Inundation of the Three Gorges Reservoir has created a 30-m water-level fluctuation zone with seasonal hydrological alternations of submergence and exposure, which may greatly affect soil properties and bank stability...Inundation of the Three Gorges Reservoir has created a 30-m water-level fluctuation zone with seasonal hydrological alternations of submergence and exposure, which may greatly affect soil properties and bank stability. The aim of this study was to investigate the response of soil pore structure to seasonal water-level fluctuation in the reservoir, and particularly, the hydrological change of wetting and drying cycles. Soil pore structure was visualized with industrial X-ray computed tomography and digital image analysis techniques. The results showed that soil total porosity(? 100 ?m), total pore number, total throat number, and mean throat surface area increased significantly under wetting and drying cycles. Soil porosity, pore number and throat numberwithin each size class increased in the course of wetting and drying cycles. The coordination number, degree of anisotropy and fractal dimension were indicating an increase. In contrast, the mean shape factor, pore-throat ratio, and Euler-Poincaré number decreased due to wetting and drying cycles. These illustrated that the wetting and drying cycles made soil pore structure become more porous, continuous, heterogeneous and complex. It can thus be deduced that the water-level fluctuation would modify soil porosity, pore size distribution, and pore morphology in the Three Gorges Reservoir, which may have profound implications for soil processes, soil functions, and bank stability.展开更多
The combined effect of periodic water impoundment and seasonal natural flood events has created a 30 m high water-level fluctuation zone(WLFZ) around the Three Gorges Reservoir(TGR), China, forming a unique eco-landsc...The combined effect of periodic water impoundment and seasonal natural flood events has created a 30 m high water-level fluctuation zone(WLFZ) around the Three Gorges Reservoir(TGR), China, forming a unique eco-landscape. Siltation, eutrophication, enrichment of heavy metals, and methane emissions in the WLFZ have been widely associated with sediment and soil particles generated from the upstream catchment or upland slopes. However, little attention has been paid to the complexity of sediment particle-size distributions in the WLFZ. In the present study, core samples(from a 345 cm thick sediment core from the base of the WLFZ), slope transect surface samples(across/up a WLFZ slope), and along-river/longitudinal surface samples(from the reservoir reaches) were collected. Laser granulometry and a volume-based fractal model were used to reveal the characteristics of sediment particle-size distributions. Results indicate that the alternation of coarse and fine particles in the sedimentary core profile is represented as a fluctuation of low and high values of fractal dimension(D), ranging from 2.59 to 2.77. On the WLFZ slope transect, surface sediment particles coarsen with increasing elevation, sand content increases from 3.3% to 78.5%, and D decreases from 2.76 to 2.53. Longitudinally, surface sediments demonstrate a downstream-fining trend, and D increases gradually downstream. D is significantly positively correlated with the fine particle content. We conclude that D is a useful measure for evaluating sediment particle-size distribution.展开更多
Urmia Lake in northwest of Iran, through the recent years has been extremely faced with the water crisis. Climate variations and anthropogenic impacts could be two main affiliated factors in this regard. We considered...Urmia Lake in northwest of Iran, through the recent years has been extremely faced with the water crisis. Climate variations and anthropogenic impacts could be two main affiliated factors in this regard. We considered the long term data series of precipitation, temperature and evaporation in monthly and yearly scales in order to compare to water-level values of Urmia Lake. The statistics approaches such as: standard deviation, trend analysis, T test, Pearson and Spearman correlations, liner regression are used to analyze all variables. The results released that the water-level of Urmia Lake along with the precipitation and temperature of the lake’s basin have experienced the periodic changes through 1961 to 2010, as there are some gradual dryness trends on the study area according to precipitation and temperature variations. Urmia Lake periodic water-level fluctuations show more significant correlation to temperature than the precipitation. Whiles, the water-level’s decreasing behavior especially through 1998 to 2010 is more harsh and different than the rate that is considered for precipitation’s decrease and temperature’s increase. Thus, there could be some anthropogenic factors in the basin which produced some supplementary causes to shrink Urmia Lake. Extracting the double precipitation over the basin through introducing and categorizing of atmospheric synoptic systems in order to cloud seeding operation could be one of urgent and innovative solutions to mitigate water crisis in the basin.展开更多
The hydrogeology of first-order streams have been evaluated from 2007 to 2009 as part of the Whitetail Basin Watershed Restoration Project in Hay Creek Canyon located 25 km north of Whitehall Montana, USA. An in-depth...The hydrogeology of first-order streams have been evaluated from 2007 to 2009 as part of the Whitetail Basin Watershed Restoration Project in Hay Creek Canyon located 25 km north of Whitehall Montana, USA. An in-depth study of the riparian area hydrogeology started in the fall of 2007 with the installation of more than 40 hand-augered deeper (〉 1 m) wells to complement preexisting driven metal pipe piezometers (± 1 m) installed in four first-order drainages. Two zones within the shallow alluvial systems were identified. This paper presents the results of a concentrated study conducted in the Hay Creek drainage within the tWO zones. Data loggers placed in some of the wells led to a gradual understanding of the water-level patterns in different vegetative types (Douglas Fir, Aspen, Willow-Alder. and Grass-Sagebrush) over the various seasons. The deeper water-level responses change from seasonal patterns to strongly diurnal during summer months. Diurnal patterns continue until leaves drop from riparian vegetation. This was expected, however, the Douglas fir trees show the same pattern. Near the end of the study a full year of water-level data showing the seasonal behavior changes were collected. Resaturation of the upper zone occurs in the fall with sources of recharge coming from up-drainage. A detailed evaluation of water-level responses from up-drainage to down-drainage piezometers occurs in a "wave-like" resaturation phenomenon that allows one to estimate the bulk hydraulic conductivity of the "alluvial system" aquifer using principles of Darcy's Law. The methods used to evaluate the hydraulic properties and seasonal water-level patterns are presented.展开更多
Relativistic isobar^(96)_(44)Ru+^(96)_(44)Ru and^(96)_(40)Zr+^(96)_(40)Zrcollisions have revealed intricate differences in their nuclear size and shape,inspiring unconventional studies of nuclear structure using relat...Relativistic isobar^(96)_(44)Ru+^(96)_(44)Ru and^(96)_(40)Zr+^(96)_(40)Zrcollisions have revealed intricate differences in their nuclear size and shape,inspiring unconventional studies of nuclear structure using relativistic heavy ion collisions.In this study,we investigate the relative differences in the mean multiplicityR_(<Nch>)and the secondR_(ε2)and third-order eccentricityR_(ε3)between isobar collisions using initial state Glauber models.It is found that initial fluctuations and nuclear deformations have negligible effects on R_(<Nch>)in most central collisions,while both are important for the R_(ε2)and R_(ε3),the degree of which is sensitive to the underlying nucleonic or sub-nucleonic degree of freedom.These features,compared to real data,may probe the particle production mechanism and the physics underlying nuclear structure.展开更多
