Current practice of underground artificial ground freezing(AGF)typically involves huge refrigeration systems of large economic and environmental costs.In this study,a novel AGF technique is proposed deploying availabl...Current practice of underground artificial ground freezing(AGF)typically involves huge refrigeration systems of large economic and environmental costs.In this study,a novel AGF technique is proposed deploying available cold wind in cold regions.This is achieved by a static heat transfer device called thermosyphon equipped with an air insulation layer.A refrigeration unit can be optionally integrated to meet additional cooling requirements.The introduction of air insulation isolates the thermosyphon from ground zones where freezing is not needed,resulting in:(1)steering the cooling resources(cold wind or refrigeration)towards zones of interest;and(2)minimizing refrigeration load.This design is demonstrated using well-validated mathematical models from our previous work based on two-phase enthalpy method of the ground coupled with a thermal resistance network for the thermosyphon.Two Canadian mines are considered:the Cigar Lake Mine and the Giant Mine.The results show that our proposed design can speed the freezing time by 30%at the Giant Mine and by two months at the Cigar Lake Mine.Further,a cooling load of 2.4 GWh can be saved at the Cigar Lake Mine.Overall,this study provides mining practitioners with sustainable solutions of underground AGF.展开更多
The present study has been carried out on a total of 50 available plant species to assess their dust-capturing capacity and biochemical performances in and around open cast granite mine areas of Jhansi district and Bu...The present study has been carried out on a total of 50 available plant species to assess their dust-capturing capacity and biochemical performances in and around open cast granite mine areas of Jhansi district and Bundelkhand University campus treated as control site. Plant species existing under a polluted environment for a long time may be considered as potentially resistant species and recommended for green belt design in mining areas, especially to cope with dust pollution. Results showed the pollution level, especially of mining-originated dust particles holding capacity of leaves and effects of different biochemical parameters (Total Chlorophyll, Protein and Carotenoid) of existing plant species both from mining areas as well as from Bundelkhand University campus. Based on their performances, Tectona grandis L., Ficus hispida L., Calotropis procera Aiton., Butea monosperma Lam. and Ficus benghalensis L., etc. are highly tolerant species while Ficus infectoria L., Artocarpus heterophyllus Lam., Ipomoea purpurea L., Allianthus excelsa Roxb. and Bauhinia variegata L. are intermediate tolerant species. T. grandis had shown the highest dust-holding capacity (2.566 ± 0.0004 mg/cm2) whereas Albizia procera (0.018 ± 0.0002 mg/cm2) was found to be the lowest dust-holding capacity. Our findings also showed that the T. grandis and F. hispida have significant dust deposition with minimal effect of dust on their leaf chlorophyll (17.447 ± 0.019 mg/g and 14.703 ± 0.201 mg/g), protein (0.699 ± 0.001 mg/g and 0.604 ± 0.002 mg/g) and carotenoid (0.372 ± 0.003 mg/g and 0.354 ± 0.003 mg/g) content respectively among all selected plant species. Therefore, in the present investigation, plant species with high tolerance to high dust-holding capacity on their leaf surfaces are preferable for green corridors as open cast granite mines and their adjacent areas.展开更多
Yushenfu mining area is located in an ecological fragile area in western China, the coal seam of which is the Jurassic Ysn'an Foirnalion. The Jurassic Yan'an Formation con tains five minable coal seams, the to...Yushenfu mining area is located in an ecological fragile area in western China, the coal seam of which is the Jurassic Ysn'an Foirnalion. The Jurassic Yan'an Formation con tains five minable coal seams, the top layer of which is thick, covered by shallow overburden and located under aquifers. Therefore, the mining induced water flowing fractured zone can easily extend to the aquifers of both the Quaternary Sarahu and Jurassic Zhiluo Formation. This would result in a series of negative hydrological and ecological effects, including groundwater leakage, groundwater lowering, furtherly causing surface vegetation withering and dying, surface water body reduction, spring drying out, and water flow of river being decreased substantially. To solve these environmental problems, several technologies have been carried out by Chinese scientists, one of which is water-preserved coal mining. This paper presents a review of the origin, definition and development of water-preserved coal mining, and its applications in Yushenfu mining area. The applicable conditions, research contents, research methodology, and technical foundation of water-preserved coal mining are addressed in this paper. The future research focuses regarding water-preserved coal mining in China are also discussed in this paper. Its results serve as a guide for selecting the methods to be preferred for mining in case the geological conditions, roof overburden structure and coal mining process are similar to Yushenfu mining area.展开更多
