
We measured the water content (0.01% 0.25% w/w) in crude oil emulsions using terahertz time-domain spectroscopy (THz-TDS). To improve the precision and range of the measurements, we used 1 and 10 mm thick quartz c...We measured the water content (0.01% 0.25% w/w) in crude oil emulsions using terahertz time-domain spectroscopy (THz-TDS). To improve the precision and range of the measurements, we used 1 and 10 mm thick quartz cells. The experiments were performed at 20 ℃ and the THz wave was transmitted vertically to the samples and detected on the other side. The experimental results suggest linear relation for the THz absorption coefficient and the water content of the crude oil emulsions in the observed range. The linear dependence facilitates high-precision measurements of the water content of crude oil. This suggests the potential of THz-TDS in determining the water concentration in crude oil and borehole fluid identification.展开更多
The aim of this study was to investigate the effect of high-pressure homogenization on the droplet size and physical stability of different formulations of pectin–zein stabilized rice bran oil emulsions. The obtained...The aim of this study was to investigate the effect of high-pressure homogenization on the droplet size and physical stability of different formulations of pectin–zein stabilized rice bran oil emulsions. The obtained emulsions, both before and after passing through highpressure homogenizer, were subjected to stability test under environmental stress conditions,that is, temperature cycling at 4 °C/40 °C for 6 cycles and centrifugal test at 3000 rpm for 10 min. Applying high-pressure homogenization after mechanical homogenization caused only a small additional decrease in emulsion droplet size. The droplet size of emulsions was influenced by the type of pectin used;emulsions using high methoxy pectin(HMP) were smaller than that using low methoxy pectin(LMP). This is due to a greater emulsifying property of HMP than LMP. The emulsions stabilized by HMP–zein showed good physical stability with lower percent creaming index than those using LMP, both before and after passing through high-pressure homogenizer. The stability of emulsions after passing through high-pressure homogenizer was slightly higher when using higher zein concentration, resulting from stronger pectin–zein complexes that could rearrange and adsorb onto the emulsion droplets.展开更多
The influence of different types and concentrations of polymers on the stability of Gudao crude oil emulsion was investigated by measuring the volume of water separated from the emulsions and the interfacial shear vis...The influence of different types and concentrations of polymers on the stability of Gudao crude oil emulsion was investigated by measuring the volume of water separated from the emulsions and the interfacial shear viscosity of the oil/water interfacial film. Experimental results indicate that the simulated water-in-oil emulsion with 40 mg/L of partially hydrolyzed polyacrylamide (HPAM) 3530S could be easily broken by adding demulsifier C and was readily separated into two layers. However, HPAM AX-74H and hydrophobically associating water-soluble polymer (HAP) could stabilize the crude oil emulsion. With increasing concentration of AX-74H and HAP, crude oil emulsions became more stable. Water droplets were loosely packed in the water-in model oil emulsion containing HPAM 3530S, but water droplets were smaller and more closely packed in the emulsion containing AX-74H or HAP. The polymers could be adsorbed on the oil/water interface, thereby increasing the strength of the interracial film and enhancing the emulsion stability.展开更多
In recent years,Pickering emulsions and their applications have attracted a great deal of attention due to their special features,which include easy preparation and enhanced stability.In contrast to classical emulsion...In recent years,Pickering emulsions and their applications have attracted a great deal of attention due to their special features,which include easy preparation and enhanced stability.In contrast to classical emulsions,in Pickering emulsions,solid microparticles or nanoparticles that localize at the interface between liquids are used as stabilizers,instead of surfactants,to enhance the droplet lifetime.Furthermore,Pickering emulsions show higher stability,lower toxicity,and stimuli-responsiveness,compared with emulsions that are stabilized by surfactants.Therefore,they can be considered attractive components for various uses,such as photocatalysis and the preparation of new materials.Moreover,the nanoparticle morphology strongly influences Pickering emulsion stability as well as the potential utilization of such emulsions.Here,we review recent findings concerning Pickering emulsions,with a particular focus on how the nanoparticles morphology(i.e.,cube,ellipsoid,nanosheet,sphere,cylinder,rod,peanut)influences the type and stability of such emulsions,and their current applications in different fields such as antibacterial activity,protein recognition,catalysis,photocatalysis,and water purification.展开更多
