Information about electronic excited states of molecular anions plays an important role in investigating electron attachment and detachment processes.Here we present a high-level theoretical study of the electronic st...Information about electronic excited states of molecular anions plays an important role in investigating electron attachment and detachment processes.Here we present a high-level theoretical study of the electronic structures of 12 alkali-metal-containing diatomic anions MX-(MX = LiH,LiF,LiCl,NaF,NaCl,NaBr,RbCl,KCl,KBr,RbI,KI and CsI).The equation-of-motion electron-attachment coupled-cluster singles and doubles(EOM-EA-CCSD) method is used to calculate the electron binding energies(EBEs) of 10 electronic excited states of each of the 12 molecule anions.With addition of different s-/p-/d-type diffusion functions in the basis set,we have identified possible excited dipole bound states(DBSs) of each anion.With the investigation of EBEs on the 12 MXs with dipole moment(DM) up to 12.1 D,we evaluate the dependence of the number of anionic excited DBSs on molecular DM.The results indicate that there are at least two or three DBSs of anions with a molecular DM larger than 7 D and a molecule with DM > 10 D can sustain a π-DBS of the anion.Our study has some implications for the excited DBS electronic states of alkali-metal-containing diatomic molecules.展开更多
By virtue of a 3∶1 complementary coordination strategy,a chiral heteroleptic metal-organic cage that con-tains divergent functional units,Pd‑R(Zn),was precisely constructed via self-assembly of monodentate variationa...By virtue of a 3∶1 complementary coordination strategy,a chiral heteroleptic metal-organic cage that con-tains divergent functional units,Pd‑R(Zn),was precisely constructed via self-assembly of monodentate variational Zn-salen ligands RZn and NADH(reduced nicotinamide adenine dinucleotide)mimic modified tridentate ligands with square-planar Pd ions.UV-Vis and luminescence spectra experiments reveal that different anions could selec-tively interact with different sites of Zn-salen modified metal-organic cages to achieve the structural regulation of cage compound,by using the differentiated host-guest electrostatic interactions of counter ions with metal-organic hosts.Compared to other anions,the presence of chloride ions caused the most significant fluorescence emission enhancement of Pd‑R(Zn),meanwhile,the UV-Vis absorption band attributed to the salen aromatic backbone showed an absorption decrease,and the metal-to-ligand induced peak displayed a blue shift effect.Circular dichro-ism and ^(1)H NMR spectra further demonstrate that the introduction of chloride anions is beneficial to keeping a more rigid scaffold.展开更多
Despite the extensive application of advanced oxidation processes(AOPs)in water treatment,the efficiency of AOPs in eliminating various emerging contaminants such as halogenated antibiotics is constrained by a number ...Despite the extensive application of advanced oxidation processes(AOPs)in water treatment,the efficiency of AOPs in eliminating various emerging contaminants such as halogenated antibiotics is constrained by a number of factors.Halogen moieties exhibit strong resistance to oxidative radicals,affecting the dehalogenation and detoxification efficiencies.To address these limitations of AOPs,advanced reduction processes(ARPs)have been proposed.Herein,a novel nucleophilic reductant—namely,the carbon dioxide radical anion(CO_(2)^(·-))—is introduced for the simultaneous degradation,dehalogenation,and detoxification of florfenicol(FF),a typical halogenated antibiotic.The results demonstrate that FF is completely eliminated by CO_(2)^(·-),with approximately 100%of Cland 46%of Freleased after 120 min of treatment.Simultaneous detoxification is observed,which exhibits a linear response to the release of free inorganic halogen ions(R^(2)=0.97,p<0.01).The formation of halogen-free products is the primary reason for the superior detoxification performance of this method,in comparison with conventional hydroxyl-radical-based AOPs.Products identification and density functional theory(DFT)calculations reveal the underlying dehalogenation mechanism,in which the chlorine moiety of FF is more susceptible than other moieties to nucleophilic attack by CO_(2)^(·-).Moreover,CO_(2)^(·-)-based ARPs exhibit superior dehalogenation efficiencies(>75%)in degrading a series of halogenated antibiotics,including chloramphenicol(CAP),thiamphenicol(THA),diclofenac(DLF),triclosan(TCS),and ciprofloxacin(CIP).The system shows high tolerance to the pH of the solution and the presence of natural water constituents,and demonstrates an excellent degradation performance in actual groundwater,indicating the strong application potential of CO_(2)^(·-)-based ARPs in real life.Overall,this study elucidates the feasibility of CO_(2)^(·-)for the simultaneous degradation,dehalogenation,and detoxification of halogenated antibiotics and provides a promising method for their regulation during water or wastewater treatment.展开更多
