A theory of seepage instability was used to estimate the harmfulness of water-inrush from a coal seam floor in a particular coal mine of the Mining Group,Xuzhou. Based on the stratum column chart in this coal mine,the...A theory of seepage instability was used to estimate the harmfulness of water-inrush from a coal seam floor in a particular coal mine of the Mining Group,Xuzhou. Based on the stratum column chart in this coal mine,the distribu-tion of stress in mining floors when the long-wall mining was respectively pushed along to 100 m and to 150 m was simulated by using the numerical software (RFPA2D). The permeability parameters of the coal seam floor are described given the relationship between permeability parameters. Strain and the water-inrush-indices were calculated. The wa-ter-inrush-index was 67.2% when the working face was pushed to 100 m,showing that water-inrush is possible and it was 1630% when the working face was pushed to 150 m,showing that water-inrush is quite probable. The results show that as long-wall mining is pushed along,the failure zone is enlarged,the strain increased,and fissures developed cor-respondingly,resulting in the formation of water-inrush channels. Accompanied by the failure of the strata,the perme-ability increased exponentially. In contrast,the non-Darcy flow β factor and the acceleration coefficient decreased ex-ponentially,while the increase in the water-inrush-index was nearly exponential and the harmfulness of water-inrush in the coal mine increased accordingly.展开更多
Lower groups of coal seams are presently being mined from water-inrush from coal floors in order to have safe production in the Yanzhou coal mining area. We need to evaluate the risk in the lower groups of coal seams ...Lower groups of coal seams are presently being mined from water-inrush from coal floors in order to have safe production in the Yanzhou coal mining area. We need to evaluate the risk in the lower groups of coal seams in mines. Based on a systematic collection of hydrogeological data and some data from mined working faces in these lower groups, we evaluated the factors affecting water-inrush from coal floors of the area by a method of dimensionless analysis. We obtained the order of the factors affecting water-inrush from coal floors and recalculated data on depths of destroyed floors by multiple linear regression analysis and obtained new empirical formulas. We also analyzed the water-inrush coefficient of mined working faces of the lower groups of coal seams and improved the evaluation standard of the water-inrush coefficient method. Finally, we made a comprehensive evaluation of water-inrush risks from coal floors by using the water-inrush coefficient method and a fuzzy clustering method. The evaluation results provide a solid foundation for preventing and controlling the damage caused by water of an Ordovician limestone aquifer in the lower group of coal seams in the mines of Yanzhou. It provides also important guidelines for lower groups of coal seams in other coal mines.展开更多
The mechanism of mine water inrushes in coal mines in China differs considerably from that in other countries.In China, most water inrushes occur from floor strata, where the water-inrush sources are karstic limestone...The mechanism of mine water inrushes in coal mines in China differs considerably from that in other countries.In China, most water inrushes occur from floor strata, where the water-inrush sources are karstic limestone aquifers.Our study describes the mechanism of mine water inrushes through a fault in the mine floor using principles of strata mechanics and the path of water inrush from an aquifer to the working face.A criterion to judge whether a ground water inrush will occur through a fault or not is also described, together with a case history of water inflow in the Feicheng coalfield, China.展开更多
The failure depth of the coal seam floor is one important consideration that must be kept in mind when mining is carried out above a confined aquifer.Determining the floor failure depth is the essential precondition f...The failure depth of the coal seam floor is one important consideration that must be kept in mind when mining is carried out above a confined aquifer.Determining the floor failure depth is the essential precondition for predicting the water-resisting ability of the floor.We have used a high-precision microseismic monitoring technique to overcome the limited amount of data available from field measurements. The failure depth of a coal seam floor,especially an inclined coal seam floor,may be more accurately estimated by monitoring the continuous,dynamic failure of the floor.The monitoring results indicate the failure depth of the coal seam floor near the workface conveyance roadway(the lower crossheading) is deeper and that the failure range is wider here compared to the coal seam floor near the return airway(the upper crossheading).The results of micro-seismic monitoring show that the dangerous area for water-inrush from the coal seam floor may be identified.This provides an important field measurement that helps ensure safe and highly efficient mining of the inclined coal seam above the confined aquifer at the Taoyuan Coal Mine.展开更多