This study aims to develop a paraffin-based phase change material(PCM) emulsion with a low extent of supercooling for thermal energy storage(TES) systems to improve the cooling efficiency.Hexadecane-water emulsions we...This study aims to develop a paraffin-based phase change material(PCM) emulsion with a low extent of supercooling for thermal energy storage(TES) systems to improve the cooling efficiency.Hexadecane-water emulsions were prepared and characterized. Multi-wall carbon nanotubes(MWCNTs) were dispersed in the emulsion as a nucleating agent to reduce the supercooling. The MWCNTs were chemically modified with carboxyl groups to improve the dispersion of the tubular particles in the organic liquid. Thermal analyses of the emulsions by differential scanning calorimeter(DSC) indicated that the extent of supercooling was significantly reduced. The concentration of the nucleating agent for an effective supercooling suppression as found to be very low, in agreement with previous findings, and there appeared to be a minimum concentration for the supercooling reduction.展开更多
Macromolecules of polysaccharides, proteins and poloxamers have a hydrophobic portion and a hydrophilic one that can be used as emulsifiers. Parts of these emulsifiers are safe pharmaceutical excipients, which can rep...Macromolecules of polysaccharides, proteins and poloxamers have a hydrophobic portion and a hydrophilic one that can be used as emulsifiers. Parts of these emulsifiers are safe pharmaceutical excipients, which can replace the irritant low molecular weight surfactants to formulate emulsions for the pharmaceutical field. This project focused on preparing O/W emulsions stabilized with polymers for pharmaceuticals such as polysaccharides, proteins and poloxamers, including hydroxypropyl methylcellulose (HPMC), methylcellulose (MC),gelatin, poloxamer 407 (F127) and poloxamer 188 (F68). Emulsion physical stability was assessed by centrifugation, autoclaving sterilization and droplet size measurements. The stabilization mechanisms of emulsions were determined by interfacial tension and rheological measurements. Results stated that the efficacy of these polymers for pharmaceuticals stabilized emulsions was sorted in the order: F127 > F68 > HPMC > MC > Gelatin.展开更多
Formation and flow of emulsions in porous media are common in all enhanced oil recovery tech- niques. In most cases, oil-in-water (O/W) emulsions are formed in porous media due to oil-water interaction. Even now, de...Formation and flow of emulsions in porous media are common in all enhanced oil recovery tech- niques. In most cases, oil-in-water (O/W) emulsions are formed in porous media due to oil-water interaction. Even now, detailed flow mechanisms of emulsions through porous media are not well understood. In this study, variation of rate of flow of O/W emulsions with pressure drop was studied experimentally, and rheological pa- rameters were calculated. The pressure drop increases with an increase in oil concentration in the O/W emulsion due to high viscosity. The effective viscosity of the emulsion was calculated from the derived model and expressed as a function of shear rate while flowing through porous media. Flow of O/W emulsions of different concentrations was evaluated in sand packs of different sand sizes. Emulsions were characterized by analyzing their stability, rheological properties, and tem- perature effects on rheological properties.展开更多
A novel polymer/SiO2 hybrid emulsion(PAES)was prepared by directly mixing colloidal silica with polyacrylate emulsion(PAE)modified by a saline coupling agent.The sol-gel-derived thin films were obtained by addition of...A novel polymer/SiO2 hybrid emulsion(PAES)was prepared by directly mixing colloidal silica with polyacrylate emulsion(PAE)modified by a saline coupling agent.The sol-gel-derived thin films were obtained by addition of co-solvents into the PAES.The effects ofγ-methacryloxypropyltrimethoxysilane(KH-570)content and co-solvent on the properties of PAES films were investigated.Dynamic laser scattering(DLS)data indicate that the average diameter of PAES(96 nm)is slightly larger than that of PAE(89 nm).Transmission electron microscopy (TEM)photo discloses that colloidal silica particles are dispersed uniformly around polyacrylate particles and some of the colloidal silica particles are adsorbed on the surface of PAE particles.The crosslinking degree data and Fourier transform infrared(FT-IR)spectra confirm that the chemical structure of the PAES is changed to form Si-O-Si-polymer crosslinking networks during the film formation.Atomic force microscope(AFM)photos show the solvent induced sol-gel process of colloidal silica and the Si-based polymer distribution on the film surface of the dried PAES.Thermogravimetric analysis(TGA)curves demonstrate that the PAES films display much better thermal stability than PAE.展开更多