The development of efficient and robust anode materials for stable alkaline seawater electrolysis is severely limited by chlorine evolution reaction and chloride corrosion.Here,the sulfur-doped cobalt-nickel bimetalli...The development of efficient and robust anode materials for stable alkaline seawater electrolysis is severely limited by chlorine evolution reaction and chloride corrosion.Here,the sulfur-doped cobalt-nickel bimetallic phosphides(CoNiPS)are specifically designed as a pre-catalyst for navigating a surface reconstruction to fabricate the anions(PO^(3-)_(4) and SO^(2-)_(4))-decorated Co(Ni)OOH catalyst(R-CoNiPS)with exceptional durability and high activity for stable alkaline seawater oxidation(ASO).Various experiment techniques together with theoretical simulations both demonstrate that the in situ-generated PO^(3-)_(4) and SO^(2-)_(4) anions on catalyst surface can improve the oxygen evolution reaction(OER)activity,regulating and stabilizing the catalytic active species Co(Ni)OOH,as well as make a critical role in inhibiting the adsorp-tion of chloride ions and extending the service life of electrode.Therefore,this R-CoNiPS electrode exhi-bits superb OER activity toward AsO and stands out among the non-precious ASO electrocatalysts reported recently,requiring low overpotentials of 420 and 440 mV to attain large current densities of 500 and 1000 mA cm^(-2) in an alkaline natural seawater electrolyte,respectively.Particularly,the catalyst displays a negligible chloride corrosion at room temperature during ASO operation(>200 h)at 500 mA cm^(-2).This work opens up a new viewpoint for designing high-activity and durable electrocata-lystsforseawaterelectrolysis.展开更多
Due to a high energy density,layered transition-metal oxides have gained much attention as the promising sodium-ion batteries cathodes.However,they readily suffer from multiple phase transitions during the Na extracti...Due to a high energy density,layered transition-metal oxides have gained much attention as the promising sodium-ion batteries cathodes.However,they readily suffer from multiple phase transitions during the Na extraction process,resulting in large lattice strains which are the origin of cycledstructure degradations.Here,we demonstrate that the Na-storage lattice strains of layered oxides can be reduced by pushing charge transfer on anions(O^(2-)).Specifically,the designed O3-type Ru-based model compound,which shows an increased charge transfer on anions,displays retarded O3-P3-O1 multiple phase transitions and obviously reduced lattice strains upon cycling as directly revealed by a combination of ex situ X-ray absorption spectroscopy,in situ X-ray diffraction and geometric phase analysis.Meanwhile,the stable Na-storage lattice structure leads to a superior cycling stability with an excellent capacity retention of 84%and ultralow voltage decay of 0.2 mV/cycle after 300 cycles.More broadly,our work highlights an intrinsically structure-regulation strategy to enable a stable cycling structure of layered oxides meanwhile increasing the materials’redox activity and Nadiffusion kinetics.展开更多
[Objective] The experiment aimed to explore release rule of water-soluble chitosan (WSC) in vitro. [Method]The bovine serum albumin(BSA) was taken as a model protein drug and some existing release models such as Kinet...[Objective] The experiment aimed to explore release rule of water-soluble chitosan (WSC) in vitro. [Method]The bovine serum albumin(BSA) was taken as a model protein drug and some existing release models such as Kinetics model, Gompertz model, Weibull model, Higuchi model and Logistic model were used to fit the BSA release profile from WSC carriers. [Result] Except Higuchi model and Logistic model, other models could fit BSA release profile better. [Conclusion] Gompertz two-order kinetics model could fit the release of WSC nano-particles better and model parameters had practical physical meaning.展开更多
The reactions of anionic zirconium oxide clusters ZrxOy- with C2H6 and C4H10 are investi-gated by a time of flight mass spectrometer coupled with a laser vaporization cluster source.Hydrogen containing products Zr2O5H...The reactions of anionic zirconium oxide clusters ZrxOy- with C2H6 and C4H10 are investi-gated by a time of flight mass spectrometer coupled with a laser vaporization cluster source.Hydrogen containing products Zr2O5H- and Zr3O7H- are observed after the reaction. Den-sity functional theory calculations indicate that the hydrogen abstraction is favorable in the reaction of Zr2O5- with C2H6, which supports that the observed Zr2O5H- and Zr3O7H- are due to hydrogen atom abstraction from the alkane molecules. This work shows a newpossible pathway in the reaction of zirconium oxide cluster anions with alkane molecules.展开更多
Hydrophobically associating water-soluble polymers (HPAP) have been synthesized from acrylamide(AM), acrylate (AA), 2-acrylamido-2-methyl propane sulfonic acid (AMPS) and hydrophobic monomer (AP) in aqueous solution...Hydrophobically associating water-soluble polymers (HPAP) have been synthesized from acrylamide(AM), acrylate (AA), 2-acrylamido-2-methyl propane sulfonic acid (AMPS) and hydrophobic monomer (AP) in aqueous solution by radical polymerization. New polymer drilling fluids are made up of HPAP, which is used as viscosifiers and encapsulation agents. Properties of this system are reported in this paper. Results indicate that this system has a high value of yield point to plastic viscosity (YP/PV≥0.7), high viscosity at a low-shear rate (LSRV≥30000mPa·s), excellent shear thinning behavior, good solid-carrying behavior, resistance to shear, good thermal stability (as high as 140℃) and salt resistance. The system has excellent behavior in high-density solution of NaCl and in calcium and magnesium rich saline solutions. Hence, HPAP also can be used in saltwater polymer drilling fluids.展开更多