Minin-induced water inrush from a confined aquifer due to subsided floor karst collapse column(SKCC)is a type of serious disaster in the underground coal extraction.Karst collapse column(KCC)developed in a confined aq...Minin-induced water inrush from a confined aquifer due to subsided floor karst collapse column(SKCC)is a type of serious disaster in the underground coal extraction.Karst collapse column(KCC)developed in a confined aquifer occurs widely throughout northern China.A water inrush disaster from SKCC occurred in Taoyuan coal mine on February 3,2013.In order to analyze the effect of the KCC influence zone’s(KCCIZ)width and the entry driving distance of the water inrush through the fractured channels of the SKCC,the stress,seepage,and impact dynamics coupling equations were used tomodel the seepage rule,and a numerical FLAC3D model was created to determine the plastic zones,the vertical displacement development of the rockmass surrounding the entry driving working face(EDWF),and the seepage vector and water inflow development of the seepage field.The hysteretic mechanism of water inrush due to SKCC in Taoyuan coal mine was investigated.The results indicate that a water inrush disaster will occur when the width of the KCCIZ exceeds 16 m under a driving,which leads to the aquifer connecting with the fractured zones of the entry floor.Hysteretic water inrush disasters are related to the stress release rate of the surrounding rocks under the entry driving.When the entry driving exceeds about 10 m from the water inrush point,the stress release rate reaches about 100%,and a water inrush disaster occurs.展开更多
The water-inrush mechanism of strong water-guide collapse column in coal seam is studied based on the establishment of geological and mathematical models of "triangle" water-inrush mode. The geological backg...The water-inrush mechanism of strong water-guide collapse column in coal seam is studied based on the establishment of geological and mathematical models of "triangle" water-inrush mode. The geological background of Shuangliu mine is considered a prototype, similar simulation tests are adopted to analyze the water-inrush rules under this model, and the formation of water-guide channel and water-inrush process is investigated by examining the changes in rock resistivity. This work also uses the coupled cloud image derived from numerical simulation software to verify the results of simulation test. Results show that the numerical simulation of "triangle" water-inrush mode is consistent with the similar simulation. The "triangle" seepage area, which is located at the bottom of collapse columns and is connected to aquifer, is caused by the altered seepage direction and strengthened seepage actions after the overlapping of hydraulic transverse seepage in collapse column and hydraulic vertical seepage flow in aquifer. Under "triangle"water-inrush model, water-guide channel is formed by the communication between plastic failure zone of working face baseplate and"triangular" seepage area. Accordingly, the threatening water-inrush distance between working face and collapse column increases by 20 m compared with that of theoretical calculation.展开更多
Adopted the fractal tree-like failure model, and established the renormalization group transform function of fractured fault, and investigated the mechanism of water-inrush from fault, and found out the critical proba...Adopted the fractal tree-like failure model, and established the renormalization group transform function of fractured fault, and investigated the mechanism of water-inrush from fault, and found out the critical probability of water-inrush from fault caused by fault fracture. The results indicate: when the failure rate P is less than the critical failure rate Pc=0.206 3, the failure of the system is just partial. When P is more than the critical failure rate Pc=0.206 3, the random distributed crannies concentrate to certain domain of attraction (such as the maximum shear stress face in the fault) gradually. The process will continue until the crannies run-through, forming conductivity channel, and cause water-inrush from fault.展开更多
In order to study the water-inrush mechanism of concealed collapse pillars from the mechanical view, a mechanical model for water-inrush of collapse pillars has been established based on thick plate theory of elastic ...In order to study the water-inrush mechanism of concealed collapse pillars from the mechanical view, a mechanical model for water-inrush of collapse pillars has been established based on thick plate theory of elastic mechanics in this paper.By solving this model the deformation of water-resistant rock strata under the action of water pressure and the expression of critical water pressure for collapse pillar waterinrush have been obtained The research results indicate that:the boundary conditions and strength of water-resistant strata play important roles in influencing water-inrush of collapse pillars.The critical water-inrush pressure is determined by both relative thickness and absolute thickness of water-resistant strata.展开更多