Various Cu/ZnO/Al2O3 catalysts have been synthesized by different aluminum emulsions as aluminum sources and their pertormances tor methanol synthesis from syngas have been investigated. The influences of preparation ...Various Cu/ZnO/Al2O3 catalysts have been synthesized by different aluminum emulsions as aluminum sources and their pertormances tor methanol synthesis from syngas have been investigated. The influences of preparation methods of aluminum emulsions on physicochemical and catalytic properties of catalysts were studied by XRD, SEM, XPS,N2 adsorption-desorption techniques and methanol synthesis from syngas. The preparation methods of aluminum emulsions were found to influence the catalytic activity, CuO crystallite size, surface area and Cu0 surface area and reduction process. The results show that the catalyst CN using the aluminum source prepared by addition the ammonia into the aluminum nitrate (NP) exhibited the best catalytic performance for methanol synthesis from syngas.展开更多
A series of polyacrylate emulsions were blended with tackifier resin emulsions such as modified rosin emulsion, C5 resin and C9 resin emulsion. The miscibility of the polyacrylates and tackifier resins was investigate...A series of polyacrylate emulsions were blended with tackifier resin emulsions such as modified rosin emulsion, C5 resin and C9 resin emulsion. The miscibility of the polyacrylates and tackifier resins was investigated by means of SEM and visual observation. The phase diagrams of the miscibility change systematically with the polarity of polyacrylates and tackifier resins. The influence of the content of the tackifier resins on the adhesion properties of the; polyacrylate emulsions were also studied. The results show that the 180 degrees C peel strength is improved as the amount of the tackifier resin increases and comes to a maximum at a specific content. The ball tack property decreases slightly and the hold strength changes complicatedly as the tackifier resin increases.展开更多
文摘A novel method for breaking emulsions with microporous membranes is presented.A membrane would act as a coalescer if its pore size is smaller than the emulsion droplets and if the dispersed phase has great affinity to the membrane.It was observed that a hydrophilic membrane is able to break water in oil emulsions with high separation efficiency.Effects of the membrane pore size,membrane thickness,transmembrane pressure and emulsion composition on demulsification performance were investigated.It was found that the membrane pore size and transmembrane pressure affect demulsification performance remarkably while other factors have slight or almost no effect.
基金supported by the Northeast Petroleum University Youth Science Foundation of China (Grant No. 15071120619)Tribology Science Fund of State Key Laboratory of Tribology (No. SKLTKF19B05)
文摘The efficient separation of water-in-oil emulsion is of significance in environment and energy filed,and it has become a world-wide challenge.Herein,we have presented a one-step,facile and low-cost approach to prepare superhydrophobic sands for efficient separation of water-in-oil emulsion.The as-prepared sand layers possessed a water contact angle higher than 151°,demonstrating their superior superhydrophobic property.Besides,the as-prepared sand layers could separate water-in-emulsions with separation efficiency up to 99.7%,which is superior to both traditional and superwettable filtration membranes.The effect of thickness of sand layer on separation performance was also investigated.The results showed that the filtration flux decreased with the increased of filtration thickness while the separation efficiency increased.The as-prepared sand layer proposed by this study is a processing candidate for separating water-in-oil emulsion in practical industry.Additionally,the as-prepared superhydrophobic sand fabrication method also provides an alternative for desert water storage.
基金financially supported by the National Natural Science Foundation of China(Nos.51522308 and 21474117)the Ministry of Science and Technology(No.2015DFG32320)
文摘Separation of oil/water mixtures, especially for the emulsified oil/water mixtures, is important because of the frequent occurrence of oil spill accidents. Utilizing superwetting porous membrane has become a promising approach to separate either surfactant-free or surfactant-stabilized emulsions. Herein we report a facile and versatile strategy for preparing hydrophobic/under-oil superhydrophobic membranes by coating the skeletons of the membranes with the poly[(3,3,3- trifluoropropyl)methylsiloxane] (PTFPMS) nanoparticles. The obtained membranes could be used to separate various water- in-oil emulsions with high flux and separation efficiency. In addition, owning to the outstanding resistance of PTFPMS to the most organic solvents or oils, the modified membranes exhibited the excellent reusability and the antifouling properties that were critical in the practical applications. Many commercially available membranes can be modified by such a simple method.