Taking the test stopes during continuous mining induced roof caving of Tongkeng ore-body No.92 as example, the calculation flow of unloading analysis was established. According to the unloading region division method ...Taking the test stopes during continuous mining induced roof caving of Tongkeng ore-body No.92 as example, the calculation flow of unloading analysis was established. According to the unloading region division method of the affected zone theory, and the deterioration laws of mechanics parameters of unloading rock mass, the continuous mining process in underground mine was analyzed by the software MIDAS/GTS, the mechanical response of roof rock mass unloading was studied, and the differences were analyzed with the conventional simulation. The result shows that the maximum tensile stress, subsidence displacement and equivalent plastic strain of roof rock mass are 1.5 MPa, 20 cm and 1.5% in the unloading analysis, while 1.0 MPa, 13 cm and 0.9% in the conventional analysis. The values of unloading analysis, which are also closer to the actual situation, are greater than those of conventional analysis; the maximum step in continuous mining is 48 m, which shows that the induced treatment of the roof should be carried out after 2 mining steps展开更多
As China's energy strategy moving westward, the surface movement and deformation characteristics due to high-intensive coal mining in the windy and sandy region become a research hotspot. Surface movement observation...As China's energy strategy moving westward, the surface movement and deformation characteristics due to high-intensive coal mining in the windy and sandy region become a research hotspot. Surface movement observation stations were established to monitor movement and deformation in one super-large working face. Based on field measurements, the surface movement and deformation characteristics were obtained, including angle parameters, subsidence prediction parameters, etc. Besides, the angle and subsidence prediction parameters in similar mining areas are summarized; the mechanism of surface movement and deformation was analyzed with the combination of key stratum theory, mining and geological conditions. The research also indicates that compared with conventional working faces, uniform subsidence area of the subsidence trough in the windy and sandy region is larger, the trough margins are relative steep and deformation values present convergence at the margins, the extent of the trough shrink towards the goaf and the influence time of mining activities lasts shorter; the overlying rock movement and breaking characteristics presents regional particularity in the study area, while the single key stratum, thin bedrock and thick sand that can rapidly propagate movement and deformation are the deep factors, contributing to it.展开更多
Mining activities have created huge uncovered slopes, large areas of gangue ground and extensive tailings dams. This paper presents the environmental geochemistry of mining activities in Panzhihua region. The selected...Mining activities have created huge uncovered slopes, large areas of gangue ground and extensive tailings dams. This paper presents the environmental geochemistry of mining activities in Panzhihua region. The selected elements (Ti, V, Mo. Ni. Pb. Cu) show similar distribution patterns of concentration anomaly in topsoil. These concentration anomalies are located in V-Ti-magnetite slope, gangues dam and coal mine. The distinction between anthropogenic contamination and natural background is made available by the use of the enrichment factor in this study area. The anomalies of EF were smaller than that of concentration. The results from EF show that the selected elements anthropogenic pollution (EF>1) in topsoil were located in both the coal mining area and the V-Ti-magnetite mining area. In addition, the pollution sources of selected elements came from V-Ti-magnetite, slag, gangues, coal and other pollutants from mining activities.展开更多
The coal industry in China has been moving from the semiarid eastern to the drier western regions since the beginning of this century.Water protection is of the utmost concern for coal mining in these regions.Lu'a...The coal industry in China has been moving from the semiarid eastern to the drier western regions since the beginning of this century.Water protection is of the utmost concern for coal mining in these regions.Lu'an,as one of the state coal mining bases in China,has been seeing increasingly heavier pressure for the protection of water resources.This article considers Lu'an as an example and describes the ways these concerns may be alleviated.High mine-water utilization rates have effectively reduced wasting of water and,consequently,have reduced water demand.Using the top layers of the Ordavician as aquifuge barriers can prevent floor karst water inrush into the longwall face and can protect the regional Ordovician karst water resources at the same time.The strength of the overlying Quaternary clay can protect against roof collapse and has successfully preserved the Quaternary porous water resource.展开更多
