In the process of shield tunneling through soft soil layers,the presence of confined water ahead poses a significant threat to the stability of the tunnel face.Therefore,it is crucial to consider the impact of confine...In the process of shield tunneling through soft soil layers,the presence of confined water ahead poses a significant threat to the stability of the tunnel face.Therefore,it is crucial to consider the impact of confined water on the limit support pressure of the tunnel face.This study employed the finite element method(FEM)to analyze the limit support pressure of shield tunnel face instability within a pressurized water-containing layer.Subsequently,a multiple linear regression approach was applied to derive a concise solution formula for the limit support pressure,incorporating various influencing factors.The analysis yields the following conclusions:1)The influence of confined water on the instability mode of the tunnel face in soft soil layers makes the displacement response of the strata not significant when the face is unstable;2)The limit support pressure increases approximately linearly with the pressure head,shield tunnel diameter,and tunnel burial depth.And inversely proportional to the thickness of the impermeable layer,soil cohesion and internal friction angle;3)Through an engineering case study analysis,the results align well with those obtained from traditional theoretical methods,thereby validating the rationality of the equations proposed in this paper.Furthermore,the proposed equations overcome the limitation of traditional theoretical approaches considering the influence of changes in impermeable layer thickness.It can accurately depict the dynamic variation in the required limit support pressure to maintain the stability of the tunnel face during shield tunneling,thus better reflecting engineering reality.展开更多
Considering the danger of water inrush in mining very thick coal seam under water-rich roof in Majialiang Coal Mine,the universal discrete element(UDEC)software was used to simulate the overburden fracture evolution l...Considering the danger of water inrush in mining very thick coal seam under water-rich roof in Majialiang Coal Mine,the universal discrete element(UDEC)software was used to simulate the overburden fracture evolution laws when mining 4#coal seam.Besides,this study researched on the influence of face advancing length,speed and mining height on the height of the water flowing fractured zones(HWFFZ),and analyzed the correlation of face advancing length and change rules of aquifer water levels and goaf water inflow.Based on those mentioned above,this research proposed the following water-controlling technologies:draining the roof water before mining,draining goaf water,reasonable advancing speed and mining thickness.These water-controlling technologies were successfully used in the feld,thus ensured safely mining the very thick coal seam under water-rich roof.展开更多
Currently,the water inrush hazards during tunnel construction,the water leakage during tunnel operation,and the accompanying disturbances to the ecological environment have become the main problems that affect the str...Currently,the water inrush hazards during tunnel construction,the water leakage during tunnel operation,and the accompanying disturbances to the ecological environment have become the main problems that affect the structural safety of tunnels in water-rich regions.In this paper,a tunnel seepage model testing system was used to conduct experiments of the grouting circle and primary support with different permeability coefficients.The influences of the supporting structures on the water inflow laws and the distribution of the water pressure in the tunnel were analyzed.With the decrease in the permeability coefficient of the grouting circle or the primary support,the inflow rate of water into the tunnel showed a non-linear decreasing trend.In comparison,the water inflow reduction effect of grouting circle was much better than that of primary support.With the increase of the permeability coefficient of the grouting ring,the water pressure behind the primary lining increases gradually,while the water pressure behind the grouting ring decreases.Thus,the grouting of surrounding rock during the construction of water-rich tunnel can effectively weaken the hydraulic connection,reduce the influence range of seepage,and significantly reduce the decline of groundwater.Meanwhile,the seepage tests at different hydrostatic heads and hydrodynamic heads during tunnel operation period were also conducted.As the hydrostatic head decreased,the water pressure at each characteristic point decreased approximately linearly,and the water inflow rate also had a gradual downward trend.Under the action of hydrodynamic head,the water pressure had an obvious lagging effect,which was not conducive to the stability of the supporting structures,and it could be mitigated by actively regulating the drainage rate.Compared with the hydrostatic head,the hydrodynamic head could change the real-time rate of water inflow to the tunnel and broke the dynamic balance between the water pressure and water inflow rate,thereby affecting the stress state on the supporting structures.展开更多
The rheological behavior of phosphoric acid-water glass grout in different mixing ratios was studied. Grout made of water glass with Baume degree of 20° and 13.4% phosphoric acid by 1:1 volume ratio is found to b...The rheological behavior of phosphoric acid-water glass grout in different mixing ratios was studied. Grout made of water glass with Baume degree of 20° and 13.4% phosphoric acid by 1:1 volume ratio is found to be more effective in stopping water. Laboratory model test of water shutoff by grouting was conducted. Test results show that the diffusion length and water cutoff effect of the grout are significantly improved as the grout head is raised, due to the dilution of underground water, and it takes the grout longer than its gel time to cut off water.展开更多
In order to study the strength-weakening law of roofs of water-rich roadway, this study used FLAC software, and simulated and analyzed the failure characteristics of the surrounding rock of water-rich roadway under th...In order to study the strength-weakening law of roofs of water-rich roadway, this study used FLAC software, and simulated and analyzed the failure characteristics of the surrounding rock of water-rich roadway under the condition of different cross sections and support parameters, finally obtained the stress distribution of the principle stress of the roadway as well as the displacement variation of its surrounding rock. Results indicate that the roof stability of roadway with semicircular cross section is better than the roadway with inclined rectangular cross section under water-rich condition. Besides, the surrounding rock deformation of roadway under the action of water shows a pronounced increase compared to the roadway without the action of water due to the fact that water will obviously weaken the surrounding rock of roadway, especially its roof. It is very beneficial to control roof stability of water-rich roadway and guarantee the roadway stability during its service life by improving the pretension of bolt and cable as well as decreasing inter-row spacing of the bolt.展开更多
