Lithium metal batteries represent promising candidates for high-energy-density batteries, however, many challenges must still be overcome,e.g., interface instability and dendrite growth. In this work, nano silica aero...Lithium metal batteries represent promising candidates for high-energy-density batteries, however, many challenges must still be overcome,e.g., interface instability and dendrite growth. In this work, nano silica aerogel was employed to generate a hybrid film with high lithium ion conductivity(0.6 mS cm^(-1)at room temperature) via an in situ crosslinking reaction. TOF-SIMS profile analysis has revealed conversion mechanism of hybrid film to Li–Si alloy/Li F biphasic interface layer, suggesting that the Li–Si alloy and Li F-rich interface layer promoted rapid Li+transport and shielded the Li anodes from corrosive reactions with electrolyte-derived products. When coupled with nickel-cobalt-manganese-based cathodes, the batteries achieve outstanding capacity retention over 1000 cycles at 1 C. Additionally the developed film coated on Li enabled high coulombic efficiency(99.5%) after long-term cycling when coupled with S cathodes. Overall, the results presented herein confirm an effective strategy for the development of high-energy batteries.展开更多
A natural attapulgite (ATP)‐based catalyst, sulfated In2O3‐ATP (SO42-/In2O3‐ATP), was obtained by an impregnation‐calcination method and was used to efficiently and selectively produce the useful platform chem...A natural attapulgite (ATP)‐based catalyst, sulfated In2O3‐ATP (SO42-/In2O3‐ATP), was obtained by an impregnation‐calcination method and was used to efficiently and selectively produce the useful platform chemical 5‐hydroxymethylfurfural (HMF) from hexoses. Some important reaction param‐eters were studied, revealing that Lewis and Br-nsted acid sites on SO42-/In2O3‐ATP catalyze glu‐cose isomerization and fructose dehydration. The yields of HMF from glucose and fructose were 40.2%and 46.2%, respectively, using the optimal conditions of 180℃ for 60 min with 10 wt%of solid acid catalyst in a mixture of γ‐valerolactone‐water (9:1).展开更多
Immobilization biocatalysis is a potential technology to improve the activity and stability of biocatalysts in nonaqueous systems for efficient industrial production.Alginate-chitosan(AC)microcapsules were prepared as...Immobilization biocatalysis is a potential technology to improve the activity and stability of biocatalysts in nonaqueous systems for efficient industrial production.Alginate-chitosan(AC)microcapsules were prepared as immobilization carriers by emulsifi cation-internal gelation and complexation reaction,and their contribution on facilitating the growth and metabolism of yeast cells were testifi ed successfully in culture medium-solvent biphasic systems.The cell growth in AC microcapsules is superior to that in alginate beads,and the cells in both immobilization carriers maintain much higher activity than free cells,which demonstrates AC microcapsules can confer yeast cells the ability to resist the adverse effect of solvent.Moreover,the performance of AC microcapsules in biphasic systems could be improved by adjusting the formation of outer polyelectrolyte complex(PEC)membrane to promote the cell growth and metabolic ability under the balance of resisting solvent toxicity and permitting substrate diffusion.Therefore,these findings are quite valuable for applying AC microcapsules as novel immobilization carriers to realize the biotransformation of value-added products in aqueous-solvent biphasic systems.展开更多
Phosphoric acid treated niobic acid(NbP)was used for the dehydration of xylose to furfural in biphasic solvent system,which was found to exhibit the best performance among the tested catalysts.The excellent performanc...Phosphoric acid treated niobic acid(NbP)was used for the dehydration of xylose to furfural in biphasic solvent system,which was found to exhibit the best performance among the tested catalysts.The excellent performance of NbP could be explained by the better synergistic cooperation between Bro¨nsted and Lewis acid sites.Moreover,NbP showed good stability and no obvious deactivation or leaching of Nb could be observed after six continuous recycles.展开更多
Esterification of carboxylic acid with equimolar amounts alcohol can be efficiently catalyzed by biphasic 4-(benzylamino)formoyldiphenylammonium triflate (BDPAT, 3) in good yield. The catalyst can be easily recovered...Esterification of carboxylic acid with equimolar amounts alcohol can be efficiently catalyzed by biphasic 4-(benzylamino)formoyldiphenylammonium triflate (BDPAT, 3) in good yield. The catalyst can be easily recovered without loss of activity.展开更多