[Objective] The paper was to study the algicidal effect of water-soluble extracts of Chinese chive under different environmental conditions, so as to provide reference for further study and development of new algicida...[Objective] The paper was to study the algicidal effect of water-soluble extracts of Chinese chive under different environmental conditions, so as to provide reference for further study and development of new algicidal substances. [Method] The effects of water-soluble extracts of Chinese chive on the growth of Microcystis aeruginosa under different pH, light and aeration conditions were compared and studied. [Result] The growth inhibition rate of water-soluble extracts of Chinese chive on M. aeruginosa was greater than 90% under different pH conditions. With the growth of M. aeruginosa, the culture liquid with different initial pH was finally tended to 9-9.5. The growth inhibition rate of water-soluble extracts of Chinese chive on algae cell increased with the prolongation of culture time within the light intensity range of 1 000-4 000 lx. The inhibition effect of water-soluble extracts of Chinese chive on M. aeruginosa under low light intensity(1 000 lx)was better than that under high light intensity, the best light intensity for growth was not conducive to the exertion of allelopathic effect. Meanwhile, aeration condition was more conducive to the inhibition effect of water-soluble extracts of Chinese chive on the growth of M. aeruginosa. [Conclusion] pH, light and aeration conditions all affected the inhibition effect of water-soluble extracts of Chinese chive treated by high temperature on M. aeruginosa. Understanding the effect of these environmental factors on algicidal effect of allelochemicals could provide reference for further study and development of new algicidal substances.展开更多
The presence of a thatch layer in established pastures could reduce the contact between broiler litter and soil, thus increasing the potential for surface runoff contamination with litter P. We conducted a laboratory ...The presence of a thatch layer in established pastures could reduce the contact between broiler litter and soil, thus increasing the potential for surface runoff contamination with litter P. We conducted a laboratory study to evaluate the effect of a thatch layer on the dynamics of water-soluble P in undisturbed cores taken from a pasture. Cores with and without a thatch layer received a surface application of broiler litter (5 thm-2) and were incubated at 25 oC for 56 d. The result showed that on the soil surface the contents of water soluble-P (39 kghm-2) of the cores with the thatch layer was higher than that (20 kghm-2) of the cores without the thatch layer. Therefore on well-established pastures fertilized with broiler litter, the presence of a thatch layer might lead to high concentrations of water-soluble P on the soil surface.展开更多
Nation-membrane-based proton exchange fuel cells (PEMFCs) typically operate at below 100 ℃. However, H3PO4-doped polybenzimidazole (PBI)-based PEMFCs can operate at 100-200 ℃. This is advantageous because of acc...Nation-membrane-based proton exchange fuel cells (PEMFCs) typically operate at below 100 ℃. However, H3PO4-doped polybenzimidazole (PBI)-based PEMFCs can operate at 100-200 ℃. This is advantageous because of accelerated reaction rates and enhanced tolerance to poisons such as CO and S02, which can arise from reformed gas or the atmosphere. However, the strong adsorption of phosphoric anions on the Pt surface dramatically decreases the electrocatalytic activity. This study exploits the "third-body effect", in which a small amount of organic molecules are pre-adsorbed on the Pt surface to inhibit the adsorption of phosphoric anions. Pre-adsorbate species inhibit the ad- sorption of phosphoric anions, but can also partially occlude active sites. Thus, the optimum pre-adsorbate coverage is studied by correlating the oxygen reduction reaction (ORR) activity of Pt with pre-adsorbate coverage on the Pt surface. The influence of the pre-adsorbate molecule length is investigated using the organic amines, butylamine, octylamine, and dodecylamine, in both 0.1 mol/L HCI04 and 0.1 mol/L H3P04. Such amines readily bond to the Pt surface. In aqueous HCI04 electrolyte, the ORR activity of Pt decreases monotonically with increasing pre-adsorbate coverage. In aqueous H3P04 electrolyte, the ORR activity of Pt initially increases and then decreases with in- creasing pre-adsorbate coverage. The maximum ORR activity in H3P04 occurs at a pre-adsorbate coverage of around 20%. The effect of molecular length of the pre-adsorbate is negligible, but its coverage strongly affects the degree to which phosphoric anion adsorption is inhibited. Butylamine adsorbs to Pt at partial active sites, which decreases the electrochemically active surface area. Ad- sorbed butylamine may also modify the electronic structure of the Pt surface. The ORR activity in the phosphoric acid electrolyte remains relatively low, even when using the pre-adsorbate modified Pt/C catalysts. Further development of the catalyst and electrolyte is required before the commercialization of H3PO4-PBl-based PEMFCs can be realized.展开更多
