The NATO agreement STANAG 4569 defines the protection levels for the occupants of logistic and light armored vehicle.The Allied Engineering Publication,AEP-55,Volume 2 document outlines the test conditions for underbe...The NATO agreement STANAG 4569 defines the protection levels for the occupants of logistic and light armored vehicle.The Allied Engineering Publication,AEP-55,Volume 2 document outlines the test conditions for underbelly improvised explosive device(IEDs),which must be buried in water-saturated sandy gravel.The use of sandy gravel has some drawbacks,for instance reproducibility,time consumption,and cost.This paper focuses on the investigation of four alternatives to sandy gravel,which could produce similar specific and cumulative impulses:a concrete pot filled with water,a concrete pot filled with quartz sand,a steel pot without filling and a concrete pot filled with glass spheres(diameter 200μm—300μm)and different water contents.The impulses are measured with a ring technology developed at the Fraunhofer EMI.A numerical soil model based on the work of Marrs,2014 and Fi serov a,2006 and considering the soil moisture was used to simulate the experiments with glass spheres at different water contents,showing much better agreement with the experiments than the classical Laine&Sandvik model,even for high saturation levels.These results can be used to create new test conditions at original scale that are more cost-effective,more reproducible and simpler to manage in comparison to the current tests carried out with STANAG sandy gravel.展开更多
The rheological behavior of phosphoric acid-water glass grout in different mixing ratios was studied. Grout made of water glass with Baume degree of 20° and 13.4% phosphoric acid by 1:1 volume ratio is found to b...The rheological behavior of phosphoric acid-water glass grout in different mixing ratios was studied. Grout made of water glass with Baume degree of 20° and 13.4% phosphoric acid by 1:1 volume ratio is found to be more effective in stopping water. Laboratory model test of water shutoff by grouting was conducted. Test results show that the diffusion length and water cutoff effect of the grout are significantly improved as the grout head is raised, due to the dilution of underground water, and it takes the grout longer than its gel time to cut off water.展开更多
To study the relationship between grouting effect and grouting factors, three factors (seven parameters) directionless pressure and small cycle grouting model experiment on sandy gravel was done, which was designed ...To study the relationship between grouting effect and grouting factors, three factors (seven parameters) directionless pressure and small cycle grouting model experiment on sandy gravel was done, which was designed according to uniform design method. And regressing was applied to analysis of the test data. The two models test results indicate that when the diffusing radius of grout changes from 26 to 51 cm, the grouted sandy gravel compressing strength changes from 2.13 to 12.30 MPa; the relationship between diffusing radius(R) and water cement ratio(m), permeability coefficient(k), grouting pressure(p), grouting time(t) is R=19.953m^0.121k^0.429p^0.412t^0.437; the relationship between compressing strength(P) and porosity(n), water cement ratio, grouting pressure, grouting time is P =0.984n^0.517m6-1.488p^0.118t^0.031. So the porosity of sandy gravel, the permeability coefficient of sandy gravel, grouting pressure, grouting time, water cement ratio are main factors to influence the grouting effect. The grouting pressure is the main factor to influence grouting diffusing radius, and the water cement ratio is the main factor to influence grouted sandy gravel compressing strength.展开更多
The influence of the overlying clay on the progression of piping in the sandy gravel foundation of water-retaining structures is often neglected. In order to study this influence, an experimental investigation was con...The influence of the overlying clay on the progression of piping in the sandy gravel foundation of water-retaining structures is often neglected. In order to study this influence, an experimental investigation was conducted on a laboratory-scale model. It was discovered that the critical hydraulic gradient and the area of the piping tunnel increase when the overlying clay thickens. With a thicker clay layer, erosion of the sandy gravel below the clay layer occurs later, but, once the erosion starts, the erosion rate is very high and the average velocity of water seeping through the cross-section of the sandy gravel increases rapidly due to the low deformability of the thick clay layer. Furthermore, it was found that the progression of piping is a complicated and iterative process involving erosion of fine particles, clogging of pores, and flushing of the clogged pores. Two types of erosion have been identified in the progression of piping: one causes the tunnel to advance upstream, and the other increases the depth of the tunnel. The results show that the overlying clay is an important factor when evaluating piping in sandy gravel foundations of water-retaining structures.展开更多
The dynamic shear modulus ratio and damping ratio of sandy gravel are important parameters for the seismic response analysis of valley geomorphic sites,which have an important impact on the determination of design gro...The dynamic shear modulus ratio and damping ratio of sandy gravel are important parameters for the seismic response analysis of valley geomorphic sites,which have an important impact on the determination of design ground motion parameters. In this paper,the dynamic triaxial test of sandy gravels has been performed based on the project of the Shangluo Seismic Microzonation. Combined with the other results of sandy gravel,the recommended results of slightly dense,medium dense and dense sandy gravel were obtained. By building the typical site model,the influence of the dynamic shear modulus ratio and the damping ratio uncertainty on the seismic response of the site is studied. The results show that the uncertainty of the average of the dynamic shear modulus ratio and the damping ratio ± 1 times the standard deviation has little effect on the peak acceleration of the sandy gravel site,and the rationality of the grouping and statistical results is explained. Under different probability levels,the change in the shear modulus ratio and damping ratio leads to a significant difference in the high frequency response spectrum.The response spectrum of 0. 04-0. 1s ranges from about 20%,but it has little effect on the long period spectrum of more than 1. 0s. The study of dynamic shear modulus ratio and damping ratio of sandy gravel has the ability to improve the reliability of the designing ground motion parameters.展开更多
基金Bundeswehr Technical Center for Weapons and Ammunition WTD-91 GF-440 in Meppen,Germany for funding this work。
文摘The NATO agreement STANAG 4569 defines the protection levels for the occupants of logistic and light armored vehicle.The Allied Engineering Publication,AEP-55,Volume 2 document outlines the test conditions for underbelly improvised explosive device(IEDs),which must be buried in water-saturated sandy gravel.The use of sandy gravel has some drawbacks,for instance reproducibility,time consumption,and cost.This paper focuses on the investigation of four alternatives to sandy gravel,which could produce similar specific and cumulative impulses:a concrete pot filled with water,a concrete pot filled with quartz sand,a steel pot without filling and a concrete pot filled with glass spheres(diameter 200μm—300μm)and different water contents.The impulses are measured with a ring technology developed at the Fraunhofer EMI.A numerical soil model based on the work of Marrs,2014 and Fi serov a,2006 and considering the soil moisture was used to simulate the experiments with glass spheres at different water contents,showing much better agreement with the experiments than the classical Laine&Sandvik model,even for high saturation levels.These results can be used to create new test conditions at original scale that are more cost-effective,more reproducible and simpler to manage in comparison to the current tests carried out with STANAG sandy gravel.