High-intensity and large-scale resource development seriously threatens the fragile ecological environment in the red soil hilly region in southern China. This paper analyzes the eco-geological environmental problems ...High-intensity and large-scale resource development seriously threatens the fragile ecological environment in the red soil hilly region in southern China. This paper analyzes the eco-geological environmental problems and factors affecting Ganzhou, a mining city in the red soil hilly region,based on field survey and literature. The ecogeological environment quality(EGEQ) assessment system, which covered 11 indicators in physical geography, mining development, geological hazards,as well as water and soil pollution, was established through multi-source data utilization such as remote sensing images, DEM(Digital Elevation Model), field survey and on-site monitoring data. The comprehensive weight of each indicator was calculated through the Analytic Hierarchy Process(AHP) and entropy method. The eco-geological environment assessment map was developed by calculating the EGEQ value through the linear weighted method. The assessment results show that the EGEQ was classified into I-V grades from excellent to worse, among which, EGEQ of I-II accounted for 29.88%, EGEQ of III accounted for 32.35% and EGEQ of IV-V accounted for 37.77%;the overall EGEQ of Ganzhou was moderate. The assessment system utilized in this research provides scientific and accurate results, which in turn enable the proposal of some tangible protection suggestions.展开更多
Economic development of coastal community in Kotabaru Regency has become strategic in the future. Kotabaru Regency is the geo-economic strategic position due to the position of Kotabaru region boundaries between Kalim...Economic development of coastal community in Kotabaru Regency has become strategic in the future. Kotabaru Regency is the geo-economic strategic position due to the position of Kotabaru region boundaries between Kalimantan Island and Sulawesi Island. Geo-economic strategic of Kotabaru should increase the coastal community welfare in Kotabaru Regency. The objective of the research is to evaluate economic characteristic of coastal community at mining area in Kotabaru Regency. The number of samples in this study is 50 respondents in each village who are in the mining area. The number of companies in the mining area is 17 companies. Data were collected by using questionnaires. The results show that economic characteristics have low category. Mining and plantation companies do not increase the economic conditions of the community. Research suggestions are: (1) to examine the potential and importance of economic empowerment model of coastal communities in the region both mining companies and plantations; (2) the important role of companies and local governments to work together in formulating a strategy for management of CSR (corporate social responsibility), and social mapping to be done by the company in the preparation of the CSR program.展开更多
Mining activities have left huge uncovered slopes, large areas of gangue ground and extensive railings dams. In this paper, we studied some impacts of mining activities upon environment in Panzhihua region, southweste...Mining activities have left huge uncovered slopes, large areas of gangue ground and extensive railings dams. In this paper, we studied some impacts of mining activities upon environment in Panzhihua region, southwestern China. The environmental impacts include ecological destruction, geological disasters, environmental pollution, land damage, solid waste and occupational health effect in study area. The author suggested that local government should take some measure to reduce environmental impact in Pan...展开更多
The method of principal component analysis was applied to systematical research on the soil multi-media environment, including soil, surface water, ground water, waterbody sediment and agricultural crops, as well as p...The method of principal component analysis was applied to systematical research on the soil multi-media environment, including soil, surface water, ground water, waterbody sediment and agricultural crops, as well as pollution-inducing wastewater, mullock (or waste ore) and slag in the periphery of a large-sized Pb-Zn mining and smelting plant in a karst area of Guangxi Zhuang Autonomous Region. The results revealed that soils in the area studied have been heavily polluted by Cd, Zn, Pb and Hg, and the levels of these metals in the samples of agricultural crop greatly exceed the standards. The above-mentioned pollutants exist in all soil-multi-media environments. The mullock, slag, wastewater, surface water, ground water, soil, and agricultural crops constitute a composite ecological chain. Therefore, the improper disposal of mullock and slag, and the use of polluted wastewater for agricultural irrigation are the main causes of soil pollution. Heavy metals in the soil have three transition progresses: point (improved soil with slag, ground water inflow plot), linear (river transition) and non-point transition (regional pollution by slag) patterns, and the tailing yard is the most important locus for heavy metals to release into the environment.展开更多