Coal working face is damaged more and more seriously by water below the coal face floor. Therefore, floor water detection is a must in the process of extraction. This article aims to introducing application and princi...Coal working face is damaged more and more seriously by water below the coal face floor. Therefore, floor water detection is a must in the process of extraction. This article aims to introducing application and principle of the two-gateways parallel 3-D electrical technology and the arrangement of the observation system. The authors use this method to detect the water under the floor of a mine in north of Anhui. The results show that the two-gateways parallel 3-D electrical technology can accurately locate the water-rich areas, providing the basis for drilling drainage and grouting construction.展开更多
The stability analysis of a deep buried tunnel subjected to dynamic disturbance is an important issue.In this study,the transient response has been obtained by establishing a water-rich tunnel model considering excava...The stability analysis of a deep buried tunnel subjected to dynamic disturbance is an important issue.In this study,the transient response has been obtained by establishing a water-rich tunnel model considering excavation damage zone(EDZ).Based on Biot’s two-phase dynamic theory and wave function expansion method,the analytical solution of dynamic response around the water-rich tunnel containing EDZ subjected to P wave is derived.Moreover,Fourier transform and Duhamel’s integral technique is introduced to calculate the transient response,and the equivalent blasting curve is adopted to input excitation function.The dimensionless parameters thickness N and shear modulus ratio lare defined to characterize the degree of damage in the surrounding rock,investigating the influencing factors,such as the parameters and the incident source frequencies.The results indicate that the dynamic stress concentration factor(DSCF)gradually decreases as the dimensionless parameters increase.Additionally,it is observed that the DSCF is more sensitive to changes in the thickness parameter N.Finally,the influence of the waveform parameters has been taken into account in the analysis of transient response,and the stress state and transfer process in each time stage of the EDZ are analyzed.This study establishes a theoretical foundation for comprehending the mechanical behavior and support design considerations associated with a deep-buried water-rich tunnel containing EDZ.展开更多
The stability of inclined shaft lining structure (ISLS) in complex water-rich strata is affected by many factors, suchas water pressure, joint, soft rock, lining corrosion and so on. The instability of the ISLS will a...The stability of inclined shaft lining structure (ISLS) in complex water-rich strata is affected by many factors, suchas water pressure, joint, soft rock, lining corrosion and so on. The instability of the ISLS will affect the safe andefficient coal mine production. Bathe sed on the geological conditions of the Xiaobaodang coal mine, this papertested the evolution characteristics of concrete composition in long-term water seepage areas and revealed theinfluence mechanism of corrosion weakening of shaft lining (SL) in water-rich strata. Meanwhile, transientelectromagnetic, ground penetrating radar, and infrared monitoring are used to detect the water-rich zones, anddamage zones of surrounding rock and lining water seepage zones, and a three-level safety evaluation model forthe instability risk of ISLS is constructed. Water abundance of the surrounding rock, surrounding rock deterioration, and shaft lining seepage were the specific indicators in the model. The main inclined shaft (MIS) in thestudied coal mine is divided into three levels: non instability risk zone, potential instability risk zone, and highinstability risk zone. According to the evaluation results, comprehensive prevention and control measures of“hydrophobic hole drainage” and “back-lining grouting” are adopted for the water inrush source and the surrounding rock micro-crack water channel. The precise prevention and control of ISLS is realized. The researchresults also provide a reference for the stability evaluation of ISLS and the accurate prevention and control undersimilar conditions.展开更多
基金Project(ZDRW-ZS-2021-3)supported by the Key Deployment Projects of Chinese Academy of SciencesProjects(52179116,51991392)supported by the National Natural Science Foundation of China。
文摘In the process of shield tunneling through soft soil layers,the presence of confined water ahead poses a significant threat to the stability of the tunnel face.Therefore,it is crucial to consider the impact of confined water on the limit support pressure of the tunnel face.This study employed the finite element method(FEM)to analyze the limit support pressure of shield tunnel face instability within a pressurized water-containing layer.Subsequently,a multiple linear regression approach was applied to derive a concise solution formula for the limit support pressure,incorporating various influencing factors.The analysis yields the following conclusions:1)The influence of confined water on the instability mode of the tunnel face in soft soil layers makes the displacement response of the strata not significant when the face is unstable;2)The limit support pressure increases approximately linearly with the pressure head,shield tunnel diameter,and tunnel burial depth.And inversely proportional to the thickness of the impermeable layer,soil cohesion and internal friction angle;3)Through an engineering case study analysis,the results align well with those obtained from traditional theoretical methods,thereby validating the rationality of the equations proposed in this paper.Furthermore,the proposed equations overcome the limitation of traditional theoretical approaches considering the influence of changes in impermeable layer thickness.It can accurately depict the dynamic variation in the required limit support pressure to maintain the stability of the tunnel face during shield tunneling,thus better reflecting engineering reality.