Microalgae,a sustainable source of multi beneficial components has been discovered and could be utilised in pharmaceutical,bioenergy and food applications.This study aims to investigate the sugaring-out effect on the ...Microalgae,a sustainable source of multi beneficial components has been discovered and could be utilised in pharmaceutical,bioenergy and food applications.This study aims to investigate the sugaring-out effect on the recovery of protein from wet green microalga,Chlorella sorokiniana CY1 which was assisted with sonication.A comparison of monosaccharides and disaccharides as one of the phaseforming constituents shows that the monosaccharides,glucose was the most suitable sugar in forming the phases with acetonitrile to enhance the production of protein(52% of protein).The protein productivity of microalgae was found to be significantly influenced by the volume ratio of both phases,as the yield of protein increased to 77%.The interval time between the sonication as well as the sonication modes were influencing the protein productivity as well.The optimum protein productivity was obtained with 10s of resting time in between sonication.Pulse mode of sonication was suitable to break down the cell wall of microalgae compared to continuous mode as a lower protein yield was obtained with the application of continuous mode.The optimum condition for protein extraction were found as followed:200g/L glucose as bottom phase with volume ratio of 1:1.25,10s of resting time for ultrasonication,5s of ultrasonication in pulse mode and 0.25g of biomass weight.The high yield of protein about 81% could be obtained from microalgae which demonstrates the potential of this source and expected to play an important role in the future.展开更多
Rh nanoparticles stabilized by PEG-substituted triphenyl-phosphine(PETPP,P[C6H4-p-(OCH2CH2)nOH]3) combining double stabilization effects demonstrated high activity and good recyclability in aqueous biphasic hydrog...Rh nanoparticles stabilized by PEG-substituted triphenyl-phosphine(PETPP,P[C6H4-p-(OCH2CH2)nOH]3) combining double stabilization effects demonstrated high activity and good recyclability in aqueous biphasic hydrogenation of benzene.The value of turnover frequency(TOF) was 3333 h^-1.Furthermore,the rhodium nanoparticle catalyst could be easily recycled for five times without loss in activity.展开更多
Biphasic calcium phosphate (BCP) consisting of hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) was successfully synthesized by new hydrothermal route using β-TCP as precursor. The X-ray diffraction analysis ...Biphasic calcium phosphate (BCP) consisting of hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) was successfully synthesized by new hydrothermal route using β-TCP as precursor. The X-ray diffraction analysis of as-synthesized powder indicated that β-TCP had been transformed into HA phase and amount of HA formed gradually increased with prolonged time. The results revealed that the recent technique may be able to control the composition of the obtained BCP which would influence the bioresorbability. Porous body of BCP was prepared by impregnation of polymeric sponge template with the slurry of the powder followed by sintering. The X-ray diffraction of porous product revealed that the composition of β-TCP increased after sintering indicating that HA had been decomposed. Porous BCP obtained from the recent technique possessed both macro and micropores structure which are useful for rapid tissue formation. Besides, the recent porous fabrication technique yielded porous BCP which preserved the sponge template morphology, enabling it to fabricate porous material with controlled pores structure.展开更多
Ketalization of catechol was studied with various carbonyl compounds using metal p-toluenesulfonate as biphasic catalysts. The results showed that copper p-toluenesulfonate was the most efficient catalysts for the rea...Ketalization of catechol was studied with various carbonyl compounds using metal p-toluenesulfonate as biphasic catalysts. The results showed that copper p-toluenesulfonate was the most efficient catalysts for the reaction. The advantages of high activity, stability, reusability and low cost for the simple synthetic procedure made the catalyst one of the best choice for the reaction.展开更多
With the aim of achieving a high 5-hydroxymethylfurfural(HMF)yield from glucose with H-ZSM-5 catalyst at low cost,three inexpensive biphasic reaction systems,H2O?tetrahydrofuran(THF),H2O?2-methyltetrahydrofuran(MeTHF)...With the aim of achieving a high 5-hydroxymethylfurfural(HMF)yield from glucose with H-ZSM-5 catalyst at low cost,three inexpensive biphasic reaction systems,H2O?tetrahydrofuran(THF),H2O?2-methyltetrahydrofuran(MeTHF)and H2O?2-butanol,were discovered and proved to be particularly effective in promoting the formation of HMF from glucose over H-ZSM-5 zeolite.In order to determine the optimal process conditions,the effects of various experimental variables,such as reaction temperature,reaction time,catalyst dosage,volume of organic solvent,as well as inorganic salt type on glucose conversion to HMF in three systems were investigated in detail.It was found that under optimal reaction conditions,H2O?THF,H2O?2-butanol and H2O?MeTHF allowed the glucose dehydration process to achieve HMF yields of up to 61%,59%,and 50%,respectively.Moreover,in the three biphasic systems,the H-ZSM-5 catalyst was also demonstrated to maintain excellent stability.Thus,the catalytic approach proposed in this paper can be believed to have potential prospects for industrially efficient and low-cost production of HMF.展开更多
