Effect of quenching process on the microstrucmre and mechanical properties of a kind of seamless tubes of steel 28CrMnMoV was investigated. Then, an investigation on the influence of two different quenching processes ...Effect of quenching process on the microstrucmre and mechanical properties of a kind of seamless tubes of steel 28CrMnMoV was investigated. Then, an investigation on the influence of two different quenching processes on the ductile-brittle transition behavior of this steel was undertaken. The ductile-brittle transition temperatures of the steel by two different quenching processes were also determined. The results show that a good combination of mechanical properties can be obtained through austenitizing experimental steel at 800 ℃ or 890 ℃ followed by tempering at 630 ℃. Ductile-to-brittle transition temperature of 28CrMnMoV steel austenitized at 800 ℃ followed by tempering at 640 ℃ is about -73 ℃, which is much lower than the value -37 ℃ when the steel was austenitized at 890℃ and then tempered at 650 ℃. This indicates that subcritical quenching process could decrease largely the ductile-to-brittle transition temperature of 28CrMnMoV steel.展开更多
The effect of undissolved ferrite amount in subcritically quenched 42CrMo steel on contact fatigue properties and failure mechanism were studied. The amount of undissolved ferrite in the steel were 0%,3%,10%,15% and 2...The effect of undissolved ferrite amount in subcritically quenched 42CrMo steel on contact fatigue properties and failure mechanism were studied. The amount of undissolved ferrite in the steel were 0%,3%,10%,15% and 20% in volume fraction, respectively. The experimental results show that the existence of undissolved ferrite can increase the contact fatigue life The contact fatigue life can be prolonged with increasing the amounts of undissolved ferrite The grain size can be fined by using subcritical quenching process and the area of phase boundaries can also be greatly increased. The stress relaxation and grain refinement due to occurring of plastic deformation are main reasons for improving the fatigue life. The existence of undissolved ferrite can increase the crack initiation period. Under the experiment conditions, when the amount of undissolved ferrite is 10%, the longest contact fatigue life can be the obtained.展开更多
基金Project(2008FJ1003)supported by the Hunan Province Science and Technology,China
文摘Effect of quenching process on the microstrucmre and mechanical properties of a kind of seamless tubes of steel 28CrMnMoV was investigated. Then, an investigation on the influence of two different quenching processes on the ductile-brittle transition behavior of this steel was undertaken. The ductile-brittle transition temperatures of the steel by two different quenching processes were also determined. The results show that a good combination of mechanical properties can be obtained through austenitizing experimental steel at 800 ℃ or 890 ℃ followed by tempering at 630 ℃. Ductile-to-brittle transition temperature of 28CrMnMoV steel austenitized at 800 ℃ followed by tempering at 640 ℃ is about -73 ℃, which is much lower than the value -37 ℃ when the steel was austenitized at 890℃ and then tempered at 650 ℃. This indicates that subcritical quenching process could decrease largely the ductile-to-brittle transition temperature of 28CrMnMoV steel.
文摘The effect of undissolved ferrite amount in subcritically quenched 42CrMo steel on contact fatigue properties and failure mechanism were studied. The amount of undissolved ferrite in the steel were 0%,3%,10%,15% and 20% in volume fraction, respectively. The experimental results show that the existence of undissolved ferrite can increase the contact fatigue life The contact fatigue life can be prolonged with increasing the amounts of undissolved ferrite The grain size can be fined by using subcritical quenching process and the area of phase boundaries can also be greatly increased. The stress relaxation and grain refinement due to occurring of plastic deformation are main reasons for improving the fatigue life. The existence of undissolved ferrite can increase the crack initiation period. Under the experiment conditions, when the amount of undissolved ferrite is 10%, the longest contact fatigue life can be the obtained.