期刊文献+
共找到924篇文章
< 1 2 47 >
每页显示 20 50 100
Effect of Continuous Double-Lumen Irrigation Drainage at Constant Temperature on the Control of Abdominal Infection After Surgery
1
作者 Junlu Lin 《Journal of Clinical and Nursing Research》 2024年第6期387-392,共6页
Objective:To investigate the effect of continuous double-lumen irrigation drainage at constant temperature on the control of abdominal infection after surgery,providing a reference for clinical treatment.Methods:From ... Objective:To investigate the effect of continuous double-lumen irrigation drainage at constant temperature on the control of abdominal infection after surgery,providing a reference for clinical treatment.Methods:From December 2022 to August 2023,100 patients with abdominal infections after surgery were selected from Wendeng People's Hospital in Weihai.They were randomly divided into a control group(50 cases,using conventional single-hole rubber irrigation drainage)and an observation group(50 cases,using continuous double-lumen irrigation drainage at constant temperature).The inflammatory and immune indicators of the two groups were compared after different interventions,and the specific conditions of abdominal infection were statistically analyzed.Results:There was no significant difference in inflammatory indicators between the two groups before intervention(P>0.05).After the intervention,the inflammatory indicators of the observation group were significantly lower(P<0.05).There was no significant difference in immune function indicators between the two groups before intervention(P>0.05).After intervention,the immune function indicators of the observation group showed significant improvement(P<0.05).The control of abdominal infection in the observation group was better than in the control group(P<0.05).Conclusion:Continuous double-lumen rrigation drainage at constant temperature has a better effect on controlling abdominal infection after surgery,improving the infection condition,and enhancing the immune function of patients. 展开更多
关键词 Continuous double-lumen irrigation drainage SURGERY Abdominal infection
下载PDF
Effects of combined drip irrigation and sub-surface pipe drainage on water and salt transport of saline-alkali soil in Xinjiang, China 被引量:12
2
作者 HENG Tong LIAO Renkuan +3 位作者 WANG Zhenhua WU Wenyong LI Wenhao ZHANG Jinzhu 《Journal of Arid Land》 SCIE CSCD 2018年第6期932-945,共14页
Developing effective irrigation and drainage strategies to improve the quality of saline-alkali soil is vital for enhancing agricultural production and increasing economic returns. In this study, we explored how irrig... Developing effective irrigation and drainage strategies to improve the quality of saline-alkali soil is vital for enhancing agricultural production and increasing economic returns. In this study, we explored how irrigation and drainage modes (flood irrigation, drip irrigation, and sub-surface pipe drainage under drip irrigation) improve the saline-alkali soil in Xinjiang, China. We aimed to study the transport characteristics of soil water and salt under different irrigation and drainage modes, and analyze the effects of the combination of irrigation and drainage on soil salt leaching, as well as its impacts on the growth of oil sunflower. Our results show that sub-surface pipe drainage under drip irrigation significantly reduced the soil salt content and soil water content at the 0–200 cm soil depth. Under sub-surface pipe drainage combined with drip irrigation, the mean soil salt content was reduced to below 10 g/kg after the second irrigation, and the soil salt content decreased as sub-surface pipe distance decreased. The mean soil salt content of flood irrigation exceeded 25 g/kg, and the mean soil desalination efficiency was 3.28%, which was lower than that of drip irrigation. The mean soil desalination rate under drip irrigation and sub-surface pipe drainage under drip irrigation was 19.30% and 58.12%, respectively. After sub-surface drainage regulation under drip irrigation, the germination percentage of oil sunflower seedlings was increased to more than 50%, which further confirmed that combined drip irrigation and sub-surface pipe drainage is very effective in improving the quality of saline-alkali soil and increasing the productivity of agricultural crops. 展开更多
关键词 saline-alkali soil drip irrigation flood irrigation sub-surface pipe drainage soil desalination salt leaching arid area
下载PDF
Novel Application of Vacuum Sealing Drainage with Continuous Irrigation of Potassium Permanganate for Managing Infective Wounds of Gas Gangrene 被引量:14
3