As an important source of low-carbon,clean fossil energy,natural gas hydrate plays an important role in improving the global energy consumption structure.Developing the hydrate industry in the South China Sea is impor...As an important source of low-carbon,clean fossil energy,natural gas hydrate plays an important role in improving the global energy consumption structure.Developing the hydrate industry in the South China Sea is important to achieving‘carbon peak and carbon neutrality’goals as soon as possible.Deep-water areas subjected to the action of long-term stress and tectonic movement have developed complex and volatile terrains,and as such,the morphologies of hydrate-bearing sediments(HBSs)fluctuate correspondingly.The key to numerically simulating HBS morphologies is the establishment of the conceptual model,which represents the objective and real description of the actual geological body.However,current numerical simulation models have characterized HBSs into horizontal strata without considering the fluctuation characteristics.Simply representing the HBS as a horizontal element reduces simulation accuracy.Therefore,the commonly used horizontal HBS model and a model considering the HBS’s fluctuation characteristics with the data of the SH2 site in the Shenhu Sea area were first constructed in this paper.Then,their production behaviors were compared,and the huge impact of the fluctuation characteristics on HBS production was determined.On this basis,the key parameters affecting the depressurization production of the fluctuating HBSs were studied and optimized.The research results show that the fluctuation characteristics have an obvious influence on the hydrate production of HBSs by affecting their temperatures and pressure distributions,as well as the transmission of the pressure drop and methane gas discharge.Furthermore,the results show that the gas productivity of fluctuating HBSs was about 5%less than that of horizontal HBSs.By optimizing the depressurization amplitude,well length,and layout location of vertical wells,the productivity of fluctuating HBSs increased by about 56.6%.展开更多
AIM:To study functional brain abnormalities in patients with hypertensive retinopathy(HR)and to discuss the pathophysiological mechanisms of HR by fractional amplitude of low-frequency fluctuations(fALFFs)method.METHO...AIM:To study functional brain abnormalities in patients with hypertensive retinopathy(HR)and to discuss the pathophysiological mechanisms of HR by fractional amplitude of low-frequency fluctuations(fALFFs)method.METHODS:Twenty HR patients and 20 healthy controls(HCs)were respectively recruited.The age,gender,and educational background characteristics of the two groups were similar.After functional magnetic resonance imaging(fMRI)scanning,the subjects’spontaneous brain activity was evaluated with the fALFF method.Receiver operating characteristic(ROC)curve analysis was used to classify the data.Further,we used Pearson’s correlation analysis to explore the relationship between fALFF values in specific brain regions and clinical behaviors in patients with HR.RESULTS:The brain areas of the HR group with lower fALFF values than HCs were the right orbital part of the middle frontal gyrus(RO-MFG)and right lingual gyrus.In contrast,the values of fALFFs in the left middle temporal gyrus(MTG),left superior temporal pole(STP),left middle frontal gyrus(MFG),left superior marginal gyrus(SMG),left superior parietal lobule(SPL),and right supplementary motor area(SMA)were higher in the HR group.The results of a t-test showed that the average values of fALFFs were statistically significantly different in the HR group and HC group(P<0.001).The fALFF values of the left middle frontal gyrus in HR patients were positively correlated with anxiety scores(r=0.9232;P<0.0001)and depression scores(r=0.9682;P<0.0001).CONCLUSION:fALFF values in multiple brain regions of HR patients are abnormal,suggesting that these brain regions in HR patients may be dysfunctional,which may help to reveal the pathophysiological mechanisms of HR.展开更多
In nuclear reactors,temperature fluctuations of fluids may cause fatigue damage to adjacent structures;this is referred to as thermal striping.Research on thermal striping in the upper plenum has mainly focused on flu...In nuclear reactors,temperature fluctuations of fluids may cause fatigue damage to adjacent structures;this is referred to as thermal striping.Research on thermal striping in the upper plenum has mainly focused on fluid fields.Few experimental studies have been reported on solid structures in a fluid field with a coaxial jet.This study entailed an experimental study of the temperature fluctuations in the fluid and on a plate surface caused by a coaxial jet.The temperature fluctuations of the fluid and plate surfaces located at different heights were analyzed.The cause of the temperature fluctuation was analyzed using a transient temperature distribution.The results show that the mixing of the hot and cold fluids gradually becomes uniform in the positive axial direction.The average surface temperatures tended to be consistent.When the jet reaches the plate surface,the swing of the jet center,contraction and expansion of the cold jet,and changes in the jet shape result in temperature fluctuations.The intensity of the temperature fluctuation was affected by the position.More attention should be paid when the plate is located at a lower height,and between the hot and cold-fluid nozzles.展开更多
In the fiber winding process,strong disturbance,uncertainty,strong coupling,and fiber friction complicate the winding constant tension control.In order to effectively reduce the influence of these problems on the tens...In the fiber winding process,strong disturbance,uncertainty,strong coupling,and fiber friction complicate the winding constant tension control.In order to effectively reduce the influence of these problems on the tension output,this paper proposed a tension fluctuation rejection strategy based on feedforward compensation.In addition to the bias harmonic curve of the unknown state,the tension fluctuation also contains the influence of bounded noise.A tension fluctuation observer(TFO)is designed to cancel the uncertain periodic signal,in which the frequency generator is used to estimate the critical parameter information.Then,the fluctuation signal is reconstructed by a third-order auxiliary filter.The estimated signal feedforward compensates for the actual tension fluctuation.Furthermore,a time-varying parameters fractional-order PID controller(TPFOPID)is realized to attenuate the bounded noise in the fluctuation.Finally,TPFOPID is enhanced by TFO and applied to control a tension control system considering multi-source disturbances.The stability of the method is analyzed by using the Lyapunov theorem.Finally,numerical simulations verify that the proposed scheme improves the tracking ability and robustness of the system in response to tension fluctuations.展开更多
BACKGROUND Patients with type 2 diabetes mellitus(T2DM)have large fluctuations in blood glucose(BG),abnormal metabolic function and low immunity to varying degrees,which increases the risk of malignant tumor diseases ...BACKGROUND Patients with type 2 diabetes mellitus(T2DM)have large fluctuations in blood glucose(BG),abnormal metabolic function and low immunity to varying degrees,which increases the risk of malignant tumor diseases and affects the efficacy of tumor chemotherapy.Controlling hyperglycemia may have important therapeutic implications for cancer patients.AIM To clarify the influence of BG fluctuations on chemotherapy efficacy and safety in T2DM patients complicated with lung carcinoma(LC).METHODS The clinical data of 60 T2DM+LC patients who presented to the First Affiliated Hospital of Ningbo University between January 2019 and January 2021 were retrospectively analyzed.All patients underwent chemotherapy and were grouped as a control group(CG;normal BG fluctuation with a mean fluctuation<3.9 mmol/L)and an observation group(OG;high BG fluctuation with a mean fluctuation≥3.9 mmol/L)based on their BG fluctuations,with 30 cases each.BGrelated indices,tumor markers,serum inflammatory cytokines and adverse reactions were comparatively analyzed.Pearson correlation analysis was performed to analyze the correlation between BG fluctuations and tumor markers.RESULTS The fasting blood glucose and 2-hour postprandial blood glucose levels in the OG were notably elevated compared with those in the CG,together with markedly higher mean amplitude of glycemic excursions(MAGE),mean of daily differences,largest amplitude of glycemic excursions and standard deviation of blood glucose(P<0.05).In addition,the OG exhibited evidently higher levels of carbohydrate antigen 19-9,carbohydrate antigen 125,carcinoembryonic antigen,neuron-specific enolase,cytokeratin 19,tumor necrosis factor-α,interleukin-6,and highsensitivity C-reactive protein than the CG(P<0.05).Pearson analysis revealed a positive association of MAGE with serum tumor markers.The incidence of adverse reactions was significantly higher in the OG than in the CG(P<0.05).CONCLUSION The greater the BG fluctuation in LC patients after chemotherapy,the more unfavorable the therapeutic effect of chemotherapy;the higher the level of tumor markers and inflammatory cytokines,the more adverse reactions the patient experiences.展开更多