Terpenoids have drawn much attention to scientists in synthesizing high-performance bio-jet fuels due to their ring structures,which feature potential high densities.Here,a facile biphasic catalytic process has been d...Terpenoids have drawn much attention to scientists in synthesizing high-performance bio-jet fuels due to their ring structures,which feature potential high densities.Here,a facile biphasic catalytic process has been developed for the production of high-density tricyclic hydrocarbon biofuels from a monoterpenoid,1,8-cineole,using sulfuric acid(H2SO4)as the homogeneous catalyst.A^100%conversion of 1,8-cineole and a>40%carbon yield of cyclic dimers were achieved at 100℃within two hours.The mechanism for the acid-catalyzed conversion of 1,8-cineole to cyclic hydrocarbon dimers were explored.In particular,the formation of the diene intermediates and the following dimerization of dienes was essential to synthesize tricyclic terpene dimers.The biphasic catalytic process accelerated the deoxygenation rate and enabled the dimerization with the aid of organic solvent while controlling the reaction rates to avoid the formation of solid residues.Moreover,this process also facilitated the product separation by organic solvent extraction while enabling easy recycle of the homogenous catalysts.展开更多
Efficient and selective production of 5-hydroxymethylfurfural(HMF) from glucose was achieved in the presence of zirconium phosphate(ZrPO) catalyst in a biphasic system.With the use of this catalyst,a high HMF yield of...Efficient and selective production of 5-hydroxymethylfurfural(HMF) from glucose was achieved in the presence of zirconium phosphate(ZrPO) catalyst in a biphasic system.With the use of this catalyst,a high HMF yield of 56.8% was obtained from glucose in a water-tetrahydrofuran(THF) biphasic system.Characterization results showed that such catalyst had weak to strong acid sites and contained both Lewis and Br?nsted acid sites.The results of comparative experiments over some other solid acid catalysts demonstrated that the Lewis acid sites on the ZrPO catalyst played a crucial role in the isomerization of glucose to fructose and the Br?nsted ones were active in the dehydration of generated fructose to HMF.Moreover,less levulinic acid(LA) and formic acid(FA)(0.5%) were detected in the reaction solution,indicating that this ZrPO catalyst exhibited high selectivity towards the formation of HMF.Furthermore,the ZrPO catalyst was very stable and could maintain its activity after being used for six times.展开更多
Based on the F-H model, a simulation system to study the excitation properties of myelinated nerve fibers was developed. In order to minimize electrochemical damage of nerve tissue, a method was studied to selectively...Based on the F-H model, a simulation system to study the excitation properties of myelinated nerve fibers was developed. In order to minimize electrochemical damage of nerve tissue, a method was studied to selectively stimulate the smaller nerve fibers by single electrode employing charge-balanced biphasic rectangular pulses, in which an anode pulse with lower amplitude and longer pulse width was added before a cathode pulse with higher amplitude and short pulse width. The simulation results proved that the method is effective in selective stimulation of smaller nerve fibers in a compound nerve trunk in certain conditions. The feasibility of this method was also verified by animal experiments on the sciatic nerve trunks of toads. The amplitude and delay of compound action potential and the results of collision experiments proved that the method is valid. These methods will be very useful in functional neuromuscular stimulation.展开更多
Trichloroethylene (TCE) is a major pollutant that affects both occupational and general environments. The liver is an important target organ of TCEE. Substantial efforts and remarkable progress into understanding TC...Trichloroethylene (TCE) is a major pollutant that affects both occupational and general environments. The liver is an important target organ of TCEE. Substantial efforts and remarkable progress into understanding TCE cytotoxicity have been made in cultured liver cells. However, the molecular mechanisms by which TCE induces hepatotoxicity are not well understood. SET (also known as protein phosphatase 2A inhibitor, 12PP2A, or template-activating factor-I, TAF-D is a nuclear protein that regulates histone modification, gene transcription, DNA replication, nucleosome assembly,展开更多