Marine sediments from Lianshan Bay in Huludao, China, were studied in laboratory. A series of simulated experiments were carried out to investigate the influences of three kinds of anions CL^-, SO4^2- and HCO3^- on th...Marine sediments from Lianshan Bay in Huludao, China, were studied in laboratory. A series of simulated experiments were carried out to investigate the influences of three kinds of anions CL^-, SO4^2- and HCO3^- on the release ofCd, Pb, Cu and Zn from the sediments. The results showed that the sequences about the impact of the three anions were Cl^-〉HCO3^-〉SO4^2+. The release potential of heavy metals in the presence of each anions was in the following order: Cd≥Cu 〉Zn≈Pb. The correlations were positive between CI content and the quantity of Cd released from the marine sediment, whereas there was no significant relationship between CI content and amount of Cu and Zn released. For SO4^2- and HCO3^-, the release of the heavy metals from marine sediments was not obvious.展开更多
Experiments were carried out to study the effects of several anions on the photocatalytic degradation rates of sodium dodecylbenzene sulphonate (DBS) with TiO 2 as catalyst. The anions were added as Na 2SO 4, NaNO ...Experiments were carried out to study the effects of several anions on the photocatalytic degradation rates of sodium dodecylbenzene sulphonate (DBS) with TiO 2 as catalyst. The anions were added as Na 2SO 4, NaNO 3, NaCl, NaHCO 3, NaH 2PO 4 and Na 3PO 4, and two levels of anion content, i.e. 12 mmol/L and 36 mmol/L in terms of Na +, were studied. The results revealed that: Cl -, SO 2- 4, NO - 3 and HCO - 3 retarded the rates of DBS degradation to different degrees; PO 3- 4 increased the DBS degradation rate at low concentration and decreased the rate at high concentration; H 2PO - 4 accelerated the rate of DBS degradation. The mechanism of the effects of anions on DBS degradation was concluded as the following three aspects: anions compete for the radicals; anions are absorbed on the surface of catalyst and block the active site of catalyst; anions added to the solution change the pH value and influence the formation of ·OH radicals and the adsorption of DBS on catalyst.展开更多
Micro-emulsion usually consists of water, oil, surfactants and co-surfactants, and each component has an effect on the phase behavior and solubilization of the micro-emulsion. When the surfactant in the micro-emulsion...Micro-emulsion usually consists of water, oil, surfactants and co-surfactants, and each component has an effect on the phase behavior and solubilization of the micro-emulsion. When the surfactant in the micro-emulsion system is quaternary ammonium cationic Gemini surfactant, the surfactant mainly combines with the anions in the salt. With the increase of salt concentration, the phase transformation of Winsor I → Winsor III → Winsor II occurred, but the optimum salinity and salt width are different because of the type of salt. The effects of 5 different kinds of monovalent anions, including C_6H_5SO_3^-, I-, Br-, NO_3^- and Cl-, on the phase behavior and solubilization of quaternary ammonium cationic Gemini micro-emulsion are researched by Winsor phase diagram. It is found that the effects of organic anions C_6H_5SO_3-and I-on the phase behavior and solubilization of quaternary ammonium cationic Gemini micro-emulsion are most significant, and the effects of Br-, NO_3^- and Cl-are less significant. Meanwhile, when the optimum solubilization is achieved, the amount of sodium benzoate is the least, indicating that the organic anion has stronger self-organization behavior with quaternary ammonium cationic Gemini surfactants.展开更多
Nanocrystals,a carrier-free colloidal delivery system in nano-sized range,is an interesting approach for poorly soluble drugs.Nanocrystals provide special features including enhancement of saturation solubility,dissol...Nanocrystals,a carrier-free colloidal delivery system in nano-sized range,is an interesting approach for poorly soluble drugs.Nanocrystals provide special features including enhancement of saturation solubility,dissolution velocity and adhesiveness to surface/cell membranes.Several strategies are applied for nanocrystals production including precipitation,milling,high pressure homogenization and combination methods such as Nano-Edge^(TM),SmartCrystal and Precipitation-lyophilization-homogenization(PLH)technology.For oral administration,many publications reported useful advantages of nanocrystals to improve in vivo performances i.e.pharmacokinetics,pharmacodynamics,safety and targeted delivery which were discussed in this review.Additionally,transformation of nanocrystals to final formulations and future trends of nanocrystals were also described.展开更多
The rate constants of reactions between the SO4^- radical and some common anions in atmospheric aqueous droplets e.g. Cl^-,NO^-, HSO3^- and HCO3^- were determined using the laser flash photolysis technique.Absorption ...The rate constants of reactions between the SO4^- radical and some common anions in atmospheric aqueous droplets e.g. Cl^-,NO^-, HSO3^- and HCO3^- were determined using the laser flash photolysis technique.Absorption spectra of SO4^- and the product radicals were also reported.The chloride ion was evaluated among all the anions to be the most efficient scavenger of SO4^-.The results may supply useful information for a better understanding of the vigorous radical-initiated reactions in atmospheric aqueous droplets such as clouds, rains or fogs.展开更多