Seasonal water-level fluctuations (WLF) play a dominate role in lacustrine ecosys- tems. River-lake interaction is a direct factor in changes of seasonal lake WLF, especially for those lakes naturally connected to u...Seasonal water-level fluctuations (WLF) play a dominate role in lacustrine ecosys- tems. River-lake interaction is a direct factor in changes of seasonal lake WLF, especially for those lakes naturally connected to upstream and downstream rivers. During the past decade, the modification of WLF in the Poyang Lake (the largest freshwater lake in China) has caused intensified flood and irrigation crises, reduced water availability, compromised water quality and extensive degradation of the lake ecosystem. There has been a conjecture as to whether the modification was caused by its interactions with Yangtze River. In this study, we investi- gated the variations of seasonal WLF in China's Poyang Lake by comparing the water levels during the four distinct seasons (the dry season, the rising season, the flood season, and the retreating season) before and after 2003 when the Three Gorge Dam operated. The Water Surface Slope (WSS) was used as a representative parameter to measure the changes in river-lake interaction and its impacts on seasonal WLF. The results showed that the magni- tude of seasonal WLF has changed considerably since 2003; the seasonal WLF of the Poy- ang Lake have been significantly altered by the fact that the water levels both rise and retreat earlier in the season and lowered water levels in general. The fluctuations of river-lake in- teractions, in particular the changes during the retreating season, are mainly responsible for these variations in magnitude of seasonal WLF. This study demonstrates that WSS is a rep- resentative parameter to denote river-lake interactions, and the results indicate that more emphasis should be placed on the decrease of the Poyang Lake caused by the lowered water levels of the Yangtze River, especially in the retreating season.展开更多
Aims Myriophyllum spicatum and Hydrilla verticillata are common submerged macrophytes in the Yangtze River basin.To investigate their tolerances and adaptations to water-level fluctuations,an experiment was conducted ...Aims Myriophyllum spicatum and Hydrilla verticillata are common submerged macrophytes in the Yangtze River basin.To investigate their tolerances and adaptations to water-level fluctuations,an experiment was conducted in a pond.Methods We designed five different amplitudes of water-level fluctuations as static,615,630,660 and 690 cm during the 74 days of the experiment.In each amplitude treatment,two cultivation methods were examined as monoculture and mixed culture.Important Findings The results showed that M.spicatum had greater morphological responses to water-level fluctuations than H.verticillata.Fluctuating amplitude had significant effects on branch number,shoot length and root dry weight(DW)of M.spicatum,whereas it only had significant effect on branch number of H.verticillata.Both fluctuating amplitude and cultivation method had significant effects on total DW of M.spicatum,which was higher in monoculture than mixed culture.The total DW of H.verticillata was affected by fluctuating amplitude only,and the largest biomass was in the amplitude of 630 cm.Fruit DW of M.spicatum was largest in the amplitude of 630 cm,high amplitude of water-level fluctuations would inhibit flowering and seed production.Root DW proportion was significantly affected by fluctuating amplitude and cultivation method in both species,and the root DW proportion of M.spicatum was significantly higher in the amplitude-of 690 cm.We conclude that moderate amplitude of water-level fluctuations can promote the distribution and growth of both species,and in order to accelerate the restoration of both species in natural habitats,the optimum amplitude should be keep at 615 to 630 cm.展开更多
The water-level fluctuation zone(WLFZ) has been considered as a hotspot for mercury(Hg) methylation. Flooding-tolerant herbs are gradually acclimated to this water-land ecotone, tending to form substantial root system...The water-level fluctuation zone(WLFZ) has been considered as a hotspot for mercury(Hg) methylation. Flooding-tolerant herbs are gradually acclimated to this water-land ecotone, tending to form substantial root systems for improving erosion resistance. Accompanying rhizosphere microzone plays crucial but unclear roles in methylmercury(Me Hg) formation in the WLFZ. Thus, we conducted this study in the WLFZ of the Three Gorges Reservoir, to explore effects of the rhizosphere of a dominant flooding-tolerant herb(bermudagrass) on Me Hg production. The elevated Hg and Me Hg in rhizosphere soils suggest that the rhizosphere environment provides favorable conditions for Hg accumulation and methylation. The increased bioavailable Hg and microbial activity in the rhizosphere probably serve as important factors driving Me Hg formation in the presence of bermudagrass. Simultaneously, the rhizosphere environments changed the richness, diversity, and distribution of hgc A-containing microorganisms. Here, a typical ironreducing bacterium( Geobacteraceae) has been screened, however, the majority of hgc A genes detected in rhizosphere, near-, and non-rhizosphere soils of the WLFZ were unclassified. Collectively, these results provide new insights into the elevated Me Hg production as related to microbial processes in the rhizosphere of perennial herbs in the WLFZ, with general implications for Hg cycling in other ecosystems with water-level fluctuations.展开更多
With the construction of the Xiluodu hydropower station on the Jinsha River,the reservoir impoundment began in 2013 and the water level fluctuates annually between 540 m and 600 m above sea level.The Yanjiao rock slop...With the construction of the Xiluodu hydropower station on the Jinsha River,the reservoir impoundment began in 2013 and the water level fluctuates annually between 540 m and 600 m above sea level.The Yanjiao rock slope which is located on the left bank of the Jinsha River 75 km upstream of the Xiluodu dam site,began to deform in 2014.The potential failure of the slope not only threatens Yanjiao town but also affects the safe operation of the Xiluodu reservoir.This paper is to find the factors influencing the Yanjiao slope deformation through field investigation,geotechnical reconnaissance,and monitoring.Results show that the Yanjiao slope can be divided into a bank collapse area(BCA)and a strong deformation area(SDA)based on the crack distribution characteristics of the slope.The rear area of the slope has been experiencing persistent deformation with a maximum cumulative displacement(GPS monitoring point G4)of 505 mm and 399 mm in the horizontal and vertical directions,respectively.The potential failure surface of the slope is formed 36 m below the surface based on the borehole inclinometer.The bank collapses of the Yanjiao slope are directly caused by the reservoir impoundment while the deformation area of the slope is affected by the combination of the rainfall and reservoir water level fluctuation.Based on mechanism of the Yanjiao slope,prestressed anchor combined with the surface drainage and slope unloading are recommended to prevent potential deformation.展开更多
Water level fluctuations (WLF) are natural patterns that are necessary for the survival of various plants,and WLF guarantee both the productivity and the biodiversity of wetlands.However,the underlying mechanisms of h...Water level fluctuations (WLF) are natural patterns that are necessary for the survival of various plants,and WLF guarantee both the productivity and the biodiversity of wetlands.However,the underlying mechanisms of how changes in vegetation are linked to seasonal WLF remain unclear.Using vegetation and hydrological data from 1989 to 2009,we identified the key seasonal fluctuations and their impacts on vegetation in the Poyang Lake wetland by utilizing a tree-based hierarchical model.According to our results: 1) WLF in summer had significant impacts on both sedges and reeds.The severe summer floods promoted the expansion of sedges,while they inhibited the expansion of reeds;2) WLF in autumn also greatly impacted sedges,while reeds were severely affected in spring.Specifically,we found that low water levels in autumn led to the expansion of sedges,and low water levels in spring led to the expansion of reeds.The results were well corroborated through comparisons of the vegetation distribution patterns over the last two decades (i.e.,the 1990s and 2000s),which may shed light on corresponding water resource and wetland management.展开更多