作者 胡宁 吴星火 +7 位作者 刘融 杨述华 黄玮 蒋电明 吴强 夏天 邵增务 叶哲伟 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2015年第4期563-568,共6页
Summary: Traumatic gas gangrene is a fatal infection mainly caused by Clostridium perfringens. It is a challenge to manage gas gangrene in open wounds and control infection after debridement or amputa- tion. The aim ... Summary: Traumatic gas gangrene is a fatal infection mainly caused by Clostridium perfringens. It is a challenge to manage gas gangrene in open wounds and control infection after debridement or amputa- tion. The aim of the present study was to use vacuum sealing drainage (VSD) with continuous irrigation of potassium permanganate to manage infective wounds of gas gangrene and observe its clinical effi- cacy. A total of 48 patients with open traumatic gas gangrene infection were included in this study. Am- putations were done for 27 patients, and limb salvage procedures were performed for the others. After amputation or aggressive debridement, the VSD system, including polyvinyl alcohol (PVA) foam dress- ing and polyurethane (PU) film, with continuous irrigation of 1:5000 potassium permanganate solutions, was applied to the wounds. During the follow-up, all the patients healed without recurrence within 8-18 months. There were four complications. Cardiac arrest during amputation surgery occurred in one pa- tient who suffered from severe septic shock. Emergent resuscitation was performed and the patient re- turned to stable condition. One patient suffered from mixed infection of Staphylococcal aureus, and a second-stage debridement was performed. One patient suffered from severe pain of the limb after the debridement. Exploratory operation was done and the possible reason was trauma of a local peripheral nerve. Three cases of crush syndrome had dialysis treatment for concomitant renal failure. In conclusion, VSD can convert open wound to closed wound, and evacuate necrotic tissues. Furthermore, potassium permanganate solutions help eliminate anaerobic microenviroument and achieve good therapeutic effect on gas gangrene and mixed infection. VSD with continuous irrigation of potassium permanganate is a novel, simple and feasible alternative for severe traumatic open wounds with gas gangrene infection. 展开更多
关键词 vacuum sealing drainage potassium permanganate irrigation gas gangrene TRAUMA
下载PDF
The water-saving potential of using micro-sprinkling irrigation for winter wheat production on the North China Plain 被引量:6
4
作者 ZHAI Li-chao LU Li-hua +4 位作者 DONG Zhi-qiang ZHANG Li-hua ZHANG Jing-ting JIA Xiu-ling ZHANG Zheng-bin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第6期1687-1700,共14页
The shortage of groundwater resources is a considerable challenge for winter wheat production on the North China Plain.Water-saving technologies and procedures are thus urgently required.To determine the water-saving ... The shortage of groundwater resources is a considerable challenge for winter wheat production on the North China Plain.Water-saving technologies and procedures are thus urgently required.To determine the water-saving potential of using micro-sprinkling irrigation(MSI)for winter wheat production,field experiments were conducted from 2012 to 2015.Compared to traditional flooding irrigation(TFI),micro-sprinkling thrice with 90 mm water(MSI1)and micro-sprinkling four times with 120 mm water(MSI2)increased the water use efficiency by 22.5 and 16.2%,respectively,while reducing evapotranspiration by 17.6 and 10.8%.Regardless of the rainfall pattern,MSI(i.e.,MSI1 or MSI2)either stabilized or significantly increased the grain yield,while reducing irrigation water volumes by 20–40%,compared to TFI.Applying the same volumes of irrigation water,MSI(i.e.,MSI3,micro-sprinkling five times with 150 mm water)increased the grain yield and water use efficiency of winter wheat by 4.6 and 11.7%,respectively,compared to TFI.Because MSI could supply irrigation water more frequently in smaller amounts each time,it reduced soil layer compaction,and may have also resulted in a soil water deficit that promoted the spread of roots into the deep soil layer,which is beneficial to photosynthetic production in the critical period.In conclusion,MSI1 or MSI2 either stabilized or significantly increased grain yield while reducing irrigation water volumes by 20–40%compared to TFI,and should provide water-saving technological support in winter wheat production for smallholders on the North China Plain. 展开更多
关键词 winter wheat grain yield water use efficiency micro-sprinkling irrigation traditional flooding irrigation water-saving potential