The impact energy decay in a step-up chain containing two sections is numerically studied.There is a marked biphasic behavior of energy decay in the first section.Two sections close to the interface are in compression...The impact energy decay in a step-up chain containing two sections is numerically studied.There is a marked biphasic behavior of energy decay in the first section.Two sections close to the interface are in compression state.The degree of compression of the first section first decreases and becomes weakest at "crossing" time of biphasic behavior of energy,then increases.The further calculations provide the dependence of the character time on mass ratio(m1/m2),where m1 and m2are the particle mass in the first and second section respectively.The bigger the α(α = [(? m1-m2)/(? m1+ m2)]2 with? = 1.345),the bigger the energy ratio is.The multipulse structure restricts the transport of energy.展开更多
Thermoregulated organic biphasic system composed of triethylene glycol monomethyl ether (TGME) and n-heptane was first applied to the hydrogenation of 1-octene. Under the optimal conditions: P(H2)=5.0MPa, T=80℃,...Thermoregulated organic biphasic system composed of triethylene glycol monomethyl ether (TGME) and n-heptane was first applied to the hydrogenation of 1-octene. Under the optimal conditions: P(H2)=5.0MPa, T=80℃, t=3h, 1-octene/Ru=1000 (molar ratio), the yield of n-octane reached up to 99.6%. Furthermore, the simply decanted catalyst could be reused for 10 times without apparent loss of catalytic activity.展开更多
Biphasic calcium phosphate (BCP) powders were prepared by hydrolyzation proc-ess and surface-modified by directly grafted L-lactide (LLA) onto the surface of BCP through a chemical linkage. The grafting ratio of o...Biphasic calcium phosphate (BCP) powders were prepared by hydrolyzation proc-ess and surface-modified by directly grafted L-lactide (LLA) onto the surface of BCP through a chemical linkage. The grafting ratio of organic groups was 9 wt%. After surface modification, the surface of BCP powders was covered by the lamella-shaped crystal. Poly (L-lactide) was mixed with BCP to form the BCP/PLLA biocomposite. Modified BCP (mBCP) particles could be uniformly dis-persed in PLLA matrix. The compressive strength of the mBCP/PLLA composite is 115 MPa, 28% higher than that of unmodified-BCP/PLLA composite. The improved mechanical strength is attributed to the enhanced adhesion between the inorganic BCP filler and the organic PLLA matrix.展开更多
Igor V. Venin since 1966 and up till now has been an outstanding engineer of the Soviet Union and Ukraine, who has dedicated all his life to defibrillators development. Under his guidance 16 models of DC defibrillator...Igor V. Venin since 1966 and up till now has been an outstanding engineer of the Soviet Union and Ukraine, who has dedicated all his life to defibrillators development. Under his guidance 16 models of DC defibrillators with different waveforms, including the world’s first defibrillator with biphasic waveform (1971) have been developed and put into commercial production.展开更多
The HA/β-TCP biphasic bioceramics stand out on researches in different areas of biomedical applications. These bioceramics with microporous microstructures also stand out in biomedical applications on controlled drug...The HA/β-TCP biphasic bioceramics stand out on researches in different areas of biomedical applications. These bioceramics with microporous microstructures also stand out in biomedical applications on controlled drug release. This study aimed at the synthesis of the biphasic HA/β-TCP powder, and at the elaboration and characterization of the microporous biphasic HA/β-TCP granular biomaterial. The microporous granular material was elaborated through the process of ceramic powder sieving (200 μm < d < 500 μm mesh sizes). The granular material was sintered at 1100°C/2 h, providing the microporous biphasic granular biomaterial. The drug loading in the biomaterial was performed through the high vacuum method. The results here presented are related to the synthesis method and elaboration of the biphasic biomaterial. The results obtained from the drug loading through the high vacuum method conducted the incorporation of the drug onto the surface and into the microporous granular biomaterial.展开更多