基金provided by the Priority Academic Program Development of Jiangsu Higher Education Institutions of China(No.SZBF2011-6-B35)the Fundamental Research Funds for the Central Universities of China(No.2012LWB42)
文摘Considering the danger of water inrush in mining very thick coal seam under water-rich roof in Majialiang Coal Mine,the universal discrete element(UDEC)software was used to simulate the overburden fracture evolution laws when mining 4#coal seam.Besides,this study researched on the influence of face advancing length,speed and mining height on the height of the water flowing fractured zones(HWFFZ),and analyzed the correlation of face advancing length and change rules of aquifer water levels and goaf water inflow.Based on those mentioned above,this research proposed the following water-controlling technologies:draining the roof water before mining,draining goaf water,reasonable advancing speed and mining thickness.These water-controlling technologies were successfully used in the feld,thus ensured safely mining the very thick coal seam under water-rich roof.
基金supported by the Chongqing Natural Science Foundation(No.cstc2020jcyjmsxm X0904)the Chongqing Talent Plan(No.CQYC2020058263)+3 种基金the Chongqing Technology Innovation and Application Development Project(No.cstc2021ycjh-bgzxm0246)the China Postdoctoral Science Foundation(No.2021M693739)the Sichuan Science and Technology Program(No.2021YJ0539)the Natural Science foundation of Jiangsu higher education institutions of China(Grant No.19KJD170001)。
文摘Currently,the water inrush hazards during tunnel construction,the water leakage during tunnel operation,and the accompanying disturbances to the ecological environment have become the main problems that affect the structural safety of tunnels in water-rich regions.In this paper,a tunnel seepage model testing system was used to conduct experiments of the grouting circle and primary support with different permeability coefficients.The influences of the supporting structures on the water inflow laws and the distribution of the water pressure in the tunnel were analyzed.With the decrease in the permeability coefficient of the grouting circle or the primary support,the inflow rate of water into the tunnel showed a non-linear decreasing trend.In comparison,the water inflow reduction effect of grouting circle was much better than that of primary support.With the increase of the permeability coefficient of the grouting ring,the water pressure behind the primary lining increases gradually,while the water pressure behind the grouting ring decreases.Thus,the grouting of surrounding rock during the construction of water-rich tunnel can effectively weaken the hydraulic connection,reduce the influence range of seepage,and significantly reduce the decline of groundwater.Meanwhile,the seepage tests at different hydrostatic heads and hydrodynamic heads during tunnel operation period were also conducted.As the hydrostatic head decreased,the water pressure at each characteristic point decreased approximately linearly,and the water inflow rate also had a gradual downward trend.Under the action of hydrodynamic head,the water pressure had an obvious lagging effect,which was not conducive to the stability of the supporting structures,and it could be mitigated by actively regulating the drainage rate.Compared with the hydrostatic head,the hydrodynamic head could change the real-time rate of water inflow to the tunnel and broke the dynamic balance between the water pressure and water inflow rate,thereby affecting the stress state on the supporting structures.
基金Projects(41472278,41202220)supported by the National Natural Science Foundation of ChinaProject(20120022120003)supported by the Research Fund for the Doctoral Program of Higher Education,China+1 种基金Project(2652012065)supported by the Fundamental Research Funds for the Central Universities,ChinaProject supported by Beijing Higher Education Young Elite Teacher Program,China
文摘The rheological behavior of phosphoric acid-water glass grout in different mixing ratios was studied. Grout made of water glass with Baume degree of 20° and 13.4% phosphoric acid by 1:1 volume ratio is found to be more effective in stopping water. Laboratory model test of water shutoff by grouting was conducted. Test results show that the diffusion length and water cutoff effect of the grout are significantly improved as the grout head is raised, due to the dilution of underground water, and it takes the grout longer than its gel time to cut off water.