A novel water-soluble cystine C60 derivative was synthesized in the presence of the catalyst, tetrabutylammonium hydroxide (TBAH). The product was characterized by FT-IR, UV, ^1H NMR, ^13C NMR, MS and elemental anal...A novel water-soluble cystine C60 derivative was synthesized in the presence of the catalyst, tetrabutylammonium hydroxide (TBAH). The product was characterized by FT-IR, UV, ^1H NMR, ^13C NMR, MS and elemental analysis. Furthermore, the scavenging ability to superoxygen anion radical O2^·- and hydroxyl radical ^·OH was studied by chemiluminescence. It was found that cystine C60 derivative showed an excellent efficiency in eliminating superoxygen anion radical and hydroxyl radical. The 50% inhibition concentration (IC50) for superoxygen anion radical and hydroxyl radical were 0.167 and 0.008 mg/mL, respectively.展开更多
A simple, sensitive and convenient ion chromatography(IC) method was established for the simultaneous determination of twelve water-soluble inorganic anions(F -, Cl -, NO - 2, NO - 3, SO 2- 3, SO 2- ...A simple, sensitive and convenient ion chromatography(IC) method was established for the simultaneous determination of twelve water-soluble inorganic anions(F -, Cl -, NO - 2, NO - 3, SO 2- 3, SO 2- 4, PO 3- 4), and fifteen water-soluble organic ions(formate, acetate, MSA, oxalate, malonate, succinate, phthalates, etc.) in atmospheric aerosols. The linear concentrations ranged from 0.005 μg/m 3 to 500 μg/m 3(r = 0.999—0.9999). The relative standard deviation(RSD) were 0.43%—2.00% and the detection limits were from 2.7 ng/m 3 to 88 ng/m 3. The proposed method was successfully applied to the simultaneous determination of those inorganic ions and organic ions in PM 2.5 of Beijing.展开更多
Bauxite residue is a highly alkaline waste containing soluble alkaline anions, which can cause environmental concerns. The optimal leaching conditions, distribution of alkaline anions, types of pivotal alkaline anions...Bauxite residue is a highly alkaline waste containing soluble alkaline anions, which can cause environmental concerns. The optimal leaching conditions, distribution of alkaline anions, types of pivotal alkaline anions and their dissolution behaviors were investigated based on the combination of single factors-orthogonal experiments and leaching stage experiment. Using a two-stage leaching, 86% of the soluble alkaline anions(CO3^2-, HCO4^-,Al(OH)4^-, OH^-) were leached with a L/S ratio of 2 mL/g, at 30 ℃, over 23 h. During the first stage of leaching, approximately 88% of alkaline anions were leached from the dissolution of free alkali(Na OH, carbonate, bicarbonate, NaAl(OH)4) with the rest originating from the dissolution of alkaline minerals(calcite, cancrinite and hydrogarnet). Supernatant alkalinity was 69.78 mmol/L with CO3^2- accounting for 75%. Furthermore, carbonate leaching was controlled by solid film diffusion using the Stumm Model with an apparent activation energy of 10.24 kJ/mol.展开更多
Zn2Al layered double hydroxide pillared with Dawson polyoxometalates,P2W17ZO8-61(Z=Mn2+,Co2+,Ni2+,Cu2+,Zn2+)was prepared.A basal space ofca.16 nm indicates the intercalated Dawson ions to be oriented with their C2 axi...Zn2Al layered double hydroxide pillared with Dawson polyoxometalates,P2W17ZO8-61(Z=Mn2+,Co2+,Ni2+,Cu2+,Zn2+)was prepared.A basal space ofca.16 nm indicates the intercalated Dawson ions to be oriented with their C2 axis perpendicular to the double hydroxide layers(with the exception of P2W17ZnLDH).The IR and^(13)P MASNMR spectral reveal that the Dawson ions retain their integrity in the interlayer space of LDH.A preliminary study shows that these compounds are highly active catalysts for the oxidation of cyclohexene with molecular oxygen.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12274178 and 12174148)Support of High Performance Computing Center of Jilin Universitythe high-performance computing cluster Tiger@IAMP。
文摘Information about electronic excited states of molecular anions plays an important role in investigating electron attachment and detachment processes.Here we present a high-level theoretical study of the electronic structures of 12 alkali-metal-containing diatomic anions MX-(MX = LiH,LiF,LiCl,NaF,NaCl,NaBr,RbCl,KCl,KBr,RbI,KI and CsI).The equation-of-motion electron-attachment coupled-cluster singles and doubles(EOM-EA-CCSD) method is used to calculate the electron binding energies(EBEs) of 10 electronic excited states of each of the 12 molecule anions.With addition of different s-/p-/d-type diffusion functions in the basis set,we have identified possible excited dipole bound states(DBSs) of each anion.With the investigation of EBEs on the 12 MXs with dipole moment(DM) up to 12.1 D,we evaluate the dependence of the number of anionic excited DBSs on molecular DM.The results indicate that there are at least two or three DBSs of anions with a molecular DM larger than 7 D and a molecule with DM > 10 D can sustain a π-DBS of the anion.Our study has some implications for the excited DBS electronic states of alkali-metal-containing diatomic molecules.