Incorporation of trace elements into calcium phosphate structure is of great interest for the development of artificial bone implants. Biphasic calcium phosphate (BCP) composed of hydroxyapatite (HA) and β-tricalcium...Incorporation of trace elements into calcium phosphate structure is of great interest for the development of artificial bone implants. Biphasic calcium phosphate (BCP) composed of hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) have been synthesized in the presence of magnesium (5 M% - 20 M%) by gel method under physiological conditions. Crystallization of Mg-BCP in the gel medium mimics the Mg intake in the human body. Powder X-ray dif- fraction and Fourier transform infrared analyses confirmed that the Mg doping leads to the enrichment of β-TCP phase and suppresses the HA content in BCP. Nanoindentation studies indicate a significant decrease in hardness and elastic modulus values of BCP due to Mg doping. In vitro bioactivity study has confirmed the formation of apatite layer on the Mg doped samples making it suitable for bone replacement. The results suggest that the optimum Mg doping promotes the bioactivity which is perquisite for biomedical applications.展开更多
基金the support from National Natural Science Foundation of China (22179006)International Science & Technology Cooperation Program of China under Contract No.2019YFE0100200+3 种基金National Natural Science Foundation of China (52072036)NSAF (No.U1930113)Guangdong Key Laboratory of Battery Safety,China (No.2019B121203008)China Postdoctoral Science Foundation (No.2021TQ0034)。
文摘Lithium metal batteries represent promising candidates for high-energy-density batteries, however, many challenges must still be overcome,e.g., interface instability and dendrite growth. In this work, nano silica aerogel was employed to generate a hybrid film with high lithium ion conductivity(0.6 mS cm^(-1)at room temperature) via an in situ crosslinking reaction. TOF-SIMS profile analysis has revealed conversion mechanism of hybrid film to Li–Si alloy/Li F biphasic interface layer, suggesting that the Li–Si alloy and Li F-rich interface layer promoted rapid Li+transport and shielded the Li anodes from corrosive reactions with electrolyte-derived products. When coupled with nickel-cobalt-manganese-based cathodes, the batteries achieve outstanding capacity retention over 1000 cycles at 1 C. Additionally the developed film coated on Li enabled high coulombic efficiency(99.5%) after long-term cycling when coupled with S cathodes. Overall, the results presented herein confirm an effective strategy for the development of high-energy batteries.
基金supported by the Fundamental Research Funds for the Central Universities (TD2011-11,BLYJ201519)Beijing Higher Education Young Elite Teacher Project (YETP0765)+2 种基金National Natural Science Foundation of China (31170556)New Century Excellent Talents in University (NCET-13-0671)State Forestry Administration of China (201204803)~~
文摘A natural attapulgite (ATP)‐based catalyst, sulfated In2O3‐ATP (SO42-/In2O3‐ATP), was obtained by an impregnation‐calcination method and was used to efficiently and selectively produce the useful platform chemical 5‐hydroxymethylfurfural (HMF) from hexoses. Some important reaction param‐eters were studied, revealing that Lewis and Br-nsted acid sites on SO42-/In2O3‐ATP catalyze glu‐cose isomerization and fructose dehydration. The yields of HMF from glucose and fructose were 40.2%and 46.2%, respectively, using the optimal conditions of 180℃ for 60 min with 10 wt%of solid acid catalyst in a mixture of γ‐valerolactone‐water (9:1).
基金Supported by the National Natural Science Foundation of China(No.21276033)the Open Foundation of the State Key Laboratory of Bioactive Seaweed Substances(Nos.SKL-BASS1707,SKL-BASS1711)the Liaoning Provincial BaiQianWan Talents Program(No.2017-6)
文摘Immobilization biocatalysis is a potential technology to improve the activity and stability of biocatalysts in nonaqueous systems for efficient industrial production.Alginate-chitosan(AC)microcapsules were prepared as immobilization carriers by emulsifi cation-internal gelation and complexation reaction,and their contribution on facilitating the growth and metabolism of yeast cells were testifi ed successfully in culture medium-solvent biphasic systems.The cell growth in AC microcapsules is superior to that in alginate beads,and the cells in both immobilization carriers maintain much higher activity than free cells,which demonstrates AC microcapsules can confer yeast cells the ability to resist the adverse effect of solvent.Moreover,the performance of AC microcapsules in biphasic systems could be improved by adjusting the formation of outer polyelectrolyte complex(PEC)membrane to promote the cell growth and metabolic ability under the balance of resisting solvent toxicity and permitting substrate diffusion.Therefore,these findings are quite valuable for applying AC microcapsules as novel immobilization carriers to realize the biotransformation of value-added products in aqueous-solvent biphasic systems.
