The ruin of several civil engineering works occurs due to shear rupture of the ground. When the stress is greater than the shear resistance, the internal friction angle and the cohesion of the soil loosen and rupture ...The ruin of several civil engineering works occurs due to shear rupture of the ground. When the stress is greater than the shear resistance, the internal friction angle and the cohesion of the soil loosen and rupture occurs. Cement and lime are often used to stabilize soils and improve soil strength. The costs and environmental problems of these technologies raise concerns and challenge researchers to innovate with clean, inexpensive materials, accessible to the most disadvantaged social classes. The question that this study seeks to answer is whether the binders derived from plant tannins, which also stabilize soils, improve the shear resistance of these soils. To do this, we determined for silty sand the shear parameters, notably the cohesion and the angle of internal friction in the non-stabilized state and when they are stabilized with the powder of the bark of the Bridelia under different water states. The results show that the addition of Bridelia powder to silty sand increases the cohesion of the soil by nearly 70.71% and the friction angle by 4.31%. But in unfavourable water conditions, the cohesion and internal friction angle of the silty sand material improved with Bridelia bark powder drops drastically by nearly 81.56%. but does not dissolve completely as for the same material. When it is not stabilized. This information is an invaluable contribution in the search for solutions to increase the durability of earthen constructions by improving the water-repellent properties of soils.展开更多
The wide-shallow composite bucket foundation(WSCBF) is a new type of offshore wind power foundation that can be built on land and rapidly installed offshore, there by effectively reducing the construction time and cos...The wide-shallow composite bucket foundation(WSCBF) is a new type of offshore wind power foundation that can be built on land and rapidly installed offshore, there by effectively reducing the construction time and costs of offshore wind power foundation. In this study, the horizontal bearing capacity is calculated by finite element simulation and compared with test results to verify the validity of results. In this process, the vertical load and bending load are respectively calculated by the finite element simulation. Under the vertical load effect, the bucket foundation and the soil inside are regarded as a whole, and the corresponding buckling failure mode is obtained. The ultimate vertical bearing capacity is calculated using empirical and theoretical formulas; the theoretical formula is also revised by finite element results. Under bending load, the rotational center of the composite bucket foundation(in a region close to the bucket bottom) gradually moves from the left of the central axis(reverse to loading direction) to the nearby compartment boards along the loading direction. The H–M envelope line shows a linear relationship, and it is determined that the vertical and bending ultimate bearing capacities can be improved by an appropriate vertical load.展开更多
Under repeated freezing and thawing in deep seasonal frozen regions, the stability and strength of the soil are imposed in the form of large uneven settlement, instability and strength reduction, which affect the norm...Under repeated freezing and thawing in deep seasonal frozen regions, the stability and strength of the soil are imposed in the form of large uneven settlement, instability and strength reduction, which affect the normal operation of railway lines. This study is to obtain the influencing rules of freeze-thaw on the dynamic properties (dynamic strain, confining pressure and compactness) of silty sand. Based on an amount of inner tests, the dynamic modulus and damping ratio properties of silty soil subjected to repeated freeze-thaw cycles were deeply researched and analyzed. The results are as follows: At the same dynamic strain, the relationship of dynamic stress and freeze-thaw cycles presents negative cor- relation, and the relationship of dynamic stress, confining pressure and compactness present positive correlation. The dynamic modulus double decreases while the damping ratio double increases with incremental increase in dynamic strain. The dynamic modulus sharply decreases while the damping ratio increases with incremental increase in freeze-thaw cycles, and then the changes level off after six freeze-thaw cycles. The dynamic modulus increases while the damping ratio decreases as the confining pressure and compactness increase at the same strain level.展开更多
