Using smashing ridging tillage machine and smashing ridging technology invented by the authors, transformation test of saline-alkali land by smashing ridging was conducted respectively in Xinjiang and Shaanxi during 2...Using smashing ridging tillage machine and smashing ridging technology invented by the authors, transformation test of saline-alkali land by smashing ridging was conducted respectively in Xinjiang and Shaanxi during 2015 -2016. The results showed, in severe saline-alkali soil of Xin-jiang ,after growing cotton by smashing ridging, total salt in soil decreased by 31.31 %, cotton production increased by 48.80%, and salinity level declined from severe to moderate; in mild saline-alkali soil of Shaanxi, after growing summer corn by smashing ridging, total salt in soil decreased by 42.37%, corn yield increased by 34.83%, salinity degree changed from mild desalination to normal farmland ; in Ningxia, Inner Mongolia 7 Gansu ,Jilin, Henan, Hebei, and so on, smashing ridging tillage practice in different types of saline-alkali land was conducted ; according to the salt reduction and yield increase effects of saline-alkali land after smashing ridging, the development prospect of smashing ridging technique in improvement and application of saline-alkali land was proposed.展开更多
The potential of yield increase in the North China Plain is about 30 billion kg by ameliorating the low yield and medium low yield farmlands and 4 billion kg by reclaiming unused land. Water shortage will be the main ...The potential of yield increase in the North China Plain is about 30 billion kg by ameliorating the low yield and medium low yield farmlands and 4 billion kg by reclaiming unused land. Water shortage will be the main limitation to the further increase of grain crop yield. The amount of water shortage is 8 200 million m3 at present, and will be 17 720 million m3 in 2 000. Yield increase can not be realized by using more water in the future. Other factors such as decrease of the area of cultivated land and the grain crop growing area, deterioration of environment and destruction of resources will also affect the development of grain production. Some suggestions have been proposed in the paper for attaining sustainable increase of yield in the plain.展开更多
Fenlong farming technology was introduced. It has characteristics of very deep tillage and evenly smashing soil,and can evenly smash soil without disturbing soil layers to complete the task of soil preparation. It can...Fenlong farming technology was introduced. It has characteristics of very deep tillage and evenly smashing soil,and can evenly smash soil without disturbing soil layers to complete the task of soil preparation. It can be widely used in cultivated land,saline-alkali land,lime concretion black soil,degraded grassland,etc. After the application of the technology in 34 crops in 24 provinces,it can increase yield by 10%-50% and improve quality by above 5%. Fenlong technology can increase soil reservoir capacity,enhance the infiltration rate of rainwater in soil and make " surplus" effect obvious. If the country plans and promotes the technology in 160 million hm^2 of land( including 67 million hm^2 of cultivated land,20 million hm^2 of saline-alkali land,6. 7 million hm^2 of marginal land and 67 million hm^2 of degraded grassland),the total volume of loosened soil in arable land will increase from 198. 1 billion to 840. 0 billion m^3,and the capacity of a " underground reservoir" will increase by 675 million m^3,while natural precipitation reserves will increase by 162 billion m^3. It can effectively solve food security problems and water resource problems such as drought,floods,and industrial,agricultural and domestic water shortages,as well as serious disaster hazards caused by groundwater that has been evacuated in China.展开更多
Core theory and acting force("physical fertility") of Fenlong are firstly proposed,and "physical fertility of Fenlong" is relative to the fertility of chemical fertilizer of increasing crop yield. ...Core theory and acting force("physical fertility") of Fenlong are firstly proposed,and "physical fertility of Fenlong" is relative to the fertility of chemical fertilizer of increasing crop yield. Basic composition of "physical fertility of Fenlong" and its effect of increasing production and improving quality of various agricultural crops are clarified. It makes crop yield increase by 15%-30% without fertilization and 15%-50% by not increasing fertilization amount and irrigation water consumption. It is proposed that "physical fertility of Fenlong" could be sufficiently excavated in the new times of green development. Fenlong has a key significance for rationally reducing chemical fertilizer,soil,water and air pollution,agricultural cost,improving the quality of agricultural products and human health level.展开更多