基金supported by the Natural Science Foundation of China (No.21106143)100-talent project of Dalian Institute of Chemical Physics (DICP)the Independent Innovation Foundation of State Key Laboratory of Catalysis (No.R201113)
文摘Phosphoric acid treated niobic acid(NbP)was used for the dehydration of xylose to furfural in biphasic solvent system,which was found to exhibit the best performance among the tested catalysts.The excellent performance of NbP could be explained by the better synergistic cooperation between Bro¨nsted and Lewis acid sites.Moreover,NbP showed good stability and no obvious deactivation or leaching of Nb could be observed after six continuous recycles.
文摘Esterification of carboxylic acid with equimolar amounts alcohol can be efficiently catalyzed by biphasic 4-(benzylamino)formoyldiphenylammonium triflate (BDPAT, 3) in good yield. The catalyst can be easily recovered without loss of activity.
基金Supported by the University of Malaya,Kuala Lumpur,Malaysia under SATU joint research scheme(No.ST004-2017)the International Cooperation Seeds Funding of Nanjing Agricultural University(No.2018-AH-04)
文摘Microalgae,a sustainable source of multi beneficial components has been discovered and could be utilised in pharmaceutical,bioenergy and food applications.This study aims to investigate the sugaring-out effect on the recovery of protein from wet green microalga,Chlorella sorokiniana CY1 which was assisted with sonication.A comparison of monosaccharides and disaccharides as one of the phaseforming constituents shows that the monosaccharides,glucose was the most suitable sugar in forming the phases with acetonitrile to enhance the production of protein(52% of protein).The protein productivity of microalgae was found to be significantly influenced by the volume ratio of both phases,as the yield of protein increased to 77%.The interval time between the sonication as well as the sonication modes were influencing the protein productivity as well.The optimum protein productivity was obtained with 10s of resting time in between sonication.Pulse mode of sonication was suitable to break down the cell wall of microalgae compared to continuous mode as a lower protein yield was obtained with the application of continuous mode.The optimum condition for protein extraction were found as followed:200g/L glucose as bottom phase with volume ratio of 1:1.25,10s of resting time for ultrasonication,5s of ultrasonication in pulse mode and 0.25g of biomass weight.The high yield of protein about 81% could be obtained from microalgae which demonstrates the potential of this source and expected to play an important role in the future.
基金support from the National Natural Science Foundation of China(No.20573015)the Program for New Century Excellent Talents in University(No.NCET-07-0138)the Science and Technology Project in Universities from the Education Department of Liaoning Province(No.2008T233)
文摘Rh nanoparticles stabilized by PEG-substituted triphenyl-phosphine(PETPP,P[C6H4-p-(OCH2CH2)nOH]3) combining double stabilization effects demonstrated high activity and good recyclability in aqueous biphasic hydrogenation of benzene.The value of turnover frequency(TOF) was 3333 h^-1.Furthermore,the rhodium nanoparticle catalyst could be easily recycled for five times without loss in activity.
文摘Biphasic calcium phosphate (BCP) consisting of hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) was successfully synthesized by new hydrothermal route using β-TCP as precursor. The X-ray diffraction analysis of as-synthesized powder indicated that β-TCP had been transformed into HA phase and amount of HA formed gradually increased with prolonged time. The results revealed that the recent technique may be able to control the composition of the obtained BCP which would influence the bioresorbability. Porous body of BCP was prepared by impregnation of polymeric sponge template with the slurry of the powder followed by sintering. The X-ray diffraction of porous product revealed that the composition of β-TCP increased after sintering indicating that HA had been decomposed. Porous BCP obtained from the recent technique possessed both macro and micropores structure which are useful for rapid tissue formation. Besides, the recent porous fabrication technique yielded porous BCP which preserved the sponge template morphology, enabling it to fabricate porous material with controlled pores structure.
基金National Key Project of Scientific and Technical Supporting Programs Funded by Ministry of Science & Tech- nology of China (No.2006BAE03B06)
文摘Ketalization of catechol was studied with various carbonyl compounds using metal p-toluenesulfonate as biphasic catalysts. The results showed that copper p-toluenesulfonate was the most efficient catalysts for the reaction. The advantages of high activity, stability, reusability and low cost for the simple synthetic procedure made the catalyst one of the best choice for the reaction.