In cold regions,the creep characteristics of warm frozen silty sand have significant effect on the stability of slope and subgrade.To investigate the creep behavior of warm frozen silty sand under thermo-mechanical co...In cold regions,the creep characteristics of warm frozen silty sand have significant effect on the stability of slope and subgrade.To investigate the creep behavior of warm frozen silty sand under thermo-mechanical coupling loads,a series of triaxial creep tests were carried out under different temperatures and stresses.The test results reveal that the creep strains decrease as the consolidation stress increases,and finally tend to be equal under the same loading stress,regardless of whether the stress is isotropic or deviatoric.Additionally,warm frozen silty sand is highly sensitive to temperature,which greatly influences the creep strain both in the consolidation stage and loading stage.Furthermore,based on the creep test phenomena,a new creep model that considers the influence of the stress level,temperature,hardening,and damage effect was established and experimentally validated.Finally,the sensitivity of the model parameters was analyzed,and it was found that the creep curve transitions from the attenuation creep stage to the non-attenuation creep stage as the temperature coefficient and stress coefficient increases.The hardening effect gradually changes to the damage effect as the coupling coefficient of the hardening and damage increases.展开更多
Fine grain soils have a complex engineering behaviour which depends but not limited to moisture content, changes in external pressure and characteristics of the pore medium. Sand often contains a considerable percent ...Fine grain soils have a complex engineering behaviour which depends but not limited to moisture content, changes in external pressure and characteristics of the pore medium. Sand often contains a considerable percent of silt which is expected to alter its natural behaviour. This composite matrix is referred to as silty-sand. To understand the behaviour of this matrix under varying moisture conditions, some of the factors influencing the soil-water characteristics of unsaturated silty sands were investigated. Representative samples were collected from a river bank after its index properties were predetermined in the laboratory. The samples were compacted at different moisture conditions and compactive efforts. With the pressure plate extractor device, the Soil-Water Characteristic (SWC) was obtained and SWC Curves plotted. Compaction at greater compactive effort (modified proctor) and optimum moisture content produced the largest air entry value and reduced air voids. The air entry values of the soils obtained ranged from 21 kPa to 57 kPa. Also changes in the shape of the SWCC were consistent with changes in pore size which occur by varying compaction conditions. Result shows that soil structure, compaction water content, compactive effort and percentage of fine particles are factors affecting the Soil-Water Characteristics.展开更多
In this study, a backpropagation neural network algorithm was developed in order to predict the liquefaction cyclic resistance ratio (CRR) of sand-silt mixtures. A database, consisting of sufficient published data of ...In this study, a backpropagation neural network algorithm was developed in order to predict the liquefaction cyclic resistance ratio (CRR) of sand-silt mixtures. A database, consisting of sufficient published data of laboratory cyclic triaxial, torsional shear and simple shear tests results, was collected and utilized in the ANN model. Several ANN models were developed with different sets of input parameters in order to determine the model with best performance and preciseness. It has been illustrated that the proposed ANN model can predict the measured CRR of the different data set which was not incorporated in the developing phase of the model with the good degree of accuracy. The subsequent sensitivity analysis was performed to compare the effect of each parameter in the model with the laboratory test results. At the end, the participation or relative importance of each parameter in the ANN model was obtained.展开更多
The objective of this study is to determine the influence of the surrounding soils on the granular properties of the silty sands of Togo and on the resistance of the mortars. Sand compositions are made by substituting...The objective of this study is to determine the influence of the surrounding soils on the granular properties of the silty sands of Togo and on the resistance of the mortars. Sand compositions are made by substituting silty sands with clay soil, vegetal soil, lateritic soil or fine elements (<0.08 mm) which are the surrounding land polluting the sands in Togo. After identification tests, the mixtures were used to prepare test specimens of mortar which are subjected to bending and compression. It appears that additions of clay and plastic soils (ES = 0, VBM > 0.53 and IP > 19) from 10% to 35% cause drops in resistance of mortars from 7% to 96%;this loss is 8% to 70% for the rates of addition of less clayey soil (ES = 33, VBM = 0.40 and IP = 0) at rates of 10% to 100%. As for fine powdery soils (ES = 56.53 and VBM = 0.25), they have virtually no influence on resistance (loss of less than 3% for rates of 100%). Construction stakeholders thus have a decision-making tool for the choice of silty sand extraction zones according to the surrounding land and the quality of the desired concrete.展开更多