下载PDF
The Potential Contribution of Subsurface Drip Irrigation to Water-Saving Agriculture in the Western USA 被引量:18
5
作者 T L Thompson PANG Huan-cheng LI Yu-yi 《Agricultural Sciences in China》 CSCD 2009年第7期850-854,共5页
Water shortages within the western USA are resulting in the adoption of water-saving agricultural practices within this region. Among the many possible methods for saving water in agriculture, the adoption of subsurfa... Water shortages within the western USA are resulting in the adoption of water-saving agricultural practices within this region. Among the many possible methods for saving water in agriculture, the adoption of subsurface drip irrigation (SDI) provides a potential solution to the problem of low water use efficiency. Other advantages of SDI include reduced NO3 leaching compared to surface irrigation, higher yields, a dry soil surface for improved weed control, better crop health, and harvest flexibility for many specialty crops. The use of SDI also allows the virtual elimination of crop water stress, the ability to apply water and nutrients to the most active part of the root zone, protection of drip lines from damage due to cultivation and tillage, and the ability to irrigate with wastewater while preventing human contact. Yet, SDI is used only on a minority of cropland in the arid western USA. Reasons for the limited adoption of SDI include the high initial capital investment required, the need for intensive management, and the urbanization that is rapidly consuming farmland in parts of the western USA. The contributions of SDI to increasing yield, quality, and water use efficiency have been demonstrated. The two major barriers to SDI sustainability in arid regions are economics (i.e., paying for the SDI system), including the high cost of installation; and salt accumulation, which requires periodic leaching, specialized tillage methods, or transplanting of seedlings rather than direct-seeding. We will review advances in irrigation management with SDI. 展开更多
关键词 subsurface drip irrigation (SDI) water-saving agriculture western USA
下载PDF
Development Potentials and Benefit Analysis of Efficient Water-saving Irrigation in Lixin County 被引量:2
6
作者 Cheng CAO 《Asian Agricultural Research》 2013年第8期28-31,34,共5页
On the basis of analyzing water resources,crop planning structure,and irrigation mode in Lixin County,potentials and benefits of developing efficient water-saving irrigation in the county were explored to provide refe... On the basis of analyzing water resources,crop planning structure,and irrigation mode in Lixin County,potentials and benefits of developing efficient water-saving irrigation in the county were explored to provide references for its future water-saving irrigation. 展开更多
关键词 EFFICIENT water-saving irrigation POTENTIAL Benefi
下载PDF
Cotton's Water Demand and Water-Saving Benefits under Drip Irrigation with Plastic Film Mulch 被引量:2
7
作者 Yingyu YAN Juyan LI 《Asian Agricultural Research》 2016年第4期32-36,41,共6页
The primary purpose of this research was to give suitable irrigation program according to the growth period and water requirement.A cotton field experiment with mulched drip irrigation was conducted at the National Fi... The primary purpose of this research was to give suitable irrigation program according to the growth period and water requirement.A cotton field experiment with mulched drip irrigation was conducted at the National Field Observation and Research Station for Oasis Farmland Ecosystem in Aksu of Xinjiang in 2008.Water balance method was adopted to study the water requirement and water consumption law of cotton under mulched drip irrigation in Tarim Irrigated Area.Statistical analysis of experimental data of irrigation indicates that the relationship between yield of cotton and irrigation presents a quadratic parabola.We fit the model of cotton water production on the basis of field experimental data of cotton.And the analysis on water saving benefit of cotton under mulched drip irrigation was done.Results indicate that water requirements for the irrigated cotton are 543 mm in Tarim Irrigated Area.The water requirements of seedling stage is 252 mm,budding stage is 186 mm,bolling stage is 316 mm and wadding stage is 139 mm.the irrigation amount determines the spatial distribution of soil moisture and water consumption during cotton life cycle.However,water consumption at different growth stages was inconsistent with irrigation.Quantitatively,the water consumed by cotton decreases upon the increase of irrigation amount.From the perspective of water saving,the maximal water use efficiency can reach 3 091 m3/ha.But the highest cotton yield needs 3464 m3/ha irrigation water.In summary,compared to the conventional drip irrigation,a number of benefits in water saving and yield increase were observed when using plastic mulch.At the same amount of irrigation,the cotton yield with plastic mulch was 30.2% higher than conventional approaches,and the efficiency of water utilization increased by30.2%.While at the same yield level,29.3% water was saved by using plastic mulch,and the efficiency increased by 41.5%. 展开更多