文摘By virtue of a 3∶1 complementary coordination strategy,a chiral heteroleptic metal-organic cage that con-tains divergent functional units,Pd‑R(Zn),was precisely constructed via self-assembly of monodentate variational Zn-salen ligands RZn and NADH(reduced nicotinamide adenine dinucleotide)mimic modified tridentate ligands with square-planar Pd ions.UV-Vis and luminescence spectra experiments reveal that different anions could selec-tively interact with different sites of Zn-salen modified metal-organic cages to achieve the structural regulation of cage compound,by using the differentiated host-guest electrostatic interactions of counter ions with metal-organic hosts.Compared to other anions,the presence of chloride ions caused the most significant fluorescence emission enhancement of Pd‑R(Zn),meanwhile,the UV-Vis absorption band attributed to the salen aromatic backbone showed an absorption decrease,and the metal-to-ligand induced peak displayed a blue shift effect.Circular dichro-ism and ^(1)H NMR spectra further demonstrate that the introduction of chloride anions is beneficial to keeping a more rigid scaffold.
基金financially supported by the National Natural Science Foundation of China(22176059,21777042,and 22076045)the authors would also like to acknowledge support from the Science and Technology Commission of Shanghai Municipality’s Yangfan Special Project(23YF1408400)the Fundamental Research Funds for the Central Universities.
文摘Despite the extensive application of advanced oxidation processes(AOPs)in water treatment,the efficiency of AOPs in eliminating various emerging contaminants such as halogenated antibiotics is constrained by a number of factors.Halogen moieties exhibit strong resistance to oxidative radicals,affecting the dehalogenation and detoxification efficiencies.To address these limitations of AOPs,advanced reduction processes(ARPs)have been proposed.Herein,a novel nucleophilic reductant—namely,the carbon dioxide radical anion(CO_(2)^(·-))—is introduced for the simultaneous degradation,dehalogenation,and detoxification of florfenicol(FF),a typical halogenated antibiotic.The results demonstrate that FF is completely eliminated by CO_(2)^(·-),with approximately 100%of Cland 46%of Freleased after 120 min of treatment.Simultaneous detoxification is observed,which exhibits a linear response to the release of free inorganic halogen ions(R^(2)=0.97,p<0.01).The formation of halogen-free products is the primary reason for the superior detoxification performance of this method,in comparison with conventional hydroxyl-radical-based AOPs.Products identification and density functional theory(DFT)calculations reveal the underlying dehalogenation mechanism,in which the chlorine moiety of FF is more susceptible than other moieties to nucleophilic attack by CO_(2)^(·-).Moreover,CO_(2)^(·-)-based ARPs exhibit superior dehalogenation efficiencies(>75%)in degrading a series of halogenated antibiotics,including chloramphenicol(CAP),thiamphenicol(THA),diclofenac(DLF),triclosan(TCS),and ciprofloxacin(CIP).The system shows high tolerance to the pH of the solution and the presence of natural water constituents,and demonstrates an excellent degradation performance in actual groundwater,indicating the strong application potential of CO_(2)^(·-)-based ARPs in real life.Overall,this study elucidates the feasibility of CO_(2)^(·-)for the simultaneous degradation,dehalogenation,and detoxification of halogenated antibiotics and provides a promising method for their regulation during water or wastewater treatment.
基金the funding support from the National Natural Science Foundation of China (U22A2078)the Fundamental Research Funds of Central Universities (2022CDJQY-007 and 2022CDJJCLK001)
文摘The development of efficient and robust anode materials for stable alkaline seawater electrolysis is severely limited by chlorine evolution reaction and chloride corrosion.Here,the sulfur-doped cobalt-nickel bimetallic phosphides(CoNiPS)are specifically designed as a pre-catalyst for navigating a surface reconstruction to fabricate the anions(PO^(3-)_(4) and SO^(2-)_(4))-decorated Co(Ni)OOH catalyst(R-CoNiPS)with exceptional durability and high activity for stable alkaline seawater oxidation(ASO).Various experiment techniques together with theoretical simulations both demonstrate that the in situ-generated PO^(3-)_(4) and SO^(2-)_(4) anions on catalyst surface can improve the oxygen evolution reaction(OER)activity,regulating and stabilizing the catalytic active species Co(Ni)OOH,as well as make a critical role in inhibiting the adsorp-tion of chloride ions and extending the service life of electrode.Therefore,this R-CoNiPS electrode exhi-bits superb OER activity toward AsO and stands out among the non-precious ASO electrocatalysts reported recently,requiring low overpotentials of 420 and 440 mV to attain large current densities of 500 and 1000 mA cm^(-2) in an alkaline natural seawater electrolyte,respectively.Particularly,the catalyst displays a negligible chloride corrosion at room temperature during ASO operation(>200 h)at 500 mA cm^(-2).This work opens up a new viewpoint for designing high-activity and durable electrocata-lystsforseawaterelectrolysis.