To address the significant lifecycle degradation and inadequate state of charge(SOC)balance of electric vehicles(EVs)when mitigating wind power fluctuations,a dynamic grouping control strategy is proposed for EVs base...To address the significant lifecycle degradation and inadequate state of charge(SOC)balance of electric vehicles(EVs)when mitigating wind power fluctuations,a dynamic grouping control strategy is proposed for EVs based on an improved k-means algorithm.First,a swing door trending(SDT)algorithm based on compression result feedback was designed to extract the feature data points of wind power.The gating coefficient of the SDT was adjusted based on the compression ratio and deviation,enabling the acquisition of grid-connected wind power signals through linear interpolation.Second,a novel algorithm called IDOA-KM is proposed,which utilizes the Improved Dingo Optimization Algorithm(IDOA)to optimize the clustering centers of the k-means algorithm,aiming to address its dependence and sensitivity on the initial centers.The EVs were categorized into priority charging,standby,and priority discharging groups using the IDOA-KM.Finally,an two-layer power distribution scheme for EVs was devised.The upper layer determines the charging/discharging sequences of the three EV groups and their corresponding power signals.The lower layer allocates power signals to each EV based on the maximum charging/discharging power or SOC equalization principles.The simulation results demonstrate the effectiveness of the proposed control strategy in accurately tracking grid power signals,smoothing wind power fluctuations,mitigating EV degradation,and enhancing the SOC balance.展开更多
A novel electromagnetic probe array(EMPA) diagnostic, which consists of a magnetic probe array and an electrostatic probe array, has recently been developed on EAST. The EMPA is fixed near the first wall at horizontal...A novel electromagnetic probe array(EMPA) diagnostic, which consists of a magnetic probe array and an electrostatic probe array, has recently been developed on EAST. The EMPA is fixed near the first wall at horizontal port P. The magnetic probe array of the EMPA consists of 24 identical magnetic probes, each of them capable of measuring toroidal, poloidal and radial magnetic fluctuations simultaneously, providing additional toroidal magnetic fluctuation measurements compared with the regular magnetic probes on EAST. With a higher sampling rate and self-resonant frequency, the EMPA magnetic probes can provide higher frequency magnetic fluctuation measurements. The magnetic probe array of the EMPA is composed of two parallel layers of magnetic probes with a radial distance of 63 mm, and each layer of magnetic probes is arranged in four poloidal rows and three toroidal columns. The compact arrangement of the EMPA magnetic probe array largely improves the toroidal mode number measurement ability from-8≤ n≤ 8 to-112≤ n≤ 112, and also improves the high poloidal wave number measurement ability of magnetic fluctuations compared with the regular high frequency magnetic probes on EAST. The electrostatic probe array of the EMPA consists of two sets of four-tip probes and a single-tip probe array with three poloidal rows and four toroidal columns. It complements the electrostatic parameter measurements behind the main limiter and near the first wall in EAST. The engineering details of the EMPA diagnostic, including the mechanical system, the electrical system, the acquisition and control system, and the effective area calibration, are presented. The preliminary applications of the EMPA in L-mode and H-mode discharges on EAST have demonstrated that the EMPA works well for providing information on the magnetic and electrostatic fluctuations and can contribute to deeper physical analysis in future EAST experiments.展开更多
In this article,the design of a Lyman-alpha-based beam emission spectroscopy(LAB)diagnostic on the HL-2A tokamak has been proposed for the first time.The purpose of this novel diagnostic is to measure density fluctuat...In this article,the design of a Lyman-alpha-based beam emission spectroscopy(LAB)diagnostic on the HL-2A tokamak has been proposed for the first time.The purpose of this novel diagnostic is to measure density fluctuations of tokamak plasma.The light-collection system of LAB,which consists of the first mirror and two groups of coaxial double-mirror telescopes,can realize a twosegmented viewing field ofρ=0–0.2 andρ=0.75–1,which is optimized to measure plasma density fluctuation,not only in the edge transport barrier region but also in the internal transport barrier region,to investigate the underlying physics of turbulence in tokamaks.Spectrometers are developed to separate out the Doppler-shifted target line(122.03 and 122.17 nm)from the background Lyman-alpha line(121.53 nm).Here,30 Core-LAB channels and 30 Edge-LAB channels are under development on the HL-2A tokamak.It has high radial spatial resolutions of about 2.7 mm and 3.3 mm for the core and edge channels,respectively.Taking the high light intensity of this Lyman-alpha line into account,temporal resolution of 200 k Hz can be ensured by broad bandwidth amplifiers.This high spatio-temporal resolution makes LAB a potential keen tool to experimentally investigate tokamak plasma physics.展开更多
The bacterial flagellar motor is a nanometer-sized rotary motor that generates the torque to drive the rotation of the flagellar filament.The output torque is an important property of the motor.The motor rotation was ...The bacterial flagellar motor is a nanometer-sized rotary motor that generates the torque to drive the rotation of the flagellar filament.The output torque is an important property of the motor.The motor rotation was usually monitored by attaching aμm-sized bead to a shortened flagellar filament,and the torque was extracted by calculating the torque due to the viscous drag of the medium on the bead rotation.We sought for an independent extraction of the torque from thermal fluctuation in the motor rotation using the fluctuation theorem(FT).However,we identified an overwhelming fluctuation beyond the thermal noise that precluded the use of FT.We further characterized the timescale and the amplitude of this fluctuation,finding that it was probably due to the stepping of the motor.The amplitude of torque fluctuation we characterized here provided new information on the torque-generating interaction potential curve.展开更多
The rapid expansion of the non-fungible token(NFT)market has attracted many investors.However,studies on the NFT price fluctuations have been relatively limited.To date,the machine learning approach has not been used ...The rapid expansion of the non-fungible token(NFT)market has attracted many investors.However,studies on the NFT price fluctuations have been relatively limited.To date,the machine learning approach has not been used to demonstrate a specific error in NFT sale price fluctuation prediction.The aim of this study was to develop a prediction model for NFT price fluctuations using the NFT trading information obtained from OpenSea,the world’s largest NFT marketplace.We used Python programs to collect data and summarized them as:NFT information,collection information,and related account information.AdaBoost and Random Forest(RF)algorithms were employed to predict the sale price and price fluctuation of NFTs using regression and classification models,respectively.We found that the NFT related account information,especially the number of favorites and activity status of creators,confer a good predictive power to both the models.AdaBoost in the regression model had more accurate predictions,the root mean square error(RMSE)in predicting NFT sale price was 0.047.In predicting NFT sale price fluctuations,RF performed better,which the area under the curve(AUC)reached 0.956.We suggest that investors should pay more attention to the information of NFT creators.We anticipate that these prediction models will reduce the number of investment failures for the investors.展开更多
基金funded by the National Natural Science Foundation of China(Grant No.41771321,41771320 and 41571278)Sichuan Science and Technology Program(Grant No.2018SZ0132)
文摘Inundation of the Three Gorges Reservoir has created a 30-m water-level fluctuation zone with seasonal hydrological alternations of submergence and exposure, which may greatly affect soil properties and bank stability. The aim of this study was to investigate the response of soil pore structure to seasonal water-level fluctuation in the reservoir, and particularly, the hydrological change of wetting and drying cycles. Soil pore structure was visualized with industrial X-ray computed tomography and digital image analysis techniques. The results showed that soil total porosity(? 100 ?m), total pore number, total throat number, and mean throat surface area increased significantly under wetting and drying cycles. Soil porosity, pore number and throat numberwithin each size class increased in the course of wetting and drying cycles. The coordination number, degree of anisotropy and fractal dimension were indicating an increase. In contrast, the mean shape factor, pore-throat ratio, and Euler-Poincaré number decreased due to wetting and drying cycles. These illustrated that the wetting and drying cycles made soil pore structure become more porous, continuous, heterogeneous and complex. It can thus be deduced that the water-level fluctuation would modify soil porosity, pore size distribution, and pore morphology in the Three Gorges Reservoir, which may have profound implications for soil processes, soil functions, and bank stability.