关键词 Cotton’s WATER demand Cotton’s WATER consumption water-saving BENEFITS DRIP irrigation with PLASTIC film MULCH
下载PDF
WATER AND SALT MOVEMENTS IN SIMULTANEOUS FLOOD-IRRIGATION AND WELL-DRAINAGE OPERATIONS 被引量:1
8
作者 戚隆溪 邱克俭 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1996年第2期135-143,共9页
This paper describes a new technology for solonchak soil reclamation in which surface flood irrigation of fresh water and pumped wells drainage of salty groundwater are combined. The comprehensive investigation of wat... This paper describes a new technology for solonchak soil reclamation in which surface flood irrigation of fresh water and pumped wells drainage of salty groundwater are combined. The comprehensive investigation of water and salt movement has been conducted through field test, laboratory simulation and numerical calculation. The dependence of desalination on irrigation water quantity, drainage quantity, leaching time and other parameters is obtained based on the field tests. The entire desalination process under the flood-irrigation and well-drainage operations was experimentally simulated in a vertical soil column. The water and salt movement has been numerically analysed for both the field and laboratory conditions. The present work indicates that this new technology can greatly improve the effects of desalination. 展开更多
关键词 water and salt movements solonchak soil reclamation irrigation-drainage method
下载PDF
Characteristics of Drainage Water Quality and Loading from Paddy Field under Cyclic Irrigation and Its Management Options
9
作者 Nobumasa Hatcho Kazuyuki Kurihara +1 位作者 Yutaka Matsuno Haruhiko Horino 《Journal of Water Resource and Protection》 2018年第1期73-84,共12页
The cyclic irrigation system has been practiced in Japan for reducing pollutant outflow loadings from paddy fields. The cyclic irrigation is an irrigation method to reuse water by pumping drainage water and re-distrib... The cyclic irrigation system has been practiced in Japan for reducing pollutant outflow loadings from paddy fields. The cyclic irrigation is an irrigation method to reuse water by pumping drainage water and re-distributing it to the farmland. Quantification and assessment of the effects of the cyclic irrigation are needed to identify management options for maximizing the benefits of cyclic irrigation. The study was aimed at assessing loading characteristics from paddy field area under the cyclic irrigation and developing a model for simulating water and material flow in paddy field area that can be used as a management tool. The study was carried out in a paddy field in the Asagoi District, Oumihatiman city in Shiga Prefecture, Japan. Using the results of water quality analysis, the average net loadings of T-N and T-P were estimated for both cyclic and non-cyclic irrigation sites. The result indicates a higher nutrient absorption rate in the cyclic irrigation site than that in the non-cyclic irrigation site. The developed cyclic irrigation model showed good agreements between observed and simulated drainage volumes and nitrogen loadings. The scenario analysis by application of the model showed a potential of reducing the loading amount by increasing the cyclic irrigation ratio and reducing the amount of fertilizer application without affecting the rice yield. 展开更多
关键词 CYCLIC irrigation WATER SAVING Simulation Model WATER BALANCE Material BALANCE drainage WATER
下载PDF
Management for Pediatric Pleural Empyema in Resource-Poor Country: Is Chest Tube Drainage with Antiseptic Lavage-Irrigation Better than Tube Thoracostomy Alone?
10
作者 Seydou Togo Moussa Abdoulaye Ouattara +9 位作者 Ibrahim Sangaré Jacque Saye Cheik Amed Sékou Touré Ibrahim Boubacar Maiga Dokore Jerome Dakouo Liang Guo Sékou Koumaré Adama Konoba Koita Zimogo Zié Sanogo Sadio Yéna 《Surgical Science》 2015年第12期541-548,共8页