In line with the author’s long-time experience on soil reconnaissance, monitoring and scientific probes, this article expounds the vital significance in systematic build-up of pedological data, protection of arable l...In line with the author’s long-time experience on soil reconnaissance, monitoring and scientific probes, this article expounds the vital significance in systematic build-up of pedological data, protection of arable land, employment and renovation of the farmland soil in accordance with the local edaphic setting in a bid to increase the grain yield.展开更多
The shortage of groundwater resources is a considerable challenge for winter wheat production on the North China Plain.Water-saving technologies and procedures are thus urgently required.To determine the water-saving ...The shortage of groundwater resources is a considerable challenge for winter wheat production on the North China Plain.Water-saving technologies and procedures are thus urgently required.To determine the water-saving potential of using micro-sprinkling irrigation(MSI)for winter wheat production,field experiments were conducted from 2012 to 2015.Compared to traditional flooding irrigation(TFI),micro-sprinkling thrice with 90 mm water(MSI1)and micro-sprinkling four times with 120 mm water(MSI2)increased the water use efficiency by 22.5 and 16.2%,respectively,while reducing evapotranspiration by 17.6 and 10.8%.Regardless of the rainfall pattern,MSI(i.e.,MSI1 or MSI2)either stabilized or significantly increased the grain yield,while reducing irrigation water volumes by 20–40%,compared to TFI.Applying the same volumes of irrigation water,MSI(i.e.,MSI3,micro-sprinkling five times with 150 mm water)increased the grain yield and water use efficiency of winter wheat by 4.6 and 11.7%,respectively,compared to TFI.Because MSI could supply irrigation water more frequently in smaller amounts each time,it reduced soil layer compaction,and may have also resulted in a soil water deficit that promoted the spread of roots into the deep soil layer,which is beneficial to photosynthetic production in the critical period.In conclusion,MSI1 or MSI2 either stabilized or significantly increased grain yield while reducing irrigation water volumes by 20–40%compared to TFI,and should provide water-saving technological support in winter wheat production for smallholders on the North China Plain.展开更多
To study the effects of long-term no-tillage direct seeding mode on rice yield and the soil physiochemical property in a rice-rapeseed rotation system, a comparative experiment with a water-saving and drought-resistan...To study the effects of long-term no-tillage direct seeding mode on rice yield and the soil physiochemical property in a rice-rapeseed rotation system, a comparative experiment with a water-saving and drought-resistance rice (WDR) variety and a double low rapeseed variety as materials was conducted under no-tillage direct seeding (NTDS) mode and conventional tillage direct seeding (CTDS) mode for four years, using the CTDS mode as the control. Compared with the CTDS mode, the actual rice yield of WDR decreased by 8.10% at the first year, whereas the plant height, spikelet number per panicle, spikelet fertility, 1000-grain weight, grain yield, actual yield, and harvest index increased with no-tillage years, which led to the actual yield increase by 6.49% at the fourth year. Correlation analysis showed that the panicle length was significantly related to the actual yield of WDR. Compared with the CTDS mode in terms of the soil properties, the pH value of the NTDS mode decreased every year, whereas the contents of soil organic matter and total N of the NTDS mode increased. In the 0-5 cm layer of the NTDS mode, the soil bulk decreased, whereas the contents of soil organic matter, total N, and available N increased. In the 5-20 cm layer of the NTDS mode, the available N and K decreased, whereas the soil bulk, contents of soil organic matter, and total N increased. In summary, the NTDS mode increased the rice yield, and could improve the paddy soil fertility of the top layer.展开更多