基金funded by the National Natural Science Foundation of China (Grant nos. 41771320, 41771321, and 41571278)the Opening Project of Chongqing Key Laboratory of Earth Surface Processes and Environmental Remote Sensing in the Three Gorges Reservoir Area (Grant no. DBGC201801)the Sichuan Science and Technology Program (Grant no. 2018SZ0132)
文摘The combined effect of periodic water impoundment and seasonal natural flood events has created a 30 m high water-level fluctuation zone(WLFZ) around the Three Gorges Reservoir(TGR), China, forming a unique eco-landscape. Siltation, eutrophication, enrichment of heavy metals, and methane emissions in the WLFZ have been widely associated with sediment and soil particles generated from the upstream catchment or upland slopes. However, little attention has been paid to the complexity of sediment particle-size distributions in the WLFZ. In the present study, core samples(from a 345 cm thick sediment core from the base of the WLFZ), slope transect surface samples(across/up a WLFZ slope), and along-river/longitudinal surface samples(from the reservoir reaches) were collected. Laser granulometry and a volume-based fractal model were used to reveal the characteristics of sediment particle-size distributions. Results indicate that the alternation of coarse and fine particles in the sedimentary core profile is represented as a fluctuation of low and high values of fractal dimension(D), ranging from 2.59 to 2.77. On the WLFZ slope transect, surface sediment particles coarsen with increasing elevation, sand content increases from 3.3% to 78.5%, and D decreases from 2.76 to 2.53. Longitudinally, surface sediments demonstrate a downstream-fining trend, and D increases gradually downstream. D is significantly positively correlated with the fine particle content. We conclude that D is a useful measure for evaluating sediment particle-size distribution.
文摘Urmia Lake in northwest of Iran, through the recent years has been extremely faced with the water crisis. Climate variations and anthropogenic impacts could be two main affiliated factors in this regard. We considered the long term data series of precipitation, temperature and evaporation in monthly and yearly scales in order to compare to water-level values of Urmia Lake. The statistics approaches such as: standard deviation, trend analysis, T test, Pearson and Spearman correlations, liner regression are used to analyze all variables. The results released that the water-level of Urmia Lake along with the precipitation and temperature of the lake’s basin have experienced the periodic changes through 1961 to 2010, as there are some gradual dryness trends on the study area according to precipitation and temperature variations. Urmia Lake periodic water-level fluctuations show more significant correlation to temperature than the precipitation. Whiles, the water-level’s decreasing behavior especially through 1998 to 2010 is more harsh and different than the rate that is considered for precipitation’s decrease and temperature’s increase. Thus, there could be some anthropogenic factors in the basin which produced some supplementary causes to shrink Urmia Lake. Extracting the double precipitation over the basin through introducing and categorizing of atmospheric synoptic systems in order to cloud seeding operation could be one of urgent and innovative solutions to mitigate water crisis in the basin.
文摘The hydrogeology of first-order streams have been evaluated from 2007 to 2009 as part of the Whitetail Basin Watershed Restoration Project in Hay Creek Canyon located 25 km north of Whitehall Montana, USA. An in-depth study of the riparian area hydrogeology started in the fall of 2007 with the installation of more than 40 hand-augered deeper (〉 1 m) wells to complement preexisting driven metal pipe piezometers (± 1 m) installed in four first-order drainages. Two zones within the shallow alluvial systems were identified. This paper presents the results of a concentrated study conducted in the Hay Creek drainage within the tWO zones. Data loggers placed in some of the wells led to a gradual understanding of the water-level patterns in different vegetative types (Douglas Fir, Aspen, Willow-Alder. and Grass-Sagebrush) over the various seasons. The deeper water-level responses change from seasonal patterns to strongly diurnal during summer months. Diurnal patterns continue until leaves drop from riparian vegetation. This was expected, however, the Douglas fir trees show the same pattern. Near the end of the study a full year of water-level data showing the seasonal behavior changes were collected. Resaturation of the upper zone occurs in the fall with sources of recharge coming from up-drainage. A detailed evaluation of water-level responses from up-drainage to down-drainage piezometers occurs in a "wave-like" resaturation phenomenon that allows one to estimate the bulk hydraulic conductivity of the "alluvial system" aquifer using principles of Darcy's Law. The methods used to evaluate the hydraulic properties and seasonal water-level patterns are presented.
基金the National Natural Science Foundation of China(Nos.12275082,12035006,12075085(HX))the Zhejiang Provincial Natural Science Foundation of China(No.LY21A050001(HX))the U.S.Department of Energy(No.DE-SC0012910(FW)).
文摘Relativistic isobar^(96)_(44)Ru+^(96)_(44)Ru and^(96)_(40)Zr+^(96)_(40)Zrcollisions have revealed intricate differences in their nuclear size and shape,inspiring unconventional studies of nuclear structure using relativistic heavy ion collisions.In this study,we investigate the relative differences in the mean multiplicityR_(<Nch>)and the secondR_(ε2)and third-order eccentricityR_(ε3)between isobar collisions using initial state Glauber models.It is found that initial fluctuations and nuclear deformations have negligible effects on R_(<Nch>)in most central collisions,while both are important for the R_(ε2)and R_(ε3),the degree of which is sensitive to the underlying nucleonic or sub-nucleonic degree of freedom.These features,compared to real data,may probe the particle production mechanism and the physics underlying nuclear structure.
基金supported by the National Natural Science Foundation of China(Nos.42276224 and 42206230)the Jilin Scientific and Technological Development Program(No.20190303083SF)+1 种基金the International Cooperation Key Laboratory of Underground Energy Development and Geological Restoration(No.YDZJ202102CXJD014)the Graduate Innovation Fund of Jilin University(No.2023CX100).
文摘As an important source of low-carbon,clean fossil energy,natural gas hydrate plays an important role in improving the global energy consumption structure.Developing the hydrate industry in the South China Sea is important to achieving‘carbon peak and carbon neutrality’goals as soon as possible.Deep-water areas subjected to the action of long-term stress and tectonic movement have developed complex and volatile terrains,and as such,the morphologies of hydrate-bearing sediments(HBSs)fluctuate correspondingly.The key to numerically simulating HBS morphologies is the establishment of the conceptual model,which represents the objective and real description of the actual geological body.However,current numerical simulation models have characterized HBSs into horizontal strata without considering the fluctuation characteristics.Simply representing the HBS as a horizontal element reduces simulation accuracy.Therefore,the commonly used horizontal HBS model and a model considering the HBS’s fluctuation characteristics with the data of the SH2 site in the Shenhu Sea area were first constructed in this paper.Then,their production behaviors were compared,and the huge impact of the fluctuation characteristics on HBS production was determined.On this basis,the key parameters affecting the depressurization production of the fluctuating HBSs were studied and optimized.The research results show that the fluctuation characteristics have an obvious influence on the hydrate production of HBSs by affecting their temperatures and pressure distributions,as well as the transmission of the pressure drop and methane gas discharge.Furthermore,the results show that the gas productivity of fluctuating HBSs was about 5%less than that of horizontal HBSs.By optimizing the depressurization amplitude,well length,and layout location of vertical wells,the productivity of fluctuating HBSs increased by about 56.6%.