基金Project(3207049713)supported by the Scientific Research Foundation of Graduate School of Southeast University,China
文摘With the aim of achieving a high 5-hydroxymethylfurfural(HMF)yield from glucose with H-ZSM-5 catalyst at low cost,three inexpensive biphasic reaction systems,H2O?tetrahydrofuran(THF),H2O?2-methyltetrahydrofuran(MeTHF)and H2O?2-butanol,were discovered and proved to be particularly effective in promoting the formation of HMF from glucose over H-ZSM-5 zeolite.In order to determine the optimal process conditions,the effects of various experimental variables,such as reaction temperature,reaction time,catalyst dosage,volume of organic solvent,as well as inorganic salt type on glucose conversion to HMF in three systems were investigated in detail.It was found that under optimal reaction conditions,H2O?THF,H2O?2-butanol and H2O?MeTHF allowed the glucose dehydration process to achieve HMF yields of up to 61%,59%,and 50%,respectively.Moreover,in the three biphasic systems,the H-ZSM-5 catalyst was also demonstrated to maintain excellent stability.Thus,the catalytic approach proposed in this paper can be believed to have potential prospects for industrially efficient and low-cost production of HMF.
文摘Terpenoids have drawn much attention to scientists in synthesizing high-performance bio-jet fuels due to their ring structures,which feature potential high densities.Here,a facile biphasic catalytic process has been developed for the production of high-density tricyclic hydrocarbon biofuels from a monoterpenoid,1,8-cineole,using sulfuric acid(H2SO4)as the homogeneous catalyst.A^100%conversion of 1,8-cineole and a>40%carbon yield of cyclic dimers were achieved at 100℃within two hours.The mechanism for the acid-catalyzed conversion of 1,8-cineole to cyclic hydrocarbon dimers were explored.In particular,the formation of the diene intermediates and the following dimerization of dienes was essential to synthesize tricyclic terpene dimers.The biphasic catalytic process accelerated the deoxygenation rate and enabled the dimerization with the aid of organic solvent while controlling the reaction rates to avoid the formation of solid residues.Moreover,this process also facilitated the product separation by organic solvent extraction while enabling easy recycle of the homogenous catalysts.
基金supported financially by the National Science Foundation of China(No.21273071)the Science and Technology Commission of Shanghai Municipality(13520711400,13JC1401902,10dz2220500)the Fundamental Research Funds for the Central Universities of China and the SINOPEC project(No.115046)
文摘Efficient and selective production of 5-hydroxymethylfurfural(HMF) from glucose was achieved in the presence of zirconium phosphate(ZrPO) catalyst in a biphasic system.With the use of this catalyst,a high HMF yield of 56.8% was obtained from glucose in a water-tetrahydrofuran(THF) biphasic system.Characterization results showed that such catalyst had weak to strong acid sites and contained both Lewis and Br?nsted acid sites.The results of comparative experiments over some other solid acid catalysts demonstrated that the Lewis acid sites on the ZrPO catalyst played a crucial role in the isomerization of glucose to fructose and the Br?nsted ones were active in the dehydration of generated fructose to HMF.Moreover,less levulinic acid(LA) and formic acid(FA)(0.5%) were detected in the reaction solution,indicating that this ZrPO catalyst exhibited high selectivity towards the formation of HMF.Furthermore,the ZrPO catalyst was very stable and could maintain its activity after being used for six times.
基金Supported by NNSFC!(3930 0 0 36 3990 0 0 37)+1 种基金 China Postdoctoral Science Foundation!(1998No.9)
文摘Based on the F-H model, a simulation system to study the excitation properties of myelinated nerve fibers was developed. In order to minimize electrochemical damage of nerve tissue, a method was studied to selectively stimulate the smaller nerve fibers by single electrode employing charge-balanced biphasic rectangular pulses, in which an anode pulse with lower amplitude and longer pulse width was added before a cathode pulse with higher amplitude and short pulse width. The simulation results proved that the method is effective in selective stimulation of smaller nerve fibers in a compound nerve trunk in certain conditions. The feasibility of this method was also verified by animal experiments on the sciatic nerve trunks of toads. The amplitude and delay of compound action potential and the results of collision experiments proved that the method is valid. These methods will be very useful in functional neuromuscular stimulation.