文摘The ruin of several civil engineering works occurs due to shear rupture of the ground. When the stress is greater than the shear resistance, the internal friction angle and the cohesion of the soil loosen and rupture occurs. Cement and lime are often used to stabilize soils and improve soil strength. The costs and environmental problems of these technologies raise concerns and challenge researchers to innovate with clean, inexpensive materials, accessible to the most disadvantaged social classes. The question that this study seeks to answer is whether the binders derived from plant tannins, which also stabilize soils, improve the shear resistance of these soils. To do this, we determined for silty sand the shear parameters, notably the cohesion and the angle of internal friction in the non-stabilized state and when they are stabilized with the powder of the bark of the Bridelia under different water states. The results show that the addition of Bridelia powder to silty sand increases the cohesion of the soil by nearly 70.71% and the friction angle by 4.31%. But in unfavourable water conditions, the cohesion and internal friction angle of the silty sand material improved with Bridelia bark powder drops drastically by nearly 81.56%. but does not dissolve completely as for the same material. When it is not stabilized. This information is an invaluable contribution in the search for solutions to increase the durability of earthen constructions by improving the water-repellent properties of soils.
基金supported by the National Natural Science Foundation of China (No.51379142 and No.51679163)Innovation Method Fund of China (No.2016IM030100)the Tianjin Municipal Natural Science Foundation (No.17JCYBJC22000)
文摘The wide-shallow composite bucket foundation(WSCBF) is a new type of offshore wind power foundation that can be built on land and rapidly installed offshore, there by effectively reducing the construction time and costs of offshore wind power foundation. In this study, the horizontal bearing capacity is calculated by finite element simulation and compared with test results to verify the validity of results. In this process, the vertical load and bending load are respectively calculated by the finite element simulation. Under the vertical load effect, the bucket foundation and the soil inside are regarded as a whole, and the corresponding buckling failure mode is obtained. The ultimate vertical bearing capacity is calculated using empirical and theoretical formulas; the theoretical formula is also revised by finite element results. Under bending load, the rotational center of the composite bucket foundation(in a region close to the bucket bottom) gradually moves from the left of the central axis(reverse to loading direction) to the nearby compartment boards along the loading direction. The H–M envelope line shows a linear relationship, and it is determined that the vertical and bending ultimate bearing capacities can be improved by an appropriate vertical load.
基金funded by the National Key Basic Research Development Plan of China (Grant No. 2012CB026104)the National Natural Science Foundation (NSFC) of China (Grant Nos.51208320 and 51171281)
文摘Under repeated freezing and thawing in deep seasonal frozen regions, the stability and strength of the soil are imposed in the form of large uneven settlement, instability and strength reduction, which affect the normal operation of railway lines. This study is to obtain the influencing rules of freeze-thaw on the dynamic properties (dynamic strain, confining pressure and compactness) of silty sand. Based on an amount of inner tests, the dynamic modulus and damping ratio properties of silty soil subjected to repeated freeze-thaw cycles were deeply researched and analyzed. The results are as follows: At the same dynamic strain, the relationship of dynamic stress and freeze-thaw cycles presents negative cor- relation, and the relationship of dynamic stress, confining pressure and compactness present positive correlation. The dynamic modulus double decreases while the damping ratio double increases with incremental increase in dynamic strain. The dynamic modulus sharply decreases while the damping ratio increases with incremental increase in freeze-thaw cycles, and then the changes level off after six freeze-thaw cycles. The dynamic modulus increases while the damping ratio decreases as the confining pressure and compactness increase at the same strain level.