Drainage by chest tube thoracostomy is widely used in treatment of early empyema thoracis in children, but drainage with antiseptic lavage-irrigation is more frequent in our context since the last 20 years. This study... Drainage by chest tube thoracostomy is widely used in treatment of early empyema thoracis in children, but drainage with antiseptic lavage-irrigation is more frequent in our context since the last 20 years. This study was to determine which was more effective in our experience comparing chest tube drainage with catheter antiseptic lavage-irrigation versus drainage by chest tube thoracostomy alone in the management of empyema thoracis in children. Patients and Methods: Demographic, clinical and microbiological data on children with thoracic empyema undergoing drainage by chest tube thoracostomy alone or with antiseptic lavage-irrigation were obtained from 2 thoracic surgical centers from September 2008 to December 2014. It was a retrospective study included 246 children (137 boys and 109 girls) who were managed for empyema thoracis at the author’s different department of surgery. Outcomes analysis with respect to treatment efficacy, hospital duration, chest tube duration, hospital costs, and need for subsequent procedures was analyzed and compared in the 2 groups. Results: Drainage of pus and antiseptic irrigation resulted in resolution of pyrexia with improvement in general condition in 85.82% of patients in group 1 and by tube thoracostomy alone in 73.95% in group 2. There are a significant difference in the length of hospital stay (p = 0.022), duration of chest tubes in situ (p = 0.040), treatment coast (p = 0.015) and outcome of stage 2 empyema disease (p = 0.037) between the 2 groups. Conclusion: it seems that chest tube drainage with antiseptic lavage-irrigation method is associated with a higher efficacy, shorter length of hospital stay, shorter duration of chest tube in situ, less cost and better outcome of stage 2 empyema diseases than a treatment strategy that utilizes chest tube thoracostomy alone. 展开更多
关键词 EMPYEMA Thoracis Children irrigation drainage
下载PDF
Study on the Suitable Water-Saving Irrigation Technology for Mining Areas in the Northwestern Arid Desert Regions in China
11
作者 Yanping Liu Hao Rong +1 位作者 Dan Shan Zhanqi Liang 《Journal of Geoscience and Environment Protection》 2020年第10期127-133,共7页
<div style="text-align:justify;"> Water is the key factor to ensure plant survival in the process of ecological restoration in the coal base of China northwest deserts. On the premise of meeting the mi... <div style="text-align:justify;"> Water is the key factor to ensure plant survival in the process of ecological restoration in the coal base of China northwest deserts. On the premise of meeting the mine production and living water demands, we should take measures such as dirt wastewater treatment and water-saving irrigation to increase income and reduce expenditure and allocate limited water re-sources rationally, to provide mining area ecological restoration maximum usable water resources. The mining dump has large slope and thin soil layer and it is easy to produce surface runoff. So it is particularly important to study the irrigation technology needed to satisfy vegetation restoration, on the premise of guaranteeing not to produce surface runoff and the slope stability. In this paper, through field plot test, the suitable irrigation method for mine slope, slope surface soil moisture migration characteristics and slope stability analysis were studied. Results show that three slope ir-rigation technologies have their own advantages and disadvantages. On the whole, the effect of drip irrigation is the best, micro spray irrigation is the second, infiltrating irrigation is not ideal. The permeability of mine soil slope is very strong, the infiltration rate of the slope direction is the high-est, inverse slope infiltration rate is lowest. In the process of irrigation, with the increase of soil moisture content, slope safety factor is the decreased obviously, the whole slope surface soil moisture content is 14% for the slope stability safety threshold. </div> 展开更多
关键词 Mining Areas Vegetation Restoration Side Slope water-saving irrigation STABILITY
下载PDF
Popularization of China's Water-Saving Irrigation equipment
12
《China Today》 2000年第7期50-51,共2页
关键词 Popularization of China’s water-saving irrigation equipment
下载PDF
What determines irrigation efficiency when farmers face extreme weather events? A field survey of the major wheat producing regions in China 被引量:5
13
作者 SONG Chun-xiao Les Oxley MA Heng-yun 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第8期1888-1899,共12页