基金the National Natural Science Foundation of China (No. 51304208)the Science and Technology Research of the Ministry of Education of China
文摘In order to study the strength-weakening law of roofs of water-rich roadway, this study used FLAC software, and simulated and analyzed the failure characteristics of the surrounding rock of water-rich roadway under the condition of different cross sections and support parameters, finally obtained the stress distribution of the principle stress of the roadway as well as the displacement variation of its surrounding rock. Results indicate that the roof stability of roadway with semicircular cross section is better than the roadway with inclined rectangular cross section under water-rich condition. Besides, the surrounding rock deformation of roadway under the action of water shows a pronounced increase compared to the roadway without the action of water due to the fact that water will obviously weaken the surrounding rock of roadway, especially its roof. It is very beneficial to control roof stability of water-rich roadway and guarantee the roadway stability during its service life by improving the pretension of bolt and cable as well as decreasing inter-row spacing of the bolt.
文摘Coal working face is damaged more and more seriously by water below the coal face floor. Therefore, floor water detection is a must in the process of extraction. This article aims to introducing application and principle of the two-gateways parallel 3-D electrical technology and the arrangement of the observation system. The authors use this method to detect the water under the floor of a mine in north of Anhui. The results show that the two-gateways parallel 3-D electrical technology can accurately locate the water-rich areas, providing the basis for drilling drainage and grouting construction.
基金supported by the National Natural Science Foundation of China(Grant Nos.12072376 and 52274105).
文摘The stability analysis of a deep buried tunnel subjected to dynamic disturbance is an important issue.In this study,the transient response has been obtained by establishing a water-rich tunnel model considering excavation damage zone(EDZ).Based on Biot’s two-phase dynamic theory and wave function expansion method,the analytical solution of dynamic response around the water-rich tunnel containing EDZ subjected to P wave is derived.Moreover,Fourier transform and Duhamel’s integral technique is introduced to calculate the transient response,and the equivalent blasting curve is adopted to input excitation function.The dimensionless parameters thickness N and shear modulus ratio lare defined to characterize the degree of damage in the surrounding rock,investigating the influencing factors,such as the parameters and the incident source frequencies.The results indicate that the dynamic stress concentration factor(DSCF)gradually decreases as the dimensionless parameters increase.Additionally,it is observed that the DSCF is more sensitive to changes in the thickness parameter N.Finally,the influence of the waveform parameters has been taken into account in the analysis of transient response,and the stress state and transfer process in each time stage of the EDZ are analyzed.This study establishes a theoretical foundation for comprehending the mechanical behavior and support design considerations associated with a deep-buried water-rich tunnel containing EDZ.
基金Financial support for this work was provided by the National Natural Science Foundation of China(52104155)Natural Science Foundation of Beijing(8212032)+2 种基金the Postdoctoral Research Foundation of China(2023M733778)an Open Research Grant of Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining(EC2022012)the Fundamental Research Funds for the Central Universities(2023ZKPYNY03).
文摘The stability of inclined shaft lining structure (ISLS) in complex water-rich strata is affected by many factors, suchas water pressure, joint, soft rock, lining corrosion and so on. The instability of the ISLS will affect the safe andefficient coal mine production. Bathe sed on the geological conditions of the Xiaobaodang coal mine, this papertested the evolution characteristics of concrete composition in long-term water seepage areas and revealed theinfluence mechanism of corrosion weakening of shaft lining (SL) in water-rich strata. Meanwhile, transientelectromagnetic, ground penetrating radar, and infrared monitoring are used to detect the water-rich zones, anddamage zones of surrounding rock and lining water seepage zones, and a three-level safety evaluation model forthe instability risk of ISLS is constructed. Water abundance of the surrounding rock, surrounding rock deterioration, and shaft lining seepage were the specific indicators in the model. The main inclined shaft (MIS) in thestudied coal mine is divided into three levels: non instability risk zone, potential instability risk zone, and highinstability risk zone. According to the evaluation results, comprehensive prevention and control measures of“hydrophobic hole drainage” and “back-lining grouting” are adopted for the water inrush source and the surrounding rock micro-crack water channel. The precise prevention and control of ISLS is realized. The researchresults also provide a reference for the stability evaluation of ISLS and the accurate prevention and control undersimilar conditions.