基金Supported by National Natural Science Foundation of China(No.82160195)Jiangxi Double-Thousand Plan High-Level Talent Project of Science and Technology Innovation(No.jxsq2023201036)+2 种基金Key R&D Program of Jiangxi Province(No.20223BBH80014)Science and Technology Project of Jiangxi Province Health Commission of Traditional Chinese Medicine(No.2022B258)Science and Technology Project of Jiangxi Health Commission(No.202210017).
文摘AIM:To study functional brain abnormalities in patients with hypertensive retinopathy(HR)and to discuss the pathophysiological mechanisms of HR by fractional amplitude of low-frequency fluctuations(fALFFs)method.METHODS:Twenty HR patients and 20 healthy controls(HCs)were respectively recruited.The age,gender,and educational background characteristics of the two groups were similar.After functional magnetic resonance imaging(fMRI)scanning,the subjects’spontaneous brain activity was evaluated with the fALFF method.Receiver operating characteristic(ROC)curve analysis was used to classify the data.Further,we used Pearson’s correlation analysis to explore the relationship between fALFF values in specific brain regions and clinical behaviors in patients with HR.RESULTS:The brain areas of the HR group with lower fALFF values than HCs were the right orbital part of the middle frontal gyrus(RO-MFG)and right lingual gyrus.In contrast,the values of fALFFs in the left middle temporal gyrus(MTG),left superior temporal pole(STP),left middle frontal gyrus(MFG),left superior marginal gyrus(SMG),left superior parietal lobule(SPL),and right supplementary motor area(SMA)were higher in the HR group.The results of a t-test showed that the average values of fALFFs were statistically significantly different in the HR group and HC group(P<0.001).The fALFF values of the left middle frontal gyrus in HR patients were positively correlated with anxiety scores(r=0.9232;P<0.0001)and depression scores(r=0.9682;P<0.0001).CONCLUSION:fALFF values in multiple brain regions of HR patients are abnormal,suggesting that these brain regions in HR patients may be dysfunctional,which may help to reveal the pathophysiological mechanisms of HR.
基金supported by the National Natural Science Foundation of China (No. 52075173)the Overseas Expertise Introduction Project for Discipline Innovation (No. B13020)
文摘In nuclear reactors,temperature fluctuations of fluids may cause fatigue damage to adjacent structures;this is referred to as thermal striping.Research on thermal striping in the upper plenum has mainly focused on fluid fields.Few experimental studies have been reported on solid structures in a fluid field with a coaxial jet.This study entailed an experimental study of the temperature fluctuations in the fluid and on a plate surface caused by a coaxial jet.The temperature fluctuations of the fluid and plate surfaces located at different heights were analyzed.The cause of the temperature fluctuation was analyzed using a transient temperature distribution.The results show that the mixing of the hot and cold fluids gradually becomes uniform in the positive axial direction.The average surface temperatures tended to be consistent.When the jet reaches the plate surface,the swing of the jet center,contraction and expansion of the cold jet,and changes in the jet shape result in temperature fluctuations.The intensity of the temperature fluctuation was affected by the position.More attention should be paid when the plate is located at a lower height,and between the hot and cold-fluid nozzles.
基金funded by the National Natural Science Foundation of China(Grant Number 52075361)Shanxi Province Science and Technology Major Project(Grant Number 20201102003)+3 种基金Lvliang Science and Technology Guidance Special Key R&D Project(Grant Number 2022XDHZ08)National Natural Science Foundation of China(Grant Number 51905367)Shanxi Natural Science Foundation General Project(Grant Numbers 202103021224271,202203021211201)Shanxi Province Key Research and Development Plan(Grant Number 202102020101013).
文摘In the fiber winding process,strong disturbance,uncertainty,strong coupling,and fiber friction complicate the winding constant tension control.In order to effectively reduce the influence of these problems on the tension output,this paper proposed a tension fluctuation rejection strategy based on feedforward compensation.In addition to the bias harmonic curve of the unknown state,the tension fluctuation also contains the influence of bounded noise.A tension fluctuation observer(TFO)is designed to cancel the uncertain periodic signal,in which the frequency generator is used to estimate the critical parameter information.Then,the fluctuation signal is reconstructed by a third-order auxiliary filter.The estimated signal feedforward compensates for the actual tension fluctuation.Furthermore,a time-varying parameters fractional-order PID controller(TPFOPID)is realized to attenuate the bounded noise in the fluctuation.Finally,TPFOPID is enhanced by TFO and applied to control a tension control system considering multi-source disturbances.The stability of the method is analyzed by using the Lyapunov theorem.Finally,numerical simulations verify that the proposed scheme improves the tracking ability and robustness of the system in response to tension fluctuations.
基金Supported by Chronic Disease Management Center for Thoracic Tumor,The Affiliated Hospital of Medical School of Ningbo University,No.2021MGZX-07Natural Science Foundation of Ningbo,No.2019A610238.
文摘BACKGROUND Patients with type 2 diabetes mellitus(T2DM)have large fluctuations in blood glucose(BG),abnormal metabolic function and low immunity to varying degrees,which increases the risk of malignant tumor diseases and affects the efficacy of tumor chemotherapy.Controlling hyperglycemia may have important therapeutic implications for cancer patients.AIM To clarify the influence of BG fluctuations on chemotherapy efficacy and safety in T2DM patients complicated with lung carcinoma(LC).METHODS The clinical data of 60 T2DM+LC patients who presented to the First Affiliated Hospital of Ningbo University between January 2019 and January 2021 were retrospectively analyzed.All patients underwent chemotherapy and were grouped as a control group(CG;normal BG fluctuation with a mean fluctuation<3.9 mmol/L)and an observation group(OG;high BG fluctuation with a mean fluctuation≥3.9 mmol/L)based on their BG fluctuations,with 30 cases each.BGrelated indices,tumor markers,serum inflammatory cytokines and adverse reactions were comparatively analyzed.Pearson correlation analysis was performed to analyze the correlation between BG fluctuations and tumor markers.RESULTS The fasting blood glucose and 2-hour postprandial blood glucose levels in the OG were notably elevated compared with those in the CG,together with markedly higher mean amplitude of glycemic excursions(MAGE),mean of daily differences,largest amplitude of glycemic excursions and standard deviation of blood glucose(P<0.05).In addition,the OG exhibited evidently higher levels of carbohydrate antigen 19-9,carbohydrate antigen 125,carcinoembryonic antigen,neuron-specific enolase,cytokeratin 19,tumor necrosis factor-α,interleukin-6,and highsensitivity C-reactive protein than the CG(P<0.05).Pearson analysis revealed a positive association of MAGE with serum tumor markers.The incidence of adverse reactions was significantly higher in the OG than in the CG(P<0.05).CONCLUSION The greater the BG fluctuation in LC patients after chemotherapy,the more unfavorable the therapeutic effect of chemotherapy;the higher the level of tumor markers and inflammatory cytokines,the more adverse reactions the patient experiences.