Necessity of land reclamation is discussed, setting out viewpoint of sustainable development and land connotation and its attribute and combining destroyed forms and characteristics of land in coal mining areas. It is...Necessity of land reclamation is discussed, setting out viewpoint of sustainable development and land connotation and its attribute and combining destroyed forms and characteristics of land in coal mining areas. It is pointed out that land reclamation of coal mining areas is basic guarantee of solving contradiction between coal mining areas and countryside,raising life of resident and ensuring regional sustainable development.展开更多
Stability assessment is one of the most important issues in mining ground control. Mine development and/or production instability can cause production delay, loss of reserves, as well as injury to miners. Within the s...Stability assessment is one of the most important issues in mining ground control. Mine development and/or production instability can cause production delay, loss of reserves, as well as injury to miners. Within the scope of this study, a series of open stope’s instability under the influence of overlaying mined-out regions were carried out with different mining scenarios at Modi Taung gold mine which is operated by National Prosperity Gold Production Group Limited (NPGPGL) in Myanmar. NPGPGL has been developing stopes up to 150 m from the surface at Shwesin vein system, and the mining activities are going to continue to deeper levels to fulfill the ore mineral supply. Creating a new stope opening under overlaying mined-out regions is not easy considering the instability of mined-out regions can affect the stope. The instability of new stope opening is not only due to its own induced stress but also the strong influence by the mined-out regions situated on upper part of the stope. Therefore, the understandings of ground behaviors and failure mechanisms of new stope opening due to the influence of overlaying mined-out regions are paramount to be studied. This paper describes in detail the strength factor and failure zones under the overlaying mined-out regions with different mine conditions by using numerical simulations, 3D finite difference software (FLAC 3D).展开更多
Individuals,local communities,environmental associations,private organizations,and public representatives and bodies may all be aggrieved by environmental problems concerning poor air quality,illegal waste disposal,wa...Individuals,local communities,environmental associations,private organizations,and public representatives and bodies may all be aggrieved by environmental problems concerning poor air quality,illegal waste disposal,water contamination,and general pollution.Environmental complaints represent the expressions of dissatisfaction with these issues.As the timeconsuming of managing a large number of complaints,text mining may be useful for automatically extracting information on stakeholder priorities and concerns.The paper used text mining and semantic network analysis to crawl relevant keywords about environmental complaints from two online complaint submission systems:online claim submission system of Regional Agency for Prevention,Environment and Energy(Arpae)(“Contact Arpae”);and Arpae's internal platform for environmental pollution(“Environmental incident reporting portal”)in the Emilia-Romagna Region,Italy.We evaluated the total of 2477 records and classified this information based on the claim topic(air pollution,water pollution,noise pollution,waste,odor,soil,weather-climate,sea-coast,and electromagnetic radiation)and geographical distribution.Then,this paper used natural language processing to extract keywords from the dataset,and classified keywords ranking higher in Term Frequency-Inverse Document Frequency(TF-IDF)based on the driver,pressure,state,impact,and response(DPSIR)framework.This study provided a systemic approach to understanding the interaction between people and environment in different geographical contexts and builds sustainable and healthy communities.The results showed that most complaints are from the public and associated with air pollution and odor.Factories(particularly foundries and ceramic industries)and farms are identified as the drivers of environmental issues.Citizen believed that environmental issues mainly affect human well-being.Moreover,the keywords of“odor”,“report”,“request”,“presence”,“municipality”,and“hours”were the most influential and meaningful concepts,as demonstrated by their high degree and betweenness centrality values.Keywords connecting odor(classified as impacts)and air pollution(classified as state)were the most important(such as“odor-burnt plastic”and“odor-acrid”).Complainants perceived odor annoyance as a primary environmental concern,possibly related to two main drivers:“odor-factory”and“odorsfarms”.The proposed approach has several theoretical and practical implications:text mining may quickly and efficiently address citizen needs,providing the basis toward automating(even partially)the complaint process;and the DPSIR framework might support the planning and organization of information and the identification of stakeholder concerns and priorities,as well as metrics and indicators for their assessment.Therefore,integration of the DPSIR framework with the text mining of environmental complaints might generate a comprehensive environmental knowledge base as a prerequisite for a wider exploitation of analysis to support decision-making processes and environmental management activities.展开更多