基金Projects(41472278,41202220)supported by the National Natural Science Foundation of ChinaProject(20120022120003)supported by the Research Fund for the Doctoral Program of Higher Education,China+1 种基金Project(2652012065)supported by the Fundamental Research Funds for the Central Universities,ChinaProject supported by Beijing Higher Education Young Elite Teacher Program,China
文摘The rheological behavior of phosphoric acid-water glass grout in different mixing ratios was studied. Grout made of water glass with Baume degree of 20° and 13.4% phosphoric acid by 1:1 volume ratio is found to be more effective in stopping water. Laboratory model test of water shutoff by grouting was conducted. Test results show that the diffusion length and water cutoff effect of the grout are significantly improved as the grout head is raised, due to the dilution of underground water, and it takes the grout longer than its gel time to cut off water.
基金Foundation item: Project(40372124) supported by the National Natural Science of China project(05R214145) supported by Postdoctor Research Foundation of Chinaproject(B308) supported by Shanghai Leading Academic Discipline
文摘To study the relationship between grouting effect and grouting factors, three factors (seven parameters) directionless pressure and small cycle grouting model experiment on sandy gravel was done, which was designed according to uniform design method. And regressing was applied to analysis of the test data. The two models test results indicate that when the diffusing radius of grout changes from 26 to 51 cm, the grouted sandy gravel compressing strength changes from 2.13 to 12.30 MPa; the relationship between diffusing radius(R) and water cement ratio(m), permeability coefficient(k), grouting pressure(p), grouting time(t) is R=19.953m^0.121k^0.429p^0.412t^0.437; the relationship between compressing strength(P) and porosity(n), water cement ratio, grouting pressure, grouting time is P =0.984n^0.517m6-1.488p^0.118t^0.031. So the porosity of sandy gravel, the permeability coefficient of sandy gravel, grouting pressure, grouting time, water cement ratio are main factors to influence the grouting effect. The grouting pressure is the main factor to influence grouting diffusing radius, and the water cement ratio is the main factor to influence grouted sandy gravel compressing strength.
基金supported by the 973 Program of China(Grant No.2012CB417005)the Postgraduate Research and Innovation Plan Project in Jiangsu Province(Grant No.CXZZ13_0243)
文摘The influence of the overlying clay on the progression of piping in the sandy gravel foundation of water-retaining structures is often neglected. In order to study this influence, an experimental investigation was conducted on a laboratory-scale model. It was discovered that the critical hydraulic gradient and the area of the piping tunnel increase when the overlying clay thickens. With a thicker clay layer, erosion of the sandy gravel below the clay layer occurs later, but, once the erosion starts, the erosion rate is very high and the average velocity of water seeping through the cross-section of the sandy gravel increases rapidly due to the low deformability of the thick clay layer. Furthermore, it was found that the progression of piping is a complicated and iterative process involving erosion of fine particles, clogging of pores, and flushing of the clogged pores. Two types of erosion have been identified in the progression of piping: one causes the tunnel to advance upstream, and the other increases the depth of the tunnel. The results show that the overlying clay is an important factor when evaluating piping in sandy gravel foundations of water-retaining structures.
基金sponsored by the Earthquake Disaster Prevention and ReductionProgram for the 12th “Five-year Plan” of Shaanxi Province(SCZC2012-TP-905/1)
文摘The dynamic shear modulus ratio and damping ratio of sandy gravel are important parameters for the seismic response analysis of valley geomorphic sites,which have an important impact on the determination of design ground motion parameters. In this paper,the dynamic triaxial test of sandy gravels has been performed based on the project of the Shangluo Seismic Microzonation. Combined with the other results of sandy gravel,the recommended results of slightly dense,medium dense and dense sandy gravel were obtained. By building the typical site model,the influence of the dynamic shear modulus ratio and the damping ratio uncertainty on the seismic response of the site is studied. The results show that the uncertainty of the average of the dynamic shear modulus ratio and the damping ratio ± 1 times the standard deviation has little effect on the peak acceleration of the sandy gravel site,and the rationality of the grouping and statistical results is explained. Under different probability levels,the change in the shear modulus ratio and damping ratio leads to a significant difference in the high frequency response spectrum.The response spectrum of 0. 04-0. 1s ranges from about 20%,but it has little effect on the long period spectrum of more than 1. 0s. The study of dynamic shear modulus ratio and damping ratio of sandy gravel has the ability to improve the reliability of the designing ground motion parameters.