Used numerical simulation method to study the floor water-inrush mechanism in working face which was influenced by fault structure, and set up many kinds of models and performs numerical calculation by fully using lar...Used numerical simulation method to study the floor water-inrush mechanism in working face which was influenced by fault structure, and set up many kinds of models and performs numerical calculation by fully using large finite element soft-ANSYS and element birth-death method. The results show that the more high the underground water pressure, the more big the floor displacement and possibility of water-inrush; the floor which has fault structure is more prone to water-inrush than the floor which not has fault structure, the floor which has multi-groups cracks is more prone to water-inrush than the floor which has single-group cracks. The numerical simulation result forecasts the water-inrush in working face preferably.展开更多
奥灰岩溶裂隙含水层是影响华北型煤矿深部开采的重要水害,在水-岩相互作用下奥灰含水层易导致煤层底板突水。为进一步认识奥灰岩溶突水问题,文章以新集矿区深部1煤层开采为例,利用矿区近些年最新积累的奥灰钻孔资料,选取断层强度指数、...奥灰岩溶裂隙含水层是影响华北型煤矿深部开采的重要水害,在水-岩相互作用下奥灰含水层易导致煤层底板突水。为进一步认识奥灰岩溶突水问题,文章以新集矿区深部1煤层开采为例,利用矿区近些年最新积累的奥灰钻孔资料,选取断层强度指数、断层交叉点与尖灭点、含水层水压、富水性、隔水层等效厚度、脆塑比7个因素作为奥灰岩溶突水的主控因素,并结合层次分析法(analytic hierarchy process,AHP)确定各主控因素影响权重。运用地理信息系统(geographic information system,GIS)空间分析功能建立各主控因素专题图,通过对专题栅格图归一化处理,将各主控因素按照权重进行空间复合叠加,最终获得1煤层底板奥灰岩溶突水危险性评价分区结果。将评价结果与突水系数法计算结果对比分析可知,基于GIS的煤层底板突水危险性评价方法更符合矿区实际地质情况,可以为矿区深部煤层开采与水害防治工作提供参考依据。展开更多
基金Projects 50225414 supported by the National Outstanding Youth Foundation50574090, 50674087 and 50490270 by the National Natural Science Foundation of China
文摘A theory of seepage instability was used to estimate the harmfulness of water-inrush from a coal seam floor in a particular coal mine of the Mining Group,Xuzhou. Based on the stratum column chart in this coal mine,the distribu-tion of stress in mining floors when the long-wall mining was respectively pushed along to 100 m and to 150 m was simulated by using the numerical software (RFPA2D). The permeability parameters of the coal seam floor are described given the relationship between permeability parameters. Strain and the water-inrush-indices were calculated. The wa-ter-inrush-index was 67.2% when the working face was pushed to 100 m,showing that water-inrush is possible and it was 1630% when the working face was pushed to 150 m,showing that water-inrush is quite probable. The results show that as long-wall mining is pushed along,the failure zone is enlarged,the strain increased,and fissures developed cor-respondingly,resulting in the formation of water-inrush channels. Accompanied by the failure of the strata,the perme-ability increased exponentially. In contrast,the non-Darcy flow β factor and the acceleration coefficient decreased ex-ponentially,while the increase in the water-inrush-index was nearly exponential and the harmfulness of water-inrush in the coal mine increased accordingly.
基金supports from the Natural Science Foundation of Shandong Province (No.Y2007F46)the Doctor Disciplines Special Scientific Research Foundation of Ministry of Education (No.20070424005)+1 种基金China Coal Industry Association Science and Technology Research Instructive Plan (No.MTKJ2009-290) the National Natural Science Foundation of China (No.50539080)
文摘Lower groups of coal seams are presently being mined from water-inrush from coal floors in order to have safe production in the Yanzhou coal mining area. We need to evaluate the risk in the lower groups of coal seams in mines. Based on a systematic collection of hydrogeological data and some data from mined working faces in these lower groups, we evaluated the factors affecting water-inrush from coal floors of the area by a method of dimensionless analysis. We obtained the order of the factors affecting water-inrush from coal floors and recalculated data on depths of destroyed floors by multiple linear regression analysis and obtained new empirical formulas. We also analyzed the water-inrush coefficient of mined working faces of the lower groups of coal seams and improved the evaluation standard of the water-inrush coefficient method. Finally, we made a comprehensive evaluation of water-inrush risks from coal floors by using the water-inrush coefficient method and a fuzzy clustering method. The evaluation results provide a solid foundation for preventing and controlling the damage caused by water of an Ordovician limestone aquifer in the lower group of coal seams in the mines of Yanzhou. It provides also important guidelines for lower groups of coal seams in other coal mines.