文摘Current practice of underground artificial ground freezing(AGF)typically involves huge refrigeration systems of large economic and environmental costs.In this study,a novel AGF technique is proposed deploying available cold wind in cold regions.This is achieved by a static heat transfer device called thermosyphon equipped with an air insulation layer.A refrigeration unit can be optionally integrated to meet additional cooling requirements.The introduction of air insulation isolates the thermosyphon from ground zones where freezing is not needed,resulting in:(1)steering the cooling resources(cold wind or refrigeration)towards zones of interest;and(2)minimizing refrigeration load.This design is demonstrated using well-validated mathematical models from our previous work based on two-phase enthalpy method of the ground coupled with a thermal resistance network for the thermosyphon.Two Canadian mines are considered:the Cigar Lake Mine and the Giant Mine.The results show that our proposed design can speed the freezing time by 30%at the Giant Mine and by two months at the Cigar Lake Mine.Further,a cooling load of 2.4 GWh can be saved at the Cigar Lake Mine.Overall,this study provides mining practitioners with sustainable solutions of underground AGF.
文摘The present study has been carried out on a total of 50 available plant species to assess their dust-capturing capacity and biochemical performances in and around open cast granite mine areas of Jhansi district and Bundelkhand University campus treated as control site. Plant species existing under a polluted environment for a long time may be considered as potentially resistant species and recommended for green belt design in mining areas, especially to cope with dust pollution. Results showed the pollution level, especially of mining-originated dust particles holding capacity of leaves and effects of different biochemical parameters (Total Chlorophyll, Protein and Carotenoid) of existing plant species both from mining areas as well as from Bundelkhand University campus. Based on their performances, Tectona grandis L., Ficus hispida L., Calotropis procera Aiton., Butea monosperma Lam. and Ficus benghalensis L., etc. are highly tolerant species while Ficus infectoria L., Artocarpus heterophyllus Lam., Ipomoea purpurea L., Allianthus excelsa Roxb. and Bauhinia variegata L. are intermediate tolerant species. T. grandis had shown the highest dust-holding capacity (2.566 ± 0.0004 mg/cm2) whereas Albizia procera (0.018 ± 0.0002 mg/cm2) was found to be the lowest dust-holding capacity. Our findings also showed that the T. grandis and F. hispida have significant dust deposition with minimal effect of dust on their leaf chlorophyll (17.447 ± 0.019 mg/g and 14.703 ± 0.201 mg/g), protein (0.699 ± 0.001 mg/g and 0.604 ± 0.002 mg/g) and carotenoid (0.372 ± 0.003 mg/g and 0.354 ± 0.003 mg/g) content respectively among all selected plant species. Therefore, in the present investigation, plant species with high tolerance to high dust-holding capacity on their leaf surfaces are preferable for green corridors as open cast granite mines and their adjacent areas.
文摘Yushenfu mining area is located in an ecological fragile area in western China, the coal seam of which is the Jurassic Ysn'an Foirnalion. The Jurassic Yan'an Formation con tains five minable coal seams, the top layer of which is thick, covered by shallow overburden and located under aquifers. Therefore, the mining induced water flowing fractured zone can easily extend to the aquifers of both the Quaternary Sarahu and Jurassic Zhiluo Formation. This would result in a series of negative hydrological and ecological effects, including groundwater leakage, groundwater lowering, furtherly causing surface vegetation withering and dying, surface water body reduction, spring drying out, and water flow of river being decreased substantially. To solve these environmental problems, several technologies have been carried out by Chinese scientists, one of which is water-preserved coal mining. This paper presents a review of the origin, definition and development of water-preserved coal mining, and its applications in Yushenfu mining area. The applicable conditions, research contents, research methodology, and technical foundation of water-preserved coal mining are addressed in this paper. The future research focuses regarding water-preserved coal mining in China are also discussed in this paper. Its results serve as a guide for selecting the methods to be preferred for mining in case the geological conditions, roof overburden structure and coal mining process are similar to Yushenfu mining area.