文摘Lycopene is very susceptible to degradation once released from the protective chromoplast environment.In this study,oil-in-water(O/W)nanoemulsions coupled with spray drying technology were applied for the encapsulation and stabilization of lycopene extracted from tomato waste.Tomato extract was obtained by ultrasound-assisted extraction.Nanoemulsions were prepared by a high-speed rotor stator using isopropyl myristate as the oil phase and Pluronic F-127 as the emulsifier for the aqueous external phase.The effect of emulsification process parameters was investigated.Spray drying of the produced emulsions was attempted to obtain a stabilized dry powder after the addition of a coating agent.The effect of different coating agents(maltodextrin,inulin,gum arabic,pectin,whey and polyvinylpyrrolidone),drying temperature(120-170℃),and feed flow rate(3-9 ml·min^(-1))on the obtained particles was evaluated.Results revealed that the emulsion formulation of 20/80(O/W)with 1.5%(mass fraction)of Pluronic F-127 as stabilizer in the aqueous phase resulted in a stable nanoemulsion with droplet sizes in the range of 259-276 nm with a unimodal and sharp size distribution.The extract in the nanoemulsion was well protected at room temperature with a degradation rate of lycopene of about 50%during a month of storage time.The most stable emulsions were then processed by spray drying to obtain a dry powder.Spray drying was particularly successful when using maltodextrin as a coating agent,obtaining dried spherical particles with mean diameters of(4.87±0.17)μm with a smooth surface.The possibility of dissolving the spray dried powder in order to repristinate.The original emulsion was also successfully verified.
基金supported by National Natural Science Foundation of China(22008035,22108040,22378066)Science and Technology Project of Environmental Protection in Fujian(2022R026)Natural Science Foundation of Fujian Province(2020J05131,2020J05130)。
文摘Membrane separation strategies offer promising platform for the emulsion separation.However,the low mechanical strength of membrane separation layers and the trade-off between separation flux and efficiency present significant challenges.In this study,we report a CFM@UiO-66-NH_(2)membrane with high separation flux,efficiency and stability,through utilizing a robust anti-abrasion collagen fiber membrane(CFM)as the multifunctional support and UiO-66-NH_(2)by an in-situ growth as the separation layer.The high mechanical strength of the CFM compensated for the weakness of the separation layer,while the charge-breaking effect of UiO-66-NH_(2),along with the size sieving of its constituent separating layers and the capillary effect of the collagen fibers,contributed to the potential for efficient separation.Additionally,the CFM@UiO-66-NH_(2)membrane exhibited superhydrophilic properties,making it suitable for separating oil-in-water microemulsions and nanoemulsions stabilized by anionic surfactants.The membrane demonstrated remarkable separation efficiencies of up to 99.960%and a separation flux of370.05 L·m^(-2)·h^(-1).Moreover,it exhibits stability,durability,and abrasion resistance,maintaining excellent separation performance even when exposed to strong acids and alkalis without any damage to its structure and performance.After six cycles of reuse,it achieved a separation flux of 417.97 L·m^(-2)·h^(-1)and a separation efficiency of 99.747%.Furthermore,after undergoing 500 cycles of strong abrasion,the separation flux remained at 124.39 L·m^(-2)·h^(-1),with a separation efficiency of 99.992%.These properties make it suitable for the long-term use in harsh operating environments.We attribute these properties to the electrostatic effect resulting from the amino group on UiO-66-NH_(2)and its in-situ growth on the CFM,which forms a size-screening separation layer.Our work highlights the potential of the CFM@UiO-66-NH_(2)membrane as an environmentally friendly size-screening material for the efficient emulsion wastewater separation.
基金The National Natural Science Foundation of China under contract Nos 61890964 and 42206177the Joint Funds of the National Natural Science Foundation of China under contract No.U1906217.