基金National Basic Research Program of China ("973" Program), No.2012CB417006 National Natural Science Foundation of China, No.41171024 No.41271500
文摘Seasonal water-level fluctuations (WLF) play a dominate role in lacustrine ecosys- tems. River-lake interaction is a direct factor in changes of seasonal lake WLF, especially for those lakes naturally connected to upstream and downstream rivers. During the past decade, the modification of WLF in the Poyang Lake (the largest freshwater lake in China) has caused intensified flood and irrigation crises, reduced water availability, compromised water quality and extensive degradation of the lake ecosystem. There has been a conjecture as to whether the modification was caused by its interactions with Yangtze River. In this study, we investi- gated the variations of seasonal WLF in China's Poyang Lake by comparing the water levels during the four distinct seasons (the dry season, the rising season, the flood season, and the retreating season) before and after 2003 when the Three Gorge Dam operated. The Water Surface Slope (WSS) was used as a representative parameter to measure the changes in river-lake interaction and its impacts on seasonal WLF. The results showed that the magni- tude of seasonal WLF has changed considerably since 2003; the seasonal WLF of the Poy- ang Lake have been significantly altered by the fact that the water levels both rise and retreat earlier in the season and lowered water levels in general. The fluctuations of river-lake in- teractions, in particular the changes during the retreating season, are mainly responsible for these variations in magnitude of seasonal WLF. This study demonstrates that WSS is a rep- resentative parameter to denote river-lake interactions, and the results indicate that more emphasis should be placed on the decrease of the Poyang Lake caused by the lowered water levels of the Yangtze River, especially in the retreating season.
基金National Natural Science Foundation of China(4100117)Major Science and Technology Program for Water Pollution Control and Treatment of China(2008ZX07103-004).
文摘Aims Myriophyllum spicatum and Hydrilla verticillata are common submerged macrophytes in the Yangtze River basin.To investigate their tolerances and adaptations to water-level fluctuations,an experiment was conducted in a pond.Methods We designed five different amplitudes of water-level fluctuations as static,615,630,660 and 690 cm during the 74 days of the experiment.In each amplitude treatment,two cultivation methods were examined as monoculture and mixed culture.Important Findings The results showed that M.spicatum had greater morphological responses to water-level fluctuations than H.verticillata.Fluctuating amplitude had significant effects on branch number,shoot length and root dry weight(DW)of M.spicatum,whereas it only had significant effect on branch number of H.verticillata.Both fluctuating amplitude and cultivation method had significant effects on total DW of M.spicatum,which was higher in monoculture than mixed culture.The total DW of H.verticillata was affected by fluctuating amplitude only,and the largest biomass was in the amplitude of 630 cm.Fruit DW of M.spicatum was largest in the amplitude of 630 cm,high amplitude of water-level fluctuations would inhibit flowering and seed production.Root DW proportion was significantly affected by fluctuating amplitude and cultivation method in both species,and the root DW proportion of M.spicatum was significantly higher in the amplitude-of 690 cm.We conclude that moderate amplitude of water-level fluctuations can promote the distribution and growth of both species,and in order to accelerate the restoration of both species in natural habitats,the optimum amplitude should be keep at 615 to 630 cm.
基金the funding support from the National Natural Science Foundation of China (No. 41877384 )the Fundamental Research Funds for the Central Universities (No. XDJK2017B035 )Chongqing Graduate Scientific Research Innovation Project (No. CYS21112 ) for its support。
文摘The water-level fluctuation zone(WLFZ) has been considered as a hotspot for mercury(Hg) methylation. Flooding-tolerant herbs are gradually acclimated to this water-land ecotone, tending to form substantial root systems for improving erosion resistance. Accompanying rhizosphere microzone plays crucial but unclear roles in methylmercury(Me Hg) formation in the WLFZ. Thus, we conducted this study in the WLFZ of the Three Gorges Reservoir, to explore effects of the rhizosphere of a dominant flooding-tolerant herb(bermudagrass) on Me Hg production. The elevated Hg and Me Hg in rhizosphere soils suggest that the rhizosphere environment provides favorable conditions for Hg accumulation and methylation. The increased bioavailable Hg and microbial activity in the rhizosphere probably serve as important factors driving Me Hg formation in the presence of bermudagrass. Simultaneously, the rhizosphere environments changed the richness, diversity, and distribution of hgc A-containing microorganisms. Here, a typical ironreducing bacterium( Geobacteraceae) has been screened, however, the majority of hgc A genes detected in rhizosphere, near-, and non-rhizosphere soils of the WLFZ were unclassified. Collectively, these results provide new insights into the elevated Me Hg production as related to microbial processes in the rhizosphere of perennial herbs in the WLFZ, with general implications for Hg cycling in other ecosystems with water-level fluctuations.
基金the project of POWERCHINA Chengdu Engineering Corporation Limited,Power China under Grant No.P46220the Natural Science Foundation of Sichuan,China under Grant No.2022NSFSC0425the Science and Technology Department of Sichuan Province under Grant No.2021YJ0053。
文摘With the construction of the Xiluodu hydropower station on the Jinsha River,the reservoir impoundment began in 2013 and the water level fluctuates annually between 540 m and 600 m above sea level.The Yanjiao rock slope which is located on the left bank of the Jinsha River 75 km upstream of the Xiluodu dam site,began to deform in 2014.The potential failure of the slope not only threatens Yanjiao town but also affects the safe operation of the Xiluodu reservoir.This paper is to find the factors influencing the Yanjiao slope deformation through field investigation,geotechnical reconnaissance,and monitoring.Results show that the Yanjiao slope can be divided into a bank collapse area(BCA)and a strong deformation area(SDA)based on the crack distribution characteristics of the slope.The rear area of the slope has been experiencing persistent deformation with a maximum cumulative displacement(GPS monitoring point G4)of 505 mm and 399 mm in the horizontal and vertical directions,respectively.The potential failure surface of the slope is formed 36 m below the surface based on the borehole inclinometer.The bank collapses of the Yanjiao slope are directly caused by the reservoir impoundment while the deformation area of the slope is affected by the combination of the rainfall and reservoir water level fluctuation.Based on mechanism of the Yanjiao slope,prestressed anchor combined with the surface drainage and slope unloading are recommended to prevent potential deformation.
基金the National Key Research and Development Project of China (No.2016YFC0402204)the National Natural Science Foundation of China (Grant No.41571107)+1 种基金the Key Research Program of the Chinese Academy of Sciences (No.KFZD-SW-318)the Key Project of Water Resources Department of Jiangxi Province (No.KT201503).
文摘Water level fluctuations (WLF) are natural patterns that are necessary for the survival of various plants,and WLF guarantee both the productivity and the biodiversity of wetlands.However,the underlying mechanisms of how changes in vegetation are linked to seasonal WLF remain unclear.Using vegetation and hydrological data from 1989 to 2009,we identified the key seasonal fluctuations and their impacts on vegetation in the Poyang Lake wetland by utilizing a tree-based hierarchical model.According to our results: 1) WLF in summer had significant impacts on both sedges and reeds.The severe summer floods promoted the expansion of sedges,while they inhibited the expansion of reeds;2) WLF in autumn also greatly impacted sedges,while reeds were severely affected in spring.Specifically,we found that low water levels in autumn led to the expansion of sedges,and low water levels in spring led to the expansion of reeds.The results were well corroborated through comparisons of the vegetation distribution patterns over the last two decades (i.e.,the 1990s and 2000s),which may shed light on corresponding water resource and wetland management.