基金Projects (50934006, 51074178) supported by the National Natural Science Foundation of ChinaProject (2010QZZD001) supported by the Fundamental Research Funds for the Central Universities of China
文摘Taking the test stopes during continuous mining induced roof caving of Tongkeng ore-body No.92 as example, the calculation flow of unloading analysis was established. According to the unloading region division method of the affected zone theory, and the deterioration laws of mechanics parameters of unloading rock mass, the continuous mining process in underground mine was analyzed by the software MIDAS/GTS, the mechanical response of roof rock mass unloading was studied, and the differences were analyzed with the conventional simulation. The result shows that the maximum tensile stress, subsidence displacement and equivalent plastic strain of roof rock mass are 1.5 MPa, 20 cm and 1.5% in the unloading analysis, while 1.0 MPa, 13 cm and 0.9% in the conventional analysis. The values of unloading analysis, which are also closer to the actual situation, are greater than those of conventional analysis; the maximum step in continuous mining is 48 m, which shows that the induced treatment of the roof should be carried out after 2 mining steps
基金Financial supports for this work, are provided by the National Natural Science Foundation of China (NSFC) & Shenhua Group Corporation Limited key support project of the coal joint fund (U1361203) and NSFC under Grant No. 41501562. Thanks are also due to some participants for rendering assistant cooperation during studies.
文摘As China's energy strategy moving westward, the surface movement and deformation characteristics due to high-intensive coal mining in the windy and sandy region become a research hotspot. Surface movement observation stations were established to monitor movement and deformation in one super-large working face. Based on field measurements, the surface movement and deformation characteristics were obtained, including angle parameters, subsidence prediction parameters, etc. Besides, the angle and subsidence prediction parameters in similar mining areas are summarized; the mechanism of surface movement and deformation was analyzed with the combination of key stratum theory, mining and geological conditions. The research also indicates that compared with conventional working faces, uniform subsidence area of the subsidence trough in the windy and sandy region is larger, the trough margins are relative steep and deformation values present convergence at the margins, the extent of the trough shrink towards the goaf and the influence time of mining activities lasts shorter; the overlying rock movement and breaking characteristics presents regional particularity in the study area, while the single key stratum, thin bedrock and thick sand that can rapidly propagate movement and deformation are the deep factors, contributing to it.
基金This paper is supported by Youth Scientific Technological Fund of Sichuan Province.
文摘Mining activities have created huge uncovered slopes, large areas of gangue ground and extensive tailings dams. This paper presents the environmental geochemistry of mining activities in Panzhihua region. The selected elements (Ti, V, Mo. Ni. Pb. Cu) show similar distribution patterns of concentration anomaly in topsoil. These concentration anomalies are located in V-Ti-magnetite slope, gangues dam and coal mine. The distinction between anthropogenic contamination and natural background is made available by the use of the enrichment factor in this study area. The anomalies of EF were smaller than that of concentration. The results from EF show that the selected elements anthropogenic pollution (EF>1) in topsoil were located in both the coal mining area and the V-Ti-magnetite mining area. In addition, the pollution sources of selected elements came from V-Ti-magnetite, slag, gangues, coal and other pollutants from mining activities.
基金the sponsor by the National Natural Science Foundation of China (No. 50974115)the Program of Introducing Talents of Discipline to Universities (No.B07028)
文摘The coal industry in China has been moving from the semiarid eastern to the drier western regions since the beginning of this century.Water protection is of the utmost concern for coal mining in these regions.Lu'an,as one of the state coal mining bases in China,has been seeing increasingly heavier pressure for the protection of water resources.This article considers Lu'an as an example and describes the ways these concerns may be alleviated.High mine-water utilization rates have effectively reduced wasting of water and,consequently,have reduced water demand.Using the top layers of the Ordavician as aquifuge barriers can prevent floor karst water inrush into the longwall face and can protect the regional Ordovician karst water resources at the same time.The strength of the overlying Quaternary clay can protect against roof collapse and has successfully preserved the Quaternary porous water resource.