文摘Marine oil spill emulsions are difficult to recover,and the damage to the environment is not easy to eliminate.The use of remote sensing to accurately identify oil spill emulsions is highly important for the protection of marine environments.However,the spectrum of oil emulsions changes due to different water content.Hyperspectral remote sensing and deep learning can use spectral and spatial information to identify different types of oil emulsions.Nonetheless,hyperspectral data can also cause information redundancy,reducing classification accuracy and efficiency,and even overfitting in machine learning models.To address these problems,an oil emulsion deep-learning identification model with spatial-spectral feature fusion is established,and feature bands that can distinguish between crude oil,seawater,water-in-oil emulsion(WO),and oil-in-water emulsion(OW)are filtered based on a standard deviation threshold–mutual information method.Using oil spill airborne hyperspectral data,we conducted identification experiments on oil emulsions in different background waters and under different spatial and temporal conditions,analyzed the transferability of the model,and explored the effects of feature band selection and spectral resolution on the identification of oil emulsions.The results show the following.(1)The standard deviation–mutual information feature selection method is able to effectively extract feature bands that can distinguish between WO,OW,oil slick,and seawater.The number of bands was reduced from 224 to 134 after feature selection on the Airborne Visible Infrared Imaging Spectrometer(AVIRIS)data and from 126 to 100 on the S185 data.(2)With feature selection,the overall accuracy and Kappa of the identification results for the training area are 91.80%and 0.86,respectively,improved by 2.62%and 0.04,and the overall accuracy and Kappa of the identification results for the migration area are 86.53%and 0.80,respectively,improved by 3.45%and 0.05.(3)The oil emulsion identification model has a certain degree of transferability and can effectively identify oil spill emulsions for AVIRIS data at different times and locations,with an overall accuracy of more than 80%,Kappa coefficient of more than 0.7,and F1 score of 0.75 or more for each category.(4)As the spectral resolution decreasing,the model yields different degrees of misclassification for areas with a mixed distribution of oil slick and seawater or mixed distribution of WO and OW.Based on the above experimental results,we demonstrate that the oil emulsion identification model with spatial–spectral feature fusion achieves a high accuracy rate in identifying oil emulsion using airborne hyperspectral data,and can be applied to images under different spatial and temporal conditions.Furthermore,we also elucidate the impact of factors such as spectral resolution and background water bodies on the identification process.These findings provide new reference for future endeavors in automated marine oil spill detection.
文摘The purpose of study was to evaluate the effect of four powder including titanium dioxide,bismuth oxychloride,silica,and kaolin on the properties of the liquid crystal emulsions.The results show that the addition of titanium dioxide and bismuth oxychloride had no obvious effect on the liquid crystal structure.In addition,the addition of Kaolin and silica have an effect on the stability of the liquid crystal structure.Sensory evaluation and Texture analyzer results shown that the addition of titanium dioxide and bismuth oxychloride had no obvious effect on the spreadability of liquid crystal system.The addition of silica and Kaolin was increased the hardness and adhesive of the liquid crystal system.Rheological experiments shown that the kaolin system had lower structural stability.the system with titanium dioxide,bismuth oxychloride,and silica has good stability.This paper provides data support for the application of powders in the formulation of liquid crystal system,which aims to provide a data basis for the preparation and applications of liquid crystal emulsion.
文摘Compared to conventional emulsions, gel-emulsions have a higher internal phase volume fraction, unique structures and properties, higher viscosity, and tunable internal structures. These advantages make them widely applicable in the cosmetics industry, food industry, aerospace, and biomedicine, with significant potential in the development of new materials and high-performance products. The factors affecting the stability of gel-emulsions, as well as the types of stabilizers required for their preparation (including solid particles, surfactants, and small molecule gelators), and the corresponding preparation methods (including the one-step method, two-step method, and phase inversion method) are reviewed in this article. The applications of gel-emulsions in porous materials, food, cosmetics, and stimuli-responsive materials are introduced, and future research directions are also discussed.
文摘The functional fractions (acid, basic, amphoteric and neutral fractions) are isolated from the Liaohe Du-84 heavy crude oil and Shengli Gudao Kenxi heavy crude oil by ion-exchange chromatography, but the conventional fractions (saturates, aromatics, resins and asphaltenes) are also isolated from the heavy crude oil. These components have been characterized by spectroscopic methods (FT-IR), namely acid number, basic nitrogen number, ultimate analysis and molecular weight measurements using vapor pressure osmometry (VPO). The ion-exchange chromatography method based on separation by a functional group induces a little change on the nature of the crudes and reasonable mass balances can be easily obtained.
基金sponsored jointly by the National Key Basic Research Program of China(No.2013CB328706)the Special-funded Program on National Key Scientific Instruments and Equipment Development(No.2012YQ140005)+1 种基金the Beijing National Science Foundation(No.4122064)the Science Foundation of China University of Petroleum(Beijing)(No.QZDX-2010-01 and KYJJ2012-06-27)
文摘We measured the water content (0.01% 0.25% w/w) in crude oil emulsions using terahertz time-domain spectroscopy (THz-TDS). To improve the precision and range of the measurements, we used 1 and 10 mm thick quartz cells. The experiments were performed at 20 ℃ and the THz wave was transmitted vertically to the samples and detected on the other side. The experimental results suggest linear relation for the THz absorption coefficient and the water content of the crude oil emulsions in the observed range. The linear dependence facilitates high-precision measurements of the water content of crude oil. This suggests the potential of THz-TDS in determining the water concentration in crude oil and borehole fluid identification.