基金Projects Y2007F46 supported by the Natural Science Foundation of Shandong Province20070424005 by the Doctor Disciplines Special Scientific Researc Foundation of the Ministry of Education+1 种基金108158 by the Key Project of the Ministry of Education of China50539080 by the National Natural Scienc Foundation of China
文摘The mechanism of mine water inrushes in coal mines in China differs considerably from that in other countries.In China, most water inrushes occur from floor strata, where the water-inrush sources are karstic limestone aquifers.Our study describes the mechanism of mine water inrushes through a fault in the mine floor using principles of strata mechanics and the path of water inrush from an aquifer to the working face.A criterion to judge whether a ground water inrush will occur through a fault or not is also described, together with a case history of water inflow in the Feicheng coalfield, China.
基金supported by the National Basic Research Program ofChina(No.2010CB202210)the National Natural Science Foundation of China(No.50874103)+1 种基金the Natural Science Foundation of Jiangsu Province(No.KB2008135)as well as by the Qinglan Project of Jiangsu Province
文摘The failure depth of the coal seam floor is one important consideration that must be kept in mind when mining is carried out above a confined aquifer.Determining the floor failure depth is the essential precondition for predicting the water-resisting ability of the floor.We have used a high-precision microseismic monitoring technique to overcome the limited amount of data available from field measurements. The failure depth of a coal seam floor,especially an inclined coal seam floor,may be more accurately estimated by monitoring the continuous,dynamic failure of the floor.The monitoring results indicate the failure depth of the coal seam floor near the workface conveyance roadway(the lower crossheading) is deeper and that the failure range is wider here compared to the coal seam floor near the return airway(the upper crossheading).The results of micro-seismic monitoring show that the dangerous area for water-inrush from the coal seam floor may be identified.This provides an important field measurement that helps ensure safe and highly efficient mining of the inclined coal seam above the confined aquifer at the Taoyuan Coal Mine.
基金supported by the National Natural Science Foundation of China(Project Nos.51708185,41807209 and 51778215,SC,http://www.nsfc.gov.cn)the Young Teacher Foundation of HPU(Project No.2019XQG-19,SC,http://www6.hpu.edu.cn/rsc)+1 种基金the Henan Provincial Youth Talent Promotion Program(Project No.2020HYTP003,SC,http://www.hast.net.cn:82)the Doctor Foundation of Henan Polytechnic University(Project No.B2017-51 and B2017-53,SC,http://kxc.hpu.edu.cn).
文摘Minin-induced water inrush from a confined aquifer due to subsided floor karst collapse column(SKCC)is a type of serious disaster in the underground coal extraction.Karst collapse column(KCC)developed in a confined aquifer occurs widely throughout northern China.A water inrush disaster from SKCC occurred in Taoyuan coal mine on February 3,2013.In order to analyze the effect of the KCC influence zone’s(KCCIZ)width and the entry driving distance of the water inrush through the fractured channels of the SKCC,the stress,seepage,and impact dynamics coupling equations were used tomodel the seepage rule,and a numerical FLAC3D model was created to determine the plastic zones,the vertical displacement development of the rockmass surrounding the entry driving working face(EDWF),and the seepage vector and water inflow development of the seepage field.The hysteretic mechanism of water inrush due to SKCC in Taoyuan coal mine was investigated.The results indicate that a water inrush disaster will occur when the width of the KCCIZ exceeds 16 m under a driving,which leads to the aquifer connecting with the fractured zones of the entry floor.Hysteretic water inrush disasters are related to the stress release rate of the surrounding rocks under the entry driving.When the entry driving exceeds about 10 m from the water inrush point,the stress release rate reaches about 100%,and a water inrush disaster occurs.