基金supported by NSFC (the National Natural Science Foundation of China) [81273126, 30972454]the Key Project of Guangdong Natural Science Foundation [S2012020010903]+2 种基金the Project of Shenzhen Basic Research Plan [JCYJ20120616 154222545]the Upgrade Scheme of Shenzhen Municipal Key Laboratory [CXB201005260068A]Medical Scientific Research Foundation of Guangdong Province (A2012577)
文摘Trichloroethylene (TCE) is a major pollutant that affects both occupational and general environments. The liver is an important target organ of TCEE. Substantial efforts and remarkable progress into understanding TCE cytotoxicity have been made in cultured liver cells. However, the molecular mechanisms by which TCE induces hepatotoxicity are not well understood. SET (also known as protein phosphatase 2A inhibitor, 12PP2A, or template-activating factor-I, TAF-D is a nuclear protein that regulates histone modification, gene transcription, DNA replication, nucleosome assembly,
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61174007 and 61307041)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2013AL014)
文摘The impact energy decay in a step-up chain containing two sections is numerically studied.There is a marked biphasic behavior of energy decay in the first section.Two sections close to the interface are in compression state.The degree of compression of the first section first decreases and becomes weakest at "crossing" time of biphasic behavior of energy,then increases.The further calculations provide the dependence of the character time on mass ratio(m1/m2),where m1 and m2are the particle mass in the first and second section respectively.The bigger the α(α = [(? m1-m2)/(? m1+ m2)]2 with? = 1.345),the bigger the energy ratio is.The multipulse structure restricts the transport of energy.
基金the financial support from the National Natural Science Foundation of China (Grant no. 20376013) the Fok Ying Tung Education Foundation (Grant no. 91071) the Doctorate Program Foundation of Higher Education (Grant no. 20020141004).
文摘Thermoregulated organic biphasic system composed of triethylene glycol monomethyl ether (TGME) and n-heptane was first applied to the hydrogenation of 1-octene. Under the optimal conditions: P(H2)=5.0MPa, T=80℃, t=3h, 1-octene/Ru=1000 (molar ratio), the yield of n-octane reached up to 99.6%. Furthermore, the simply decanted catalyst could be reused for 10 times without apparent loss of catalytic activity.
基金Funded by the Research Fund for the Doctoral Program of Higher Education of China (No. 20060610024)
文摘Biphasic calcium phosphate (BCP) powders were prepared by hydrolyzation proc-ess and surface-modified by directly grafted L-lactide (LLA) onto the surface of BCP through a chemical linkage. The grafting ratio of organic groups was 9 wt%. After surface modification, the surface of BCP powders was covered by the lamella-shaped crystal. Poly (L-lactide) was mixed with BCP to form the BCP/PLLA biocomposite. Modified BCP (mBCP) particles could be uniformly dis-persed in PLLA matrix. The compressive strength of the mBCP/PLLA composite is 115 MPa, 28% higher than that of unmodified-BCP/PLLA composite. The improved mechanical strength is attributed to the enhanced adhesion between the inorganic BCP filler and the organic PLLA matrix.
文摘Igor V. Venin since 1966 and up till now has been an outstanding engineer of the Soviet Union and Ukraine, who has dedicated all his life to defibrillators development. Under his guidance 16 models of DC defibrillators with different waveforms, including the world’s first defibrillator with biphasic waveform (1971) have been developed and put into commercial production.
文摘The HA/β-TCP biphasic bioceramics stand out on researches in different areas of biomedical applications. These bioceramics with microporous microstructures also stand out in biomedical applications on controlled drug release. This study aimed at the synthesis of the biphasic HA/β-TCP powder, and at the elaboration and characterization of the microporous biphasic HA/β-TCP granular biomaterial. The microporous granular material was elaborated through the process of ceramic powder sieving (200 μm < d < 500 μm mesh sizes). The granular material was sintered at 1100°C/2 h, providing the microporous biphasic granular biomaterial. The drug loading in the biomaterial was performed through the high vacuum method. The results here presented are related to the synthesis method and elaboration of the biphasic biomaterial. The results obtained from the drug loading through the high vacuum method conducted the incorporation of the drug onto the surface and into the microporous granular biomaterial.
文摘Incorporation of trace elements into calcium phosphate structure is of great interest for the development of artificial bone implants. Biphasic calcium phosphate (BCP) composed of hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) have been synthesized in the presence of magnesium (5 M% - 20 M%) by gel method under physiological conditions. Crystallization of Mg-BCP in the gel medium mimics the Mg intake in the human body. Powder X-ray dif- fraction and Fourier transform infrared analyses confirmed that the Mg doping leads to the enrichment of β-TCP phase and suppresses the HA content in BCP. Nanoindentation studies indicate a significant decrease in hardness and elastic modulus values of BCP due to Mg doping. In vitro bioactivity study has confirmed the formation of apatite layer on the Mg doped samples making it suitable for bone replacement. The results suggest that the optimum Mg doping promotes the bioactivity which is perquisite for biomedical applications.