Water availability is a major constraint on grain production in China, therefore, improving irrigation efficiency is particularly important when agriculture faces extreme weather events. This paper first calculates ir... Water availability is a major constraint on grain production in China, therefore, improving irrigation efficiency is particularly important when agriculture faces extreme weather events. This paper first calculates irrigation efficiency with a translog stochastic frontier production function and then investigates what happens when extreme weather events occur via a Tobit model. The estimated results reveal several important features of irrigation practices: i) irrigation efficiency is lower when extreme weather events occur; ii) large variations in irrigation efficiency occur across irrigation facilities; iii) the farm plots exhibit an extreme distribution across efficiency levels; and iv) water-saving techniques, technology adoption, and the maintenance of farmers’ economic resilience are major determinants of irrigation efficiency. Based on these results we propose the following recommendations: i) farmers should balance crop yield and water use; undertake relevant training programs and adopt water-saving techniques; ii) local governments and researchers should help farmers to find the optimal level of irrigation water use based on their own circumstances and provide better water-saving techniques and training programs rather than simply encouraging farmers to invest in irrigation facilities in the most extreme weather years; and iii) the income level of farm households should be increased so as to improve their resilience to natural disasters. 展开更多
关键词 irrigation efficiency determinants irrigation facilities water-saving techniques extreme weather events
下载PDF
Drainage of pancreatic fluid collections in acute pancreatitis:A comprehensive overview 被引量:1
14
作者 Akash Bansal Pankaj Gupta +8 位作者 Anupam K Singh Jimil Shah Jayanta Samanta Harshal S Mandavdhare Vishal Sharma Saroj Kant Sinha Usha Dutta Manavjit Singh Sandhu Rakesh Kochhar 《World Journal of Clinical Cases》 SCIE 2022年第20期6769-6783,共15页
Moderately severe and severe acute pancreatitis is characterized by local and systemic complications.Systemic complications predominate the early phase of acute pancreatitis while local complications are important in ... Moderately severe and severe acute pancreatitis is characterized by local and systemic complications.Systemic complications predominate the early phase of acute pancreatitis while local complications are important in the late phase of the disease.Necrotic fluid collections represent the most important local complication.Drainage of these collections is indicated in the setting of infection,persistent or new onset organ failure,compressive or pressure symptoms,and intraabdominal hypertension.Percutaneous,endoscopic,and minimally invasive surgical drainage represents the various methods of drainage with each having its own advantages and disadvantages.These methods are often complementary.In this minireview,we discuss the indications,timing,and techniques of drainage of pancreatic fluid collections with focus on percutaneous catheter drainage.We also discuss the novel methods and techniques to improve the outcomes of percutaneous catheter drainage. 展开更多
关键词 Pancreatitis Acute necrotizing drainage CATHETERS STENTS Therapeutic irrigation DEBRIDEMENT COLLECTIONS
下载PDF
Non-negligible factors in low-pressure sprinkler irrigation:droplet impact angle and shear stress
15
作者 HUI Xin ZHENG Yudong +2 位作者 MUHAMMAD Rizwan Shoukat TAN Haibin YAN Haijun 《Journal of Arid Land》 SCIE CSCD 2022年第11期1293-1316,共24页
Droplet shear stress is considered as an important indicator that reflects soil erosion in sprinkler irrigation more accurately than kinetic energy,and the effect of droplet impact angle on the shear stress cannot be ... Droplet shear stress is considered as an important indicator that reflects soil erosion in sprinkler irrigation more accurately than kinetic energy,and the effect of droplet impact angle on the shear stress cannot be ignored.In this study,radial distribution of droplet impact angles,velocities,and shear stresses were investigated using a two-dimensional video disdrometer with three types of low-pressure sprinkler(Nelson D3000,R3000,and Komet KPT)under two operating pressures(103 and 138 kPa)and three nozzle diameters(3.97,5.95,and 7.94 mm).Furthermore,the relationships among these characteristical parameters of droplet were analyzed,and their influencing factors were comprehensively evaluated.For various types of sprinkler,operating pressures,and nozzle diameters,the smaller impact angles and larger velocities of droplets