基金supported by the National Natural Science Foundation of China(Grant No.12105197 and 52088101)Guangdong Basic and Applied Basic Research Foundation(Grant No.2022A1515010319)+1 种基金the open research fund of Songshan Lake Materials Laboratory(No.2022SLABFK04)Large Scientific Facility Open Subject of Songshan Lake,Dongguan,Guangdong
文摘Due to a high energy density,layered transition-metal oxides have gained much attention as the promising sodium-ion batteries cathodes.However,they readily suffer from multiple phase transitions during the Na extraction process,resulting in large lattice strains which are the origin of cycledstructure degradations.Here,we demonstrate that the Na-storage lattice strains of layered oxides can be reduced by pushing charge transfer on anions(O^(2-)).Specifically,the designed O3-type Ru-based model compound,which shows an increased charge transfer on anions,displays retarded O3-P3-O1 multiple phase transitions and obviously reduced lattice strains upon cycling as directly revealed by a combination of ex situ X-ray absorption spectroscopy,in situ X-ray diffraction and geometric phase analysis.Meanwhile,the stable Na-storage lattice structure leads to a superior cycling stability with an excellent capacity retention of 84%and ultralow voltage decay of 0.2 mV/cycle after 300 cycles.More broadly,our work highlights an intrinsically structure-regulation strategy to enable a stable cycling structure of layered oxides meanwhile increasing the materials’redox activity and Nadiffusion kinetics.
基金Supported by the National Natural Science Foundation of China(20776054)~~
文摘[Objective] The experiment aimed to explore release rule of water-soluble chitosan (WSC) in vitro. [Method]The bovine serum albumin(BSA) was taken as a model protein drug and some existing release models such as Kinetics model, Gompertz model, Weibull model, Higuchi model and Logistic model were used to fit the BSA release profile from WSC carriers. [Result] Except Higuchi model and Logistic model, other models could fit BSA release profile better. [Conclusion] Gompertz two-order kinetics model could fit the release of WSC nano-particles better and model parameters had practical physical meaning.
基金This work was supported by the Chinese Academy of Sciences (Hundred Talents Fund), the National Natural Science Foundation of China (No.20703048 and No.20803083), and the Center of Molecular Science Foundation of Institute of Chemistry, Chinese Academy of Sciences (No.CMS-LX200902).
文摘The reactions of anionic zirconium oxide clusters ZrxOy- with C2H6 and C4H10 are investi-gated by a time of flight mass spectrometer coupled with a laser vaporization cluster source.Hydrogen containing products Zr2O5H- and Zr3O7H- are observed after the reaction. Den-sity functional theory calculations indicate that the hydrogen abstraction is favorable in the reaction of Zr2O5- with C2H6, which supports that the observed Zr2O5H- and Zr3O7H- are due to hydrogen atom abstraction from the alkane molecules. This work shows a newpossible pathway in the reaction of zirconium oxide cluster anions with alkane molecules.
文摘Hydrophobically associating water-soluble polymers (HPAP) have been synthesized from acrylamide(AM), acrylate (AA), 2-acrylamido-2-methyl propane sulfonic acid (AMPS) and hydrophobic monomer (AP) in aqueous solution by radical polymerization. New polymer drilling fluids are made up of HPAP, which is used as viscosifiers and encapsulation agents. Properties of this system are reported in this paper. Results indicate that this system has a high value of yield point to plastic viscosity (YP/PV≥0.7), high viscosity at a low-shear rate (LSRV≥30000mPa·s), excellent shear thinning behavior, good solid-carrying behavior, resistance to shear, good thermal stability (as high as 140℃) and salt resistance. The system has excellent behavior in high-density solution of NaCl and in calcium and magnesium rich saline solutions. Hence, HPAP also can be used in saltwater polymer drilling fluids.