A field experiment was conducted to evaluate the effects of self-developed full-element bio-organic fertilizer on the growth,yield,and rhizosphere soil nutrients of pepper.Four treatments were designed,including full-...A field experiment was conducted to evaluate the effects of self-developed full-element bio-organic fertilizer on the growth,yield,and rhizosphere soil nutrients of pepper.Four treatments were designed,including full-element bio-organic fertilizer+conventional fertilizer reduced by 50%(T1),inactivated full-element bio-organic fertilizer+conventional fertilizer reduced by 50%(T2),conventional fertilizer(T3),and no fertilizer(CK).The results showed that T1 significantly increased the plant height,crown width,fruit number per plant,and yield of pepper.T1 had higher pH value,total nitrogen,total phosphorus,total potassium,available nitrogen,available phosphorus,and available potassium in the rhizosphere soil than T3 and CK,and it had higher available phosphorus and available potassium than T2.The disease index of bacterial wilt in T1 was 21.74,which was 10.37,20.19,and 35.48 lower than T2,T3,and CK,respectively.The control effect of T1 reached 56.71%.The above results indicated that whole bio-organic fertilizer promoted the growth to improve the yield and benefit of pepper.Moreover,the fertilizer activated soil nutrients to improve soil fertility and reduced soil-borne diseases.Therefore,the full-element bio-organic fertilizer can be promoted in the pepper fields with continuous cropping obstacles.展开更多
After insufflating extended endophytes phomopsis B3 ferment diluent on seedling bed of rice, the effect of microbial inoculum on rice growth was studied. The investigation result of seedlings before transplanting seed...After insufflating extended endophytes phomopsis B3 ferment diluent on seedling bed of rice, the effect of microbial inoculum on rice growth was studied. The investigation result of seedlings before transplanting seedling showed that leaf age,the number of green leaves,the number of tiller of individual plant and the weight of per 100 fresh plants in microbial inoculum treatment group increased 0.11,0.12 ,0. 03 and 2.6 g respectively compared with those of control group. 20 days after transplanting, increased tiller number in microbial inoculum treatment group was 55 500 hm^2 more than that in control group. 30 days after transplanting, tiller number in microbial inoculum treatment group was 42 000 hm^2 more than that in control group. In harvest season, the yield ,weight of I 0130 grain and seed-setting rate increased 300 kg/hm2, 0. 7 g and 0. 23% respectively compared with these in control group. The result of preliminary study demonstrated that microbial inoculum confected by endophytes phomopsis B3 could increase the number of strong seedling and yield.展开更多
[Objective] The aim was to explore the effects of different leaching solu- tions on yield increasing of rice. [Method] Three rice parents were chosen from dif- ferent areas to treat with leaching solutions and rice le...[Objective] The aim was to explore the effects of different leaching solu- tions on yield increasing of rice. [Method] Three rice parents were chosen from dif- ferent areas to treat with leaching solutions and rice leaves were sprayed with leaching solutions in seedling stage and tillering stage, respectively. The test data were recorded. Horizontal and vertical researches were carried out on agronomic traits of rice in different varieties in test or control groups. [Result] The horizontal test showed that hybrid rice parents, submerged with traditional Chinese medicines increased significantly in rice yield and vertical research indicated that rice in control group decreased sharply in yield and in test group improved in both yield and quality, which was also true for following generations. [Conclusion] The test provides references for hybrid rice maintaining rice traits.展开更多
[Objectives]To study the effects of different proportions of controlled release urea and ordinary urea on peanut yield.[Methods]A total of 5 treatments were set up according to different proportions of controlled rele...[Objectives]To study the effects of different proportions of controlled release urea and ordinary urea on peanut yield.[Methods]A total of 5 treatments were set up according to different proportions of controlled release urea and ordinary urea,randomly arranged in blocks and repeated 3 times.[Results]The test results of field districts showed that different proportions of controlled release urea and conventional urea had different effects on peanut yield.On the basis of applying 50 kg/666.7 m^(2)of calcium superphosphate and 17 kg/666.7 m^(2)of potassium sulfate,13.34 kg/666.7 m^(2)of pure nitrogen was applied.The optimal ratio of controlled release urea to ordinary urea was 75:25,followed by 50:50.The output was 379.83 and 371.83 kg/666.7 m^(2),separately increased by 6.74%and 4.50%compared to the application of ordinary urea.[Conclusions]The combined application of controlled release urea and ordinary urea in peanuts can significantly increase peanut yield compared to just applying ordinary urea.展开更多