基金Projects(51374093,51104058)supported by the National Natural Science Foundation of ChinaProject(2013CB227903)supported by the National Basic Research Program of China
文摘The water-inrush mechanism of strong water-guide collapse column in coal seam is studied based on the establishment of geological and mathematical models of "triangle" water-inrush mode. The geological background of Shuangliu mine is considered a prototype, similar simulation tests are adopted to analyze the water-inrush rules under this model, and the formation of water-guide channel and water-inrush process is investigated by examining the changes in rock resistivity. This work also uses the coupled cloud image derived from numerical simulation software to verify the results of simulation test. Results show that the numerical simulation of "triangle" water-inrush mode is consistent with the similar simulation. The "triangle" seepage area, which is located at the bottom of collapse columns and is connected to aquifer, is caused by the altered seepage direction and strengthened seepage actions after the overlapping of hydraulic transverse seepage in collapse column and hydraulic vertical seepage flow in aquifer. Under "triangle"water-inrush model, water-guide channel is formed by the communication between plastic failure zone of working face baseplate and"triangular" seepage area. Accordingly, the threatening water-inrush distance between working face and collapse column increases by 20 m compared with that of theoretical calculation.
基金Supported by the National Natural Science Foundation of China(50574090) the "973" Plan(2006CB202210)+1 种基金 Scientific Research Project of Ministry of Education(106084) the Foundation of Qinglan Project of Jiangsu Province
文摘Adopted the fractal tree-like failure model, and established the renormalization group transform function of fractured fault, and investigated the mechanism of water-inrush from fault, and found out the critical probability of water-inrush from fault caused by fault fracture. The results indicate: when the failure rate P is less than the critical failure rate Pc=0.206 3, the failure of the system is just partial. When P is more than the critical failure rate Pc=0.206 3, the random distributed crannies concentrate to certain domain of attraction (such as the maximum shear stress face in the fault) gradually. The process will continue until the crannies run-through, forming conductivity channel, and cause water-inrush from fault.
基金Projects are supported by the National Basic Research Program of China(No.2007CB209400)the National Natural Science Foundation of China(Nos.50974115,50904065 and 50974107)the 111 Project(No.B07028).
文摘In order to study the water-inrush mechanism of concealed collapse pillars from the mechanical view, a mechanical model for water-inrush of collapse pillars has been established based on thick plate theory of elastic mechanics in this paper.By solving this model the deformation of water-resistant rock strata under the action of water pressure and the expression of critical water pressure for collapse pillar waterinrush have been obtained The research results indicate that:the boundary conditions and strength of water-resistant strata play important roles in influencing water-inrush of collapse pillars.The critical water-inrush pressure is determined by both relative thickness and absolute thickness of water-resistant strata.
文摘Used numerical simulation method to study the floor water-inrush mechanism in working face which was influenced by fault structure, and set up many kinds of models and performs numerical calculation by fully using large finite element soft-ANSYS and element birth-death method. The results show that the more high the underground water pressure, the more big the floor displacement and possibility of water-inrush; the floor which has fault structure is more prone to water-inrush than the floor which not has fault structure, the floor which has multi-groups cracks is more prone to water-inrush than the floor which has single-group cracks. The numerical simulation result forecasts the water-inrush in working face preferably.
文摘奥灰岩溶裂隙含水层是影响华北型煤矿深部开采的重要水害,在水-岩相互作用下奥灰含水层易导致煤层底板突水。为进一步认识奥灰岩溶突水问题,文章以新集矿区深部1煤层开采为例,利用矿区近些年最新积累的奥灰钻孔资料,选取断层强度指数、断层交叉点与尖灭点、含水层水压、富水性、隔水层等效厚度、脆塑比7个因素作为奥灰岩溶突水的主控因素,并结合层次分析法(analytic hierarchy process,AHP)确定各主控因素影响权重。运用地理信息系统(geographic information system,GIS)空间分析功能建立各主控因素专题图,通过对专题栅格图归一化处理,将各主控因素按照权重进行空间复合叠加,最终获得1煤层底板奥灰岩溶突水危险性评价分区结果。将评价结果与突水系数法计算结果对比分析可知,基于GIS的煤层底板突水危险性评价方法更符合矿区实际地质情况,可以为矿区深部煤层开采与水害防治工作提供参考依据。