基金supported the National Natural Science Foundation of China (No.41971076)the National Key Research and Development Program of China (No.2016YFE0202400)the State Key Laboratory of Road Engineering Safety and Health in Cold and High-altitude Regions (No.YGY2017KYPT-04)。
文摘In cold regions,the creep characteristics of warm frozen silty sand have significant effect on the stability of slope and subgrade.To investigate the creep behavior of warm frozen silty sand under thermo-mechanical coupling loads,a series of triaxial creep tests were carried out under different temperatures and stresses.The test results reveal that the creep strains decrease as the consolidation stress increases,and finally tend to be equal under the same loading stress,regardless of whether the stress is isotropic or deviatoric.Additionally,warm frozen silty sand is highly sensitive to temperature,which greatly influences the creep strain both in the consolidation stage and loading stage.Furthermore,based on the creep test phenomena,a new creep model that considers the influence of the stress level,temperature,hardening,and damage effect was established and experimentally validated.Finally,the sensitivity of the model parameters was analyzed,and it was found that the creep curve transitions from the attenuation creep stage to the non-attenuation creep stage as the temperature coefficient and stress coefficient increases.The hardening effect gradually changes to the damage effect as the coupling coefficient of the hardening and damage increases.
文摘Fine grain soils have a complex engineering behaviour which depends but not limited to moisture content, changes in external pressure and characteristics of the pore medium. Sand often contains a considerable percent of silt which is expected to alter its natural behaviour. This composite matrix is referred to as silty-sand. To understand the behaviour of this matrix under varying moisture conditions, some of the factors influencing the soil-water characteristics of unsaturated silty sands were investigated. Representative samples were collected from a river bank after its index properties were predetermined in the laboratory. The samples were compacted at different moisture conditions and compactive efforts. With the pressure plate extractor device, the Soil-Water Characteristic (SWC) was obtained and SWC Curves plotted. Compaction at greater compactive effort (modified proctor) and optimum moisture content produced the largest air entry value and reduced air voids. The air entry values of the soils obtained ranged from 21 kPa to 57 kPa. Also changes in the shape of the SWCC were consistent with changes in pore size which occur by varying compaction conditions. Result shows that soil structure, compaction water content, compactive effort and percentage of fine particles are factors affecting the Soil-Water Characteristics.
文摘In this study, a backpropagation neural network algorithm was developed in order to predict the liquefaction cyclic resistance ratio (CRR) of sand-silt mixtures. A database, consisting of sufficient published data of laboratory cyclic triaxial, torsional shear and simple shear tests results, was collected and utilized in the ANN model. Several ANN models were developed with different sets of input parameters in order to determine the model with best performance and preciseness. It has been illustrated that the proposed ANN model can predict the measured CRR of the different data set which was not incorporated in the developing phase of the model with the good degree of accuracy. The subsequent sensitivity analysis was performed to compare the effect of each parameter in the model with the laboratory test results. At the end, the participation or relative importance of each parameter in the ANN model was obtained.
文摘The objective of this study is to determine the influence of the surrounding soils on the granular properties of the silty sands of Togo and on the resistance of the mortars. Sand compositions are made by substituting silty sands with clay soil, vegetal soil, lateritic soil or fine elements (<0.08 mm) which are the surrounding land polluting the sands in Togo. After identification tests, the mixtures were used to prepare test specimens of mortar which are subjected to bending and compression. It appears that additions of clay and plastic soils (ES = 0, VBM > 0.53 and IP > 19) from 10% to 35% cause drops in resistance of mortars from 7% to 96%;this loss is 8% to 70% for the rates of addition of less clayey soil (ES = 33, VBM = 0.40 and IP = 0) at rates of 10% to 100%. As for fine powdery soils (ES = 56.53 and VBM = 0.25), they have virtually no influence on resistance (loss of less than 3% for rates of 100%). Construction stakeholders thus have a decision-making tool for the choice of silty sand extraction zones according to the surrounding land and the quality of the desired concrete.