基金financially supported by the Key Special Project of National Natural Science Foundation of China (No.41941018)the Fundamental Research Funds for the Key Laboratory of Geotechnical and Underground Engineering (Tongji University)the Ministry of Education (Grant No.KLE-TJGE-B1905)。
文摘High-intensity and large-scale resource development seriously threatens the fragile ecological environment in the red soil hilly region in southern China. This paper analyzes the eco-geological environmental problems and factors affecting Ganzhou, a mining city in the red soil hilly region,based on field survey and literature. The ecogeological environment quality(EGEQ) assessment system, which covered 11 indicators in physical geography, mining development, geological hazards,as well as water and soil pollution, was established through multi-source data utilization such as remote sensing images, DEM(Digital Elevation Model), field survey and on-site monitoring data. The comprehensive weight of each indicator was calculated through the Analytic Hierarchy Process(AHP) and entropy method. The eco-geological environment assessment map was developed by calculating the EGEQ value through the linear weighted method. The assessment results show that the EGEQ was classified into I-V grades from excellent to worse, among which, EGEQ of I-II accounted for 29.88%, EGEQ of III accounted for 32.35% and EGEQ of IV-V accounted for 37.77%;the overall EGEQ of Ganzhou was moderate. The assessment system utilized in this research provides scientific and accurate results, which in turn enable the proposal of some tangible protection suggestions.
文摘Economic development of coastal community in Kotabaru Regency has become strategic in the future. Kotabaru Regency is the geo-economic strategic position due to the position of Kotabaru region boundaries between Kalimantan Island and Sulawesi Island. Geo-economic strategic of Kotabaru should increase the coastal community welfare in Kotabaru Regency. The objective of the research is to evaluate economic characteristic of coastal community at mining area in Kotabaru Regency. The number of samples in this study is 50 respondents in each village who are in the mining area. The number of companies in the mining area is 17 companies. Data were collected by using questionnaires. The results show that economic characteristics have low category. Mining and plantation companies do not increase the economic conditions of the community. Research suggestions are: (1) to examine the potential and importance of economic empowerment model of coastal communities in the region both mining companies and plantations; (2) the important role of companies and local governments to work together in formulating a strategy for management of CSR (corporate social responsibility), and social mapping to be done by the company in the preparation of the CSR program.
基金This study is granted by China Postdoctoral Science Foundation "environmental geochemical principles and techniques for assessing disturbed soil by mining activity" and China Land and Resources Ministry Special Project (No.30302408)"regional geochemical
文摘Mining activities have left huge uncovered slopes, large areas of gangue ground and extensive railings dams. In this paper, we studied some impacts of mining activities upon environment in Panzhihua region, southwestern China. The environmental impacts include ecological destruction, geological disasters, environmental pollution, land damage, solid waste and occupational health effect in study area. The author suggested that local government should take some measure to reduce environmental impact in Pan...
基金support by Guangxi Scientific and Technological Brainstorm Project (Guikegong 0779011)
文摘The method of principal component analysis was applied to systematical research on the soil multi-media environment, including soil, surface water, ground water, waterbody sediment and agricultural crops, as well as pollution-inducing wastewater, mullock (or waste ore) and slag in the periphery of a large-sized Pb-Zn mining and smelting plant in a karst area of Guangxi Zhuang Autonomous Region. The results revealed that soils in the area studied have been heavily polluted by Cd, Zn, Pb and Hg, and the levels of these metals in the samples of agricultural crop greatly exceed the standards. The above-mentioned pollutants exist in all soil-multi-media environments. The mullock, slag, wastewater, surface water, ground water, soil, and agricultural crops constitute a composite ecological chain. Therefore, the improper disposal of mullock and slag, and the use of polluted wastewater for agricultural irrigation are the main causes of soil pollution. Heavy metals in the soil have three transition progresses: point (improved soil with slag, ground water inflow plot), linear (river transition) and non-point transition (regional pollution by slag) patterns, and the tailing yard is the most important locus for heavy metals to release into the environment.