在中国推进生态文明建设的背景下,农业固碳增效被写入“双碳目标”,低碳农业随之兴起。生物多样性是生态系统功能与服务的基础,在农业低碳化过程中发挥了至关重要的作用,保护农田生物多样性,充分发挥其生态作用是实现农业减排固碳的重...在中国推进生态文明建设的背景下,农业固碳增效被写入“双碳目标”,低碳农业随之兴起。生物多样性是生态系统功能与服务的基础,在农业低碳化过程中发挥了至关重要的作用,保护农田生物多样性,充分发挥其生态作用是实现农业减排固碳的重要路径。收集“Web of Science”数据库中2010-2022年的文献,利用CiteSpace文献计量软件的关键词共现以及聚类分析,对近年来国际低碳农业中生物多样性的研究动态、研究热点进行分析,对生物多样性的功能进行归纳总结。分析结果表明,生物多样性的保护与管理是目前低碳农业生物多样性的研究热点,而生物防治是生物多样性实现农业低碳化的主要途径,通过对不同生物类群多样性的生态价值进行梳理,发现生物多样性可以增加农业生产过程中的生态与经济价值。未来的研究可从生态系统和景观的尺度,探索基于生物多样性的多功能农业发展模式,从而更好地助力双碳目标的顺利实现。展开更多
基金Supported by National Science and Technology Support Program(2014BAD06B05)
文摘Using smashing ridging tillage machine and smashing ridging technology invented by the authors, transformation test of saline-alkali land by smashing ridging was conducted respectively in Xinjiang and Shaanxi during 2015 -2016. The results showed, in severe saline-alkali soil of Xin-jiang ,after growing cotton by smashing ridging, total salt in soil decreased by 31.31 %, cotton production increased by 48.80%, and salinity level declined from severe to moderate; in mild saline-alkali soil of Shaanxi, after growing summer corn by smashing ridging, total salt in soil decreased by 42.37%, corn yield increased by 34.83%, salinity degree changed from mild desalination to normal farmland ; in Ningxia, Inner Mongolia 7 Gansu ,Jilin, Henan, Hebei, and so on, smashing ridging tillage practice in different types of saline-alkali land was conducted ; according to the salt reduction and yield increase effects of saline-alkali land after smashing ridging, the development prospect of smashing ridging technique in improvement and application of saline-alkali land was proposed.
文摘The potential of yield increase in the North China Plain is about 30 billion kg by ameliorating the low yield and medium low yield farmlands and 4 billion kg by reclaiming unused land. Water shortage will be the main limitation to the further increase of grain crop yield. The amount of water shortage is 8 200 million m3 at present, and will be 17 720 million m3 in 2 000. Yield increase can not be realized by using more water in the future. Other factors such as decrease of the area of cultivated land and the grain crop growing area, deterioration of environment and destruction of resources will also affect the development of grain production. Some suggestions have been proposed in the paper for attaining sustainable increase of yield in the plain.
基金Supported by the Special Project for Innovation-driven Development of Guangxi(Guike AA17204037)
文摘Fenlong farming technology was introduced. It has characteristics of very deep tillage and evenly smashing soil,and can evenly smash soil without disturbing soil layers to complete the task of soil preparation. It can be widely used in cultivated land,saline-alkali land,lime concretion black soil,degraded grassland,etc. After the application of the technology in 34 crops in 24 provinces,it can increase yield by 10%-50% and improve quality by above 5%. Fenlong technology can increase soil reservoir capacity,enhance the infiltration rate of rainwater in soil and make " surplus" effect obvious. If the country plans and promotes the technology in 160 million hm^2 of land( including 67 million hm^2 of cultivated land,20 million hm^2 of saline-alkali land,6. 7 million hm^2 of marginal land and 67 million hm^2 of degraded grassland),the total volume of loosened soil in arable land will increase from 198. 1 billion to 840. 0 billion m^3,and the capacity of a " underground reservoir" will increase by 675 million m^3,while natural precipitation reserves will increase by 162 billion m^3. It can effectively solve food security problems and water resource problems such as drought,floods,and industrial,agricultural and domestic water shortages,as well as serious disaster hazards caused by groundwater that has been evacuated in China.
基金Supported by Special Fund for Guangxi Innovation Driven Development(Guike AA17204037)Key Program of Guangxi Science and Technology(Guike AA16380017)Team Program of Guangxi Academy of Agricultural Sciences(2015YT60)
文摘Core theory and acting force("physical fertility") of Fenlong are firstly proposed,and "physical fertility of Fenlong" is relative to the fertility of chemical fertilizer of increasing crop yield. Basic composition of "physical fertility of Fenlong" and its effect of increasing production and improving quality of various agricultural crops are clarified. It makes crop yield increase by 15%-30% without fertilization and 15%-50% by not increasing fertilization amount and irrigation water consumption. It is proposed that "physical fertility of Fenlong" could be sufficiently excavated in the new times of green development. Fenlong has a key significance for rationally reducing chemical fertilizer,soil,water and air pollution,agricultural cost,improving the quality of agricultural products and human health level.