基金financially supported by the Research and Development Institute, Silpakorn University
文摘The aim of this study was to investigate the effect of high-pressure homogenization on the droplet size and physical stability of different formulations of pectin–zein stabilized rice bran oil emulsions. The obtained emulsions, both before and after passing through highpressure homogenizer, were subjected to stability test under environmental stress conditions,that is, temperature cycling at 4 °C/40 °C for 6 cycles and centrifugal test at 3000 rpm for 10 min. Applying high-pressure homogenization after mechanical homogenization caused only a small additional decrease in emulsion droplet size. The droplet size of emulsions was influenced by the type of pectin used;emulsions using high methoxy pectin(HMP) were smaller than that using low methoxy pectin(LMP). This is due to a greater emulsifying property of HMP than LMP. The emulsions stabilized by HMP–zein showed good physical stability with lower percent creaming index than those using LMP, both before and after passing through high-pressure homogenizer. The stability of emulsions after passing through high-pressure homogenizer was slightly higher when using higher zein concentration, resulting from stronger pectin–zein complexes that could rearrange and adsorb onto the emulsion droplets.
文摘The influence of different types and concentrations of polymers on the stability of Gudao crude oil emulsion was investigated by measuring the volume of water separated from the emulsions and the interfacial shear viscosity of the oil/water interfacial film. Experimental results indicate that the simulated water-in-oil emulsion with 40 mg/L of partially hydrolyzed polyacrylamide (HPAM) 3530S could be easily broken by adding demulsifier C and was readily separated into two layers. However, HPAM AX-74H and hydrophobically associating water-soluble polymer (HAP) could stabilize the crude oil emulsion. With increasing concentration of AX-74H and HAP, crude oil emulsions became more stable. Water droplets were loosely packed in the water-in model oil emulsion containing HPAM 3530S, but water droplets were smaller and more closely packed in the emulsion containing AX-74H or HAP. The polymers could be adsorbed on the oil/water interface, thereby increasing the strength of the interracial film and enhancing the emulsion stability.
文摘In recent years,Pickering emulsions and their applications have attracted a great deal of attention due to their special features,which include easy preparation and enhanced stability.In contrast to classical emulsions,in Pickering emulsions,solid microparticles or nanoparticles that localize at the interface between liquids are used as stabilizers,instead of surfactants,to enhance the droplet lifetime.Furthermore,Pickering emulsions show higher stability,lower toxicity,and stimuli-responsiveness,compared with emulsions that are stabilized by surfactants.Therefore,they can be considered attractive components for various uses,such as photocatalysis and the preparation of new materials.Moreover,the nanoparticle morphology strongly influences Pickering emulsion stability as well as the potential utilization of such emulsions.Here,we review recent findings concerning Pickering emulsions,with a particular focus on how the nanoparticles morphology(i.e.,cube,ellipsoid,nanosheet,sphere,cylinder,rod,peanut)influences the type and stability of such emulsions,and their current applications in different fields such as antibacterial activity,protein recognition,catalysis,photocatalysis,and water purification.
基金Supported by the Research Grant Council of the Hong Kong SAR government(GRF PolyU 5241/11E)
文摘This study aims to develop a paraffin-based phase change material(PCM) emulsion with a low extent of supercooling for thermal energy storage(TES) systems to improve the cooling efficiency.Hexadecane-water emulsions were prepared and characterized. Multi-wall carbon nanotubes(MWCNTs) were dispersed in the emulsion as a nucleating agent to reduce the supercooling. The MWCNTs were chemically modified with carboxyl groups to improve the dispersion of the tubular particles in the organic liquid. Thermal analyses of the emulsions by differential scanning calorimeter(DSC) indicated that the extent of supercooling was significantly reduced. The concentration of the nucleating agent for an effective supercooling suppression as found to be very low, in agreement with previous findings, and there appeared to be a minimum concentration for the supercooling reduction.