基金This study was supported by the National Key Research and Development Program of China(No.2018YFE0122200)National Natural Science Foundation of China(No.52077078)Fundamental Research Funds for the Central Universities(No.2020MS090).
文摘To address the significant lifecycle degradation and inadequate state of charge(SOC)balance of electric vehicles(EVs)when mitigating wind power fluctuations,a dynamic grouping control strategy is proposed for EVs based on an improved k-means algorithm.First,a swing door trending(SDT)algorithm based on compression result feedback was designed to extract the feature data points of wind power.The gating coefficient of the SDT was adjusted based on the compression ratio and deviation,enabling the acquisition of grid-connected wind power signals through linear interpolation.Second,a novel algorithm called IDOA-KM is proposed,which utilizes the Improved Dingo Optimization Algorithm(IDOA)to optimize the clustering centers of the k-means algorithm,aiming to address its dependence and sensitivity on the initial centers.The EVs were categorized into priority charging,standby,and priority discharging groups using the IDOA-KM.Finally,an two-layer power distribution scheme for EVs was devised.The upper layer determines the charging/discharging sequences of the three EV groups and their corresponding power signals.The lower layer allocates power signals to each EV based on the maximum charging/discharging power or SOC equalization principles.The simulation results demonstrate the effectiveness of the proposed control strategy in accurately tracking grid power signals,smoothing wind power fluctuations,mitigating EV degradation,and enhancing the SOC balance.
基金supported by the National Magnetic Confinement Fusion Energy R&D Program of China (Nos. 2019YFE03030000 and 2022YFE03020004)National Natural Science Foundation of China (Nos. 12105187, 11905250 and 11975275)+1 种基金the China Postdoctoral Science Foundation (No. 2021M702245)the Users with Excellence Program of Hefei Science Center, CAS (No. 2021HSC-UE014)。
文摘A novel electromagnetic probe array(EMPA) diagnostic, which consists of a magnetic probe array and an electrostatic probe array, has recently been developed on EAST. The EMPA is fixed near the first wall at horizontal port P. The magnetic probe array of the EMPA consists of 24 identical magnetic probes, each of them capable of measuring toroidal, poloidal and radial magnetic fluctuations simultaneously, providing additional toroidal magnetic fluctuation measurements compared with the regular magnetic probes on EAST. With a higher sampling rate and self-resonant frequency, the EMPA magnetic probes can provide higher frequency magnetic fluctuation measurements. The magnetic probe array of the EMPA is composed of two parallel layers of magnetic probes with a radial distance of 63 mm, and each layer of magnetic probes is arranged in four poloidal rows and three toroidal columns. The compact arrangement of the EMPA magnetic probe array largely improves the toroidal mode number measurement ability from-8≤ n≤ 8 to-112≤ n≤ 112, and also improves the high poloidal wave number measurement ability of magnetic fluctuations compared with the regular high frequency magnetic probes on EAST. The electrostatic probe array of the EMPA consists of two sets of four-tip probes and a single-tip probe array with three poloidal rows and four toroidal columns. It complements the electrostatic parameter measurements behind the main limiter and near the first wall in EAST. The engineering details of the EMPA diagnostic, including the mechanical system, the electrical system, the acquisition and control system, and the effective area calibration, are presented. The preliminary applications of the EMPA in L-mode and H-mode discharges on EAST have demonstrated that the EMPA works well for providing information on the magnetic and electrostatic fluctuations and can contribute to deeper physical analysis in future EAST experiments.
基金supported by the National Key R&D Program of China(Nos.2022YFE03100002,2017YFE0301201 and 2018YFE0303102)Sichuan Science and Technology Program(Nos.2022JDJQ0038 and 2020JDTD0030)National Natural Science Foundation of China(No.12205087)。
文摘In this article,the design of a Lyman-alpha-based beam emission spectroscopy(LAB)diagnostic on the HL-2A tokamak has been proposed for the first time.The purpose of this novel diagnostic is to measure density fluctuations of tokamak plasma.The light-collection system of LAB,which consists of the first mirror and two groups of coaxial double-mirror telescopes,can realize a twosegmented viewing field ofρ=0–0.2 andρ=0.75–1,which is optimized to measure plasma density fluctuation,not only in the edge transport barrier region but also in the internal transport barrier region,to investigate the underlying physics of turbulence in tokamaks.Spectrometers are developed to separate out the Doppler-shifted target line(122.03 and 122.17 nm)from the background Lyman-alpha line(121.53 nm).Here,30 Core-LAB channels and 30 Edge-LAB channels are under development on the HL-2A tokamak.It has high radial spatial resolutions of about 2.7 mm and 3.3 mm for the core and edge channels,respectively.Taking the high light intensity of this Lyman-alpha line into account,temporal resolution of 200 k Hz can be ensured by broad bandwidth amplifiers.This high spatio-temporal resolution makes LAB a potential keen tool to experimentally investigate tokamak plasma physics.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11925406 and 12090053)the National Key R&D Program of China(Grant No.2019YFA0709303)。
文摘The bacterial flagellar motor is a nanometer-sized rotary motor that generates the torque to drive the rotation of the flagellar filament.The output torque is an important property of the motor.The motor rotation was usually monitored by attaching aμm-sized bead to a shortened flagellar filament,and the torque was extracted by calculating the torque due to the viscous drag of the medium on the bead rotation.We sought for an independent extraction of the torque from thermal fluctuation in the motor rotation using the fluctuation theorem(FT).However,we identified an overwhelming fluctuation beyond the thermal noise that precluded the use of FT.We further characterized the timescale and the amplitude of this fluctuation,finding that it was probably due to the stepping of the motor.The amplitude of torque fluctuation we characterized here provided new information on the torque-generating interaction potential curve.
基金supported by the MSIT(Ministry of Science and ICT),Korea,under the Innovative Human Resource Development for Local Intellectualization support program(IITP-2022-RS-2022-00156287)supervised by the IITP(Institute for Information&communications Technology Planning&Evaluation)supported by Institute for Information&communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(No.2022-0-01203。
文摘The rapid expansion of the non-fungible token(NFT)market has attracted many investors.However,studies on the NFT price fluctuations have been relatively limited.To date,the machine learning approach has not been used to demonstrate a specific error in NFT sale price fluctuation prediction.The aim of this study was to develop a prediction model for NFT price fluctuations using the NFT trading information obtained from OpenSea,the world’s largest NFT marketplace.We used Python programs to collect data and summarized them as:NFT information,collection information,and related account information.AdaBoost and Random Forest(RF)algorithms were employed to predict the sale price and price fluctuation of NFTs using regression and classification models,respectively.We found that the NFT related account information,especially the number of favorites and activity status of creators,confer a good predictive power to both the models.AdaBoost in the regression model had more accurate predictions,the root mean square error(RMSE)in predicting NFT sale price was 0.047.In predicting NFT sale price fluctuations,RF performed better,which the area under the curve(AUC)reached 0.956.We suggest that investors should pay more attention to the information of NFT creators.We anticipate that these prediction models will reduce the number of investment failures for the investors.