were found to occur closer to the sprinkler,resulting in relatively low droplet shear stresses.The increase in distance from the sprinkler caused the droplet impact angle to decrease and velocity to increase,which contributed to a significant increase in the shear stress that reached the peak value at the end of the jet.Therefore,the end of the jet was the most prone to soil erosion in the radial direction,and the soil erosion in sprinkler irrigation could not only be attributed to the droplet kinetic energy,but also needed to be combined with the analysis of its shear stress.Through comparing the radial distributions of average droplet shear stresses among the three types of sprinklers,D3000 exhibited the largest value(26.94-3313.51 N/m^(2)),followed by R3000(33.34-2650.80 N/m^(2)),and KPT(16.15-2485.69 N/m^(2)).From the perspective of minimizing the risk of soil erosion,KPT sprinkler was more suitable for low-pressure sprinkler irrigation than D3000 and R3000 sprinklers.In addition to selecting the appropriate sprinkler type to reduce the droplet shear stress,a suitable sprinkler spacing could also provide acceptable results,because the distance from the sprinkler exhibited a highly significant(P<0.01)effect on the shear stress.This study results provide a new reference for the design of low-pressure sprinkler irrigation system. 展开更多
关键词 center pivot irrigation system water droplet universal model soil erosion water-saving irrigation
下载PDF
Cost Effectiveness of Growing Cotton Depending on Irrigation Source and Groundwater Salinity in the Ferghana Valley, Uzbekistan
16
作者 Sherzod Muminov Galina Stulina Islom Rusiev 《Agricultural Sciences》 2017年第8期729-742,共14页
Given article describes the current status of irrigated agriculture in the Ferghana province, Republic of Uzbekistan. Climatic, hydrogeological, and soil conditions and hydromodule zoning of the Water User Association... Given article describes the current status of irrigated agriculture in the Ferghana province, Republic of Uzbekistan. Climatic, hydrogeological, and soil conditions and hydromodule zoning of the Water User Association (WUA) Oktepa Zilol were studied, and, on this basis, the farms growing cotton were selected. Variable and fixed costs and profitability of cotton-growing farms were analyzed. Based on the books of those farms, the crop budget was drawn up. Relationships between the profitability of cotton-growing farm and the irrigation sources used and soil fertility in the farm are explained. Finally, proposals for improvement of cotton production using various sources of irrigation under different degrees of groundwater salinity are provided. 展开更多
关键词 irrigation Groundwater drainage Water SALINITY COSTS REVENUE
下载PDF
Optimizing water-saving irrigation schemes for rice(Oryza sativa L.)using DSSAT-CERES-Rice model
17
作者 Shikai Gao Qiongqiong Gu +3 位作者 Xuewen Gong Yanbin Li Shaofeng Yan Yuanyuan Li 《International Journal of Agricultural and Biological Engineering》 SCIE 2023年第2期142-151,共10页
Rice is one of the major crops in China,and enhancing the rice yield and water use efficiency is critical to ensuring food security in China.Determining how to optimize a scientific and efficient irrigation and draina... Rice is one of the major crops in China,and enhancing the rice yield and water use efficiency is critical to ensuring food security in China.Determining how to optimize a scientific and efficient irrigation and drainage scheme by combining existing technology is currently a hot topic.Crop growth models can be used to assess actual or proposed water management regimes intended to increase water use efficiency and mitigate water shortages.In this study,a CERES-Rice model was calibrated and validated using a two-year field experiment.Four irrigation and drainage treatments were designed for the experiment:alternate wetting and drying(AWD),controlled drainage(CD),controlled irrigation and drainage for a low water level(CID1),and controlled irrigation and drainage for a high water level(CID2).According to the indicators normalized root mean square error(NRMSE)and index of agreement(d),the calibrated CERES-Rice model accurately predicted grain yield(NRMSE=6.67%,d=0.77),,shoot biomass(NRMSE=3.37%,d=0.77),actual evapotranspiration(ETa)(NRMSE=3.83%,d=0.74),irrigation volume(NRMSE=15.56%,d=0.94),and leaf area index(NRMSE=9.69%,d=0.98)over 2 a.The calibrated model was subsequently used to evaluate rice production in response to the four treatments(AWD,CD,CID1,and CID2)under 60 meteorological scenarios which were divided into wet years(22 a),normal years(16 