文摘In line with the author’s long-time experience on soil reconnaissance, monitoring and scientific probes, this article expounds the vital significance in systematic build-up of pedological data, protection of arable land, employment and renovation of the farmland soil in accordance with the local edaphic setting in a bid to increase the grain yield.
基金the National Key Research and Development Program of China(2017YFD0300203 and 2016YFD0300105)。
文摘The shortage of groundwater resources is a considerable challenge for winter wheat production on the North China Plain.Water-saving technologies and procedures are thus urgently required.To determine the water-saving potential of using micro-sprinkling irrigation(MSI)for winter wheat production,field experiments were conducted from 2012 to 2015.Compared to traditional flooding irrigation(TFI),micro-sprinkling thrice with 90 mm water(MSI1)and micro-sprinkling four times with 120 mm water(MSI2)increased the water use efficiency by 22.5 and 16.2%,respectively,while reducing evapotranspiration by 17.6 and 10.8%.Regardless of the rainfall pattern,MSI(i.e.,MSI1 or MSI2)either stabilized or significantly increased the grain yield,while reducing irrigation water volumes by 20–40%,compared to TFI.Applying the same volumes of irrigation water,MSI(i.e.,MSI3,micro-sprinkling five times with 150 mm water)increased the grain yield and water use efficiency of winter wheat by 4.6 and 11.7%,respectively,compared to TFI.Because MSI could supply irrigation water more frequently in smaller amounts each time,it reduced soil layer compaction,and may have also resulted in a soil water deficit that promoted the spread of roots into the deep soil layer,which is beneficial to photosynthetic production in the critical period.In conclusion,MSI1 or MSI2 either stabilized or significantly increased grain yield while reducing irrigation water volumes by 20–40%compared to TFI,and should provide water-saving technological support in winter wheat production for smallholders on the North China Plain.
基金supported by the Key Project of Developing Agriculture through Science and Technology of Shanghai Municipal Agricultural Commission,China(Grant No.2010-1-1)Shanghai Science and Technology Development Funds,China(Grant No.11QA1405900)the National High-Tech Research and Development Program of China(Grant No.2012AA101102)
文摘To study the effects of long-term no-tillage direct seeding mode on rice yield and the soil physiochemical property in a rice-rapeseed rotation system, a comparative experiment with a water-saving and drought-resistance rice (WDR) variety and a double low rapeseed variety as materials was conducted under no-tillage direct seeding (NTDS) mode and conventional tillage direct seeding (CTDS) mode for four years, using the CTDS mode as the control. Compared with the CTDS mode, the actual rice yield of WDR decreased by 8.10% at the first year, whereas the plant height, spikelet number per panicle, spikelet fertility, 1000-grain weight, grain yield, actual yield, and harvest index increased with no-tillage years, which led to the actual yield increase by 6.49% at the fourth year. Correlation analysis showed that the panicle length was significantly related to the actual yield of WDR. Compared with the CTDS mode in terms of the soil properties, the pH value of the NTDS mode decreased every year, whereas the contents of soil organic matter and total N of the NTDS mode increased. In the 0-5 cm layer of the NTDS mode, the soil bulk decreased, whereas the contents of soil organic matter, total N, and available N increased. In the 5-20 cm layer of the NTDS mode, the available N and K decreased, whereas the soil bulk, contents of soil organic matter, and total N increased. In summary, the NTDS mode increased the rice yield, and could improve the paddy soil fertility of the top layer.
基金Supported by National Nature Science Foundation of China(32000047)Selecting the Best Candidates for Making Technological Breakthroughs in Hunan Province(2021NK1040)Natural Science Foundation of Changsha City(kq2208130)。
文摘A field experiment was conducted to evaluate the effects of self-developed full-element bio-organic fertilizer on the growth,yield,and rhizosphere soil nutrients of pepper.Four treatments were designed,including full-element bio-organic fertilizer+conventional fertilizer reduced by 50%(T1),inactivated full-element bio-organic fertilizer+conventional fertilizer reduced by 50%(T2),conventional fertilizer(T3),and no fertilizer(CK).The results showed that T1 significantly increased the plant height,crown width,fruit number per plant,and yield of pepper.T1 had higher pH value,total nitrogen,total phosphorus,total potassium,available nitrogen,available phosphorus,and available potassium in the rhizosphere soil than T3 and CK,and it had higher available phosphorus and available potassium than T2.The disease index of bacterial wilt in T1 was 21.74,which was 10.37,20.19,and 35.48 lower than T2,T3,and CK,respectively.The control effect of T1 reached 56.71%.The above results indicated that whole bio-organic fertilizer promoted the growth to improve the yield and benefit of pepper.Moreover,the fertilizer activated soil nutrients to improve soil fertility and reduced soil-borne diseases.Therefore,the full-element bio-organic fertilizer can be promoted in the pepper fields with continuous cropping obstacles.