文摘Necessity of land reclamation is discussed, setting out viewpoint of sustainable development and land connotation and its attribute and combining destroyed forms and characteristics of land in coal mining areas. It is pointed out that land reclamation of coal mining areas is basic guarantee of solving contradiction between coal mining areas and countryside,raising life of resident and ensuring regional sustainable development.
文摘Stability assessment is one of the most important issues in mining ground control. Mine development and/or production instability can cause production delay, loss of reserves, as well as injury to miners. Within the scope of this study, a series of open stope’s instability under the influence of overlaying mined-out regions were carried out with different mining scenarios at Modi Taung gold mine which is operated by National Prosperity Gold Production Group Limited (NPGPGL) in Myanmar. NPGPGL has been developing stopes up to 150 m from the surface at Shwesin vein system, and the mining activities are going to continue to deeper levels to fulfill the ore mineral supply. Creating a new stope opening under overlaying mined-out regions is not easy considering the instability of mined-out regions can affect the stope. The instability of new stope opening is not only due to its own induced stress but also the strong influence by the mined-out regions situated on upper part of the stope. Therefore, the understandings of ground behaviors and failure mechanisms of new stope opening due to the influence of overlaying mined-out regions are paramount to be studied. This paper describes in detail the strength factor and failure zones under the overlaying mined-out regions with different mine conditions by using numerical simulations, 3D finite difference software (FLAC 3D).
文摘Individuals,local communities,environmental associations,private organizations,and public representatives and bodies may all be aggrieved by environmental problems concerning poor air quality,illegal waste disposal,water contamination,and general pollution.Environmental complaints represent the expressions of dissatisfaction with these issues.As the timeconsuming of managing a large number of complaints,text mining may be useful for automatically extracting information on stakeholder priorities and concerns.The paper used text mining and semantic network analysis to crawl relevant keywords about environmental complaints from two online complaint submission systems:online claim submission system of Regional Agency for Prevention,Environment and Energy(Arpae)(“Contact Arpae”);and Arpae's internal platform for environmental pollution(“Environmental incident reporting portal”)in the Emilia-Romagna Region,Italy.We evaluated the total of 2477 records and classified this information based on the claim topic(air pollution,water pollution,noise pollution,waste,odor,soil,weather-climate,sea-coast,and electromagnetic radiation)and geographical distribution.Then,this paper used natural language processing to extract keywords from the dataset,and classified keywords ranking higher in Term Frequency-Inverse Document Frequency(TF-IDF)based on the driver,pressure,state,impact,and response(DPSIR)framework.This study provided a systemic approach to understanding the interaction between people and environment in different geographical contexts and builds sustainable and healthy communities.The results showed that most complaints are from the public and associated with air pollution and odor.Factories(particularly foundries and ceramic industries)and farms are identified as the drivers of environmental issues.Citizen believed that environmental issues mainly affect human well-being.Moreover,the keywords of“odor”,“report”,“request”,“presence”,“municipality”,and“hours”were the most influential and meaningful concepts,as demonstrated by their high degree and betweenness centrality values.Keywords connecting odor(classified as impacts)and air pollution(classified as state)were the most important(such as“odor-burnt plastic”and“odor-acrid”).Complainants perceived odor annoyance as a primary environmental concern,possibly related to two main drivers:“odor-factory”and“odorsfarms”.The proposed approach has several theoretical and practical implications:text mining may quickly and efficiently address citizen needs,providing the basis toward automating(even partially)the complaint process;and the DPSIR framework might support the planning and organization of information and the identification of stakeholder concerns and priorities,as well as metrics and indicators for their assessment.Therefore,integration of the DPSIR framework with the text mining of environmental complaints might generate a comprehensive environmental knowledge base as a prerequisite for a wider exploitation of analysis to support decision-making processes and environmental management activities.