a),and dry years(22 a).Results showed that the yield of AWD was the largest among four treatments in different hydrological years.Relative to that of AWD,the yield of CD,CID1,and CID2 were respectively reduced by 5.7%,2.6%,8.7%in wet years,9.2%,2.3%,8.6% in normal years,and 9.2%,3.8%,3.9% in dry years.However,rainwater use efficiency and irrigation water use efficiency were the greatest for CID2 in different hydrological years.The entropy-weighting TOPSIS model was used to optimize the four water-saving irrigation schemes in terms of water-saving,labor-saving and high-yield,based on the simulation results of the CERES-Rice model in the past 60 a.These results showed that CID1 and AWD were optimal in the wet years,CID1 and CID2 were optimal in the normal and dry years.These results may provide a strong scientific basis for the optimization of water-saving irrigation technology for rice. 展开更多
关键词 CERES-Rice controlled irrigation and drainage water-saving long-term weather data water use efficiency
原文传递
Efficient Water-Saving Irrigation,Space Efficiency and Agricultural Development——Study Based on Spatial Stochastic Frontier Model
18
作者 HAN Aihua HUANG Jian +1 位作者 WANG Xin ZHU Zhengyuan 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2023年第6期2559-2579,共21页
Xinjiang's agriculture is a typical irrigated agriculture for its agriculture water consumption accounts for 96%of the total water use.As a typical resource-deficient area,the key to Xinjiang's agricultural de... Xinjiang's agriculture is a typical irrigated agriculture for its agriculture water consumption accounts for 96%of the total water use.As a typical resource-deficient area,the key to Xinjiang's agricultural development is saving water.This paper takes the high-efficient water-saving irrigation technology of 41 regions along the Tarim River from 2002 to 2013 as the research object,adopts spatial stochastic frontier model to measure the space efficiency of high-efficient water-saving irrigation technology,and analyzes the effect of water-saving irrigation technology on agricultural development.Results show that the water-saving irrigation technology has a spatial effect,if neglecting it,the error of missing variables will occur,and the average loss will be 6.98 percentage points.The spatial correlation effect promotes the improvement of the efficiency of water-saving irrigation technology.The spatial heterogeneity leads to the spatial imbalance of the efficiency of water-saving irrigation technology.The promotion of agricultural water-saving irrigation technology can increase production and the efficiency of agricultural development.Due to the technical heterogeneity of different types of water-saving irrigation technology,the contribution to the development of agriculture is also different.The study finds that water-saving irrigation technology of drip irrigation in the Tarim River contributes more to agricultural development. 展开更多
关键词 Spatial stochastic frontier model Tarim river basin water-saving irrigation
原文传递
西南水稻主产区用水现状与绿色高效灌排技术
19
作者 崔宁博 尹飞虎 +6 位作者 龚道枝 贺秀斌 陈飞 赵璐 郑顺生 张艺璇 吴宗俊 《中国工程科学》 CSCD 北大核心 2024年第2期132-141,共10页
西南水稻主产区面临季节性干旱、工程性缺水等生产问题,绿色高效灌排技术是该区域实现节水稳产增效的关键举措,对保障国家粮食安全具有重要意义。本文系统梳理了包括云南省、贵州省、四川省、重庆市在内的西南地区水稻生产用水现状和灌... 西南水稻主产区面临季节性干旱、工程性缺水等生产问题,绿色高效灌排技术是该区域实现节水稳产增效的关键举措,对保障国家粮食安全具有重要意义。本文系统梳理了包括云南省、贵州省、四川省、重庆市在内的西南地区水稻生产用水现状和灌排技术现状,阐述了西南水稻主产区绿色高效灌排体系的基本特征、绿色高效灌排的具体技术类型,提出了由稻田精准需水预报、灌区精量配水管理、田间高效用水管理、田间高效排水管理构成的绿色高效灌排技术模式。研究发现,西南水稻主产区水资源丰富但时空分布不均,节水灌溉和排水技术落后且对各地区气候条件、水资源量、地形的适用性有较大差异。建议研发稻田灌排高效协同调控新技术、推广绿色高效灌排技术体系、优化稻田水肥运筹模式、开发稻田智能灌排与信息化管理系统、构建水稻绿色高效灌排技术多维推广体系,据此推动西南水稻主产区节水提质增效与绿色减污降排多赢。 展开更多
关键词 水稻 灌排技术 西南地区 绿色高效 节水
下载PDF
稻麦轮作高标准农田控制排水对排水与氮素输出削减效果模拟
20
作者 罗纨 王嘉诚 +6 位作者 贾忠华 刘文龙 卫同辉 邹家荣 朱梦妍 吴慧 彭佳雯 《农业机械学报》 EI CAS CSCD 北大核心 2024年第4期272-279,311,共9页
稻麦轮作区高标准农田建设中,通过加深排水沟提高麦作期农田排水降渍能力的同时,加大稻作期农田排水输出,不仅降低了水资源利用效率,而且加重了接纳水体的污染。本文基于江苏省扬州市沿运灌区稻麦轮作农田排水水文水质过程的监测结果,... 稻麦轮作区高标准农田建设中,通过加深排水沟提高麦作期农田排水降渍能力的同时,加大稻作期农田排水输出,不仅降低了水资源利用效率,而且加重了接纳水体的污染。本文基于江苏省扬州市沿运灌区稻麦轮作农田排水水文水质过程的监测结果,利用田间水文模型(DRAINMOD)模拟了长序列气象条件下,灌区提高农田降渍能力对稻田排水、氮素流失及灌溉需求的负面影响以及控制排水措施的积极效果。结果表明,在节水灌溉模式下,研究区排水沟深度由现状的60 cm加深至120 cm,排水间距由120 m加密至20 m时,稻作期排水量与总氮(TN)输出负荷增加9.0%~22.2%、氨氮(NH_(3)-N)输出负荷增加4.0%~16.8%、灌溉用水量增加9.6%~23.4%。若结合田间管理要求,实施控制排水则可有效缓解提高农田降渍能力造成的负面影响;当排水沟深为120 cm,间距为120~20 m时,稻作期控制排水可使排水量和TN输出负荷减少19.3%~35.3%、NH_(3)-N输出负荷减少7.6%~27.2%、灌溉用水量减少22.9%~40.0%。由于控制排水降低了地下排水梯度,相较于传统排水,农沟从60 cm加深至120 cm时,地下排水平均占比降至50.7%,灌溉用水量相应减少。综上,稻麦轮作农田控制排水具有显著的节水减排作用,可有效降低高标准农田建设中提高降渍能力所产生的负面影响。研究成果可为稻麦轮作区高标准农田建设与水环境保护提供理论依据与技术支撑。 展开更多
关键词 控制排水 氮素 灌溉 高标准农田 DRAINMOD模型 稻麦轮作农田
下载PDF
上一页 1 2 47 下一页 到第
使用帮助 返回顶部