基金supported by the National Natural Science Foundation of China (No.81273445 and No.81473161)
文摘Macromolecules of polysaccharides, proteins and poloxamers have a hydrophobic portion and a hydrophilic one that can be used as emulsifiers. Parts of these emulsifiers are safe pharmaceutical excipients, which can replace the irritant low molecular weight surfactants to formulate emulsions for the pharmaceutical field. This project focused on preparing O/W emulsions stabilized with polymers for pharmaceuticals such as polysaccharides, proteins and poloxamers, including hydroxypropyl methylcellulose (HPMC), methylcellulose (MC),gelatin, poloxamer 407 (F127) and poloxamer 188 (F68). Emulsion physical stability was assessed by centrifugation, autoclaving sterilization and droplet size measurements. The stabilization mechanisms of emulsions were determined by interfacial tension and rheological measurements. Results stated that the efficacy of these polymers for pharmaceuticals stabilized emulsions was sorted in the order: F127 > F68 > HPMC > MC > Gelatin.
文摘Formation and flow of emulsions in porous media are common in all enhanced oil recovery tech- niques. In most cases, oil-in-water (O/W) emulsions are formed in porous media due to oil-water interaction. Even now, detailed flow mechanisms of emulsions through porous media are not well understood. In this study, variation of rate of flow of O/W emulsions with pressure drop was studied experimentally, and rheological pa- rameters were calculated. The pressure drop increases with an increase in oil concentration in the O/W emulsion due to high viscosity. The effective viscosity of the emulsion was calculated from the derived model and expressed as a function of shear rate while flowing through porous media. Flow of O/W emulsions of different concentrations was evaluated in sand packs of different sand sizes. Emulsions were characterized by analyzing their stability, rheological properties, and tem- perature effects on rheological properties.
基金Supported by the Program for New Century Excellent Talents in University(NCET-08-0204) National Natural Science Foundation of China(20976060) the Scientific Research Foundation for the Returned Overseas Chinese Scholars State Edu-cation Ministry (China)
文摘A novel polymer/SiO2 hybrid emulsion(PAES)was prepared by directly mixing colloidal silica with polyacrylate emulsion(PAE)modified by a saline coupling agent.The sol-gel-derived thin films were obtained by addition of co-solvents into the PAES.The effects ofγ-methacryloxypropyltrimethoxysilane(KH-570)content and co-solvent on the properties of PAES films were investigated.Dynamic laser scattering(DLS)data indicate that the average diameter of PAES(96 nm)is slightly larger than that of PAE(89 nm).Transmission electron microscopy (TEM)photo discloses that colloidal silica particles are dispersed uniformly around polyacrylate particles and some of the colloidal silica particles are adsorbed on the surface of PAE particles.The crosslinking degree data and Fourier transform infrared(FT-IR)spectra confirm that the chemical structure of the PAES is changed to form Si-O-Si-polymer crosslinking networks during the film formation.Atomic force microscope(AFM)photos show the solvent induced sol-gel process of colloidal silica and the Si-based polymer distribution on the film surface of the dried PAES.Thermogravimetric analysis(TGA)curves demonstrate that the PAES films display much better thermal stability than PAE.
文摘Various Cu/ZnO/Al2O3 catalysts have been synthesized by different aluminum emulsions as aluminum sources and their pertormances tor methanol synthesis from syngas have been investigated. The influences of preparation methods of aluminum emulsions on physicochemical and catalytic properties of catalysts were studied by XRD, SEM, XPS,N2 adsorption-desorption techniques and methanol synthesis from syngas. The preparation methods of aluminum emulsions were found to influence the catalytic activity, CuO crystallite size, surface area and Cu0 surface area and reduction process. The results show that the catalyst CN using the aluminum source prepared by addition the ammonia into the aluminum nitrate (NP) exhibited the best catalytic performance for methanol synthesis from syngas.
文摘A series of polyacrylate emulsions were blended with tackifier resin emulsions such as modified rosin emulsion, C5 resin and C9 resin emulsion. The miscibility of the polyacrylates and tackifier resins was investigated by means of SEM and visual observation. The phase diagrams of the miscibility change systematically with the polarity of polyacrylates and tackifier resins. The influence of the content of the tackifier resins on the adhesion properties of the; polyacrylate emulsions were also studied. The results show that the 180 degrees C peel strength is improved as the amount of the tackifier resin increases and comes to a maximum at a specific content. The ball tack property decreases slightly and the hold strength changes complicatedly as the tackifier resin increases.