基金Supported by the National Natural Science Foundation of China(30770073,30500066)~~
文摘After insufflating extended endophytes phomopsis B3 ferment diluent on seedling bed of rice, the effect of microbial inoculum on rice growth was studied. The investigation result of seedlings before transplanting seedling showed that leaf age,the number of green leaves,the number of tiller of individual plant and the weight of per 100 fresh plants in microbial inoculum treatment group increased 0.11,0.12 ,0. 03 and 2.6 g respectively compared with those of control group. 20 days after transplanting, increased tiller number in microbial inoculum treatment group was 55 500 hm^2 more than that in control group. 30 days after transplanting, tiller number in microbial inoculum treatment group was 42 000 hm^2 more than that in control group. In harvest season, the yield ,weight of I 0130 grain and seed-setting rate increased 300 kg/hm2, 0. 7 g and 0. 23% respectively compared with these in control group. The result of preliminary study demonstrated that microbial inoculum confected by endophytes phomopsis B3 could increase the number of strong seedling and yield.
文摘[Objective] The aim was to explore the effects of different leaching solu- tions on yield increasing of rice. [Method] Three rice parents were chosen from dif- ferent areas to treat with leaching solutions and rice leaves were sprayed with leaching solutions in seedling stage and tillering stage, respectively. The test data were recorded. Horizontal and vertical researches were carried out on agronomic traits of rice in different varieties in test or control groups. [Result] The horizontal test showed that hybrid rice parents, submerged with traditional Chinese medicines increased significantly in rice yield and vertical research indicated that rice in control group decreased sharply in yield and in test group improved in both yield and quality, which was also true for following generations. [Conclusion] The test provides references for hybrid rice maintaining rice traits.
基金Peanut Innovation Team Project of Shandong Province Modern Agricultural Industry Technology System(SDAIT-05-022)Special Fund Project of Shandong Province Agricultural Technology Promotion(SDTG-2016-08).
文摘[Objectives]To study the effects of different proportions of controlled release urea and ordinary urea on peanut yield.[Methods]A total of 5 treatments were set up according to different proportions of controlled release urea and ordinary urea,randomly arranged in blocks and repeated 3 times.[Results]The test results of field districts showed that different proportions of controlled release urea and conventional urea had different effects on peanut yield.On the basis of applying 50 kg/666.7 m^(2)of calcium superphosphate and 17 kg/666.7 m^(2)of potassium sulfate,13.34 kg/666.7 m^(2)of pure nitrogen was applied.The optimal ratio of controlled release urea to ordinary urea was 75:25,followed by 50:50.The output was 379.83 and 371.83 kg/666.7 m^(2),separately increased by 6.74%and 4.50%compared to the application of ordinary urea.[Conclusions]The combined application of controlled release urea and ordinary urea in peanuts can significantly increase peanut yield compared to just applying ordinary urea.
文摘在中国推进生态文明建设的背景下,农业固碳增效被写入“双碳目标”,低碳农业随之兴起。生物多样性是生态系统功能与服务的基础,在农业低碳化过程中发挥了至关重要的作用,保护农田生物多样性,充分发挥其生态作用是实现农业减排固碳的重要路径。收集“Web of Science”数据库中2010-2022年的文献,利用CiteSpace文献计量软件的关键词共现以及聚类分析,对近年来国际低碳农业中生物多样性的研究动态、研究热点进行分析,对生物多样性的功能进行归纳总结。分析结果表明,生物多样性的保护与管理是目前低碳农业生物多样性的研究热点,而生物防治是生物多样性实现农业低碳化的主要途径,通过对不同生物类群多样性的生态价值进行梳理,发现生物多样性可以增加农业生产过程中的生态与经济价值。未来的研究可从生态系统和景观的尺度,探索基于生物多样性的多功能农业发展模式,从而更好地助力双碳目标的顺利实现。