基金Supported by National Natural Science Foundation of China(30671240,30871588,41006097)Scientific Special Research Project of Ministry of Water Resources for Public Industry(200801028,200701031)+1 种基金Open Fund from Key Laboratory of Environmental Materials and Environmental Engineering of Jiangsu Province(K090025)Project of Yangzhou Polytechnic College of Environment and Resource(2010YZY-1)~~
文摘[Objective] The paper was to study the algicidal effect of water-soluble extracts of Chinese chive under different environmental conditions, so as to provide reference for further study and development of new algicidal substances. [Method] The effects of water-soluble extracts of Chinese chive on the growth of Microcystis aeruginosa under different pH, light and aeration conditions were compared and studied. [Result] The growth inhibition rate of water-soluble extracts of Chinese chive on M. aeruginosa was greater than 90% under different pH conditions. With the growth of M. aeruginosa, the culture liquid with different initial pH was finally tended to 9-9.5. The growth inhibition rate of water-soluble extracts of Chinese chive on algae cell increased with the prolongation of culture time within the light intensity range of 1 000-4 000 lx. The inhibition effect of water-soluble extracts of Chinese chive on M. aeruginosa under low light intensity(1 000 lx)was better than that under high light intensity, the best light intensity for growth was not conducive to the exertion of allelopathic effect. Meanwhile, aeration condition was more conducive to the inhibition effect of water-soluble extracts of Chinese chive on the growth of M. aeruginosa. [Conclusion] pH, light and aeration conditions all affected the inhibition effect of water-soluble extracts of Chinese chive treated by high temperature on M. aeruginosa. Understanding the effect of these environmental factors on algicidal effect of allelochemicals could provide reference for further study and development of new algicidal substances.
文摘The presence of a thatch layer in established pastures could reduce the contact between broiler litter and soil, thus increasing the potential for surface runoff contamination with litter P. We conducted a laboratory study to evaluate the effect of a thatch layer on the dynamics of water-soluble P in undisturbed cores taken from a pasture. Cores with and without a thatch layer received a surface application of broiler litter (5 thm-2) and were incubated at 25 oC for 56 d. The result showed that on the soil surface the contents of water soluble-P (39 kghm-2) of the cores with the thatch layer was higher than that (20 kghm-2) of the cores without the thatch layer. Therefore on well-established pastures fertilized with broiler litter, the presence of a thatch layer might lead to high concentrations of water-soluble P on the soil surface.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA09030104)the National Basic Research Program of China(973 Program,2012CB215500)the Key Program of the Chinese Academy of Sciences(KGZD-EW-T08)
文摘Nation-membrane-based proton exchange fuel cells (PEMFCs) typically operate at below 100 ℃. However, H3PO4-doped polybenzimidazole (PBI)-based PEMFCs can operate at 100-200 ℃. This is advantageous because of accelerated reaction rates and enhanced tolerance to poisons such as CO and S02, which can arise from reformed gas or the atmosphere. However, the strong adsorption of phosphoric anions on the Pt surface dramatically decreases the electrocatalytic activity. This study exploits the "third-body effect", in which a small amount of organic molecules are pre-adsorbed on the Pt surface to inhibit the adsorption of phosphoric anions. Pre-adsorbate species inhibit the ad- sorption of phosphoric anions, but can also partially occlude active sites. Thus, the optimum pre-adsorbate coverage is studied by correlating the oxygen reduction reaction (ORR) activity of Pt with pre-adsorbate coverage on the Pt surface. The influence of the pre-adsorbate molecule length is investigated using the organic amines, butylamine, octylamine, and dodecylamine, in both 0.1 mol/L HCI04 and 0.1 mol/L H3P04. Such amines readily bond to the Pt surface. In aqueous HCI04 electrolyte, the ORR activity of Pt decreases monotonically with increasing pre-adsorbate coverage. In aqueous H3P04 electrolyte, the ORR activity of Pt initially increases and then decreases with in- creasing pre-adsorbate coverage. The maximum ORR activity in H3P04 occurs at a pre-adsorbate coverage of around 20%. The effect of molecular length of the pre-adsorbate is negligible, but its coverage strongly affects the degree to which phosphoric anion adsorption is inhibited. Butylamine adsorbs to Pt at partial active sites, which decreases the electrochemically active surface area. Ad- sorbed butylamine may also modify the electronic structure of the Pt surface. The ORR activity in the phosphoric acid electrolyte remains relatively low, even when using the pre-adsorbate modified Pt/C catalysts. Further development of the catalyst and electrolyte is required before the commercialization of H3PO4-PBl-based PEMFCs can be realized.
基金The National Basic Research Program (973) of China (No. 2004CB3418501)
文摘Marine sediments from Lianshan Bay in Huludao, China, were studied in laboratory. A series of simulated experiments were carried out to investigate the influences of three kinds of anions CL^-, SO4^2- and HCO3^- on the release ofCd, Pb, Cu and Zn from the sediments. The results showed that the sequences about the impact of the three anions were Cl^-〉HCO3^-〉SO4^2+. The release potential of heavy metals in the presence of each anions was in the following order: Cd≥Cu 〉Zn≈Pb. The correlations were positive between CI content and the quantity of Cd released from the marine sediment, whereas there was no significant relationship between CI content and amount of Cu and Zn released. For SO4^2- and HCO3^-, the release of the heavy metals from marine sediments was not obvious.
基金TheNationalNaturalScienceFoundationofChina (No .495 710 6 2 )
文摘Experiments were carried out to study the effects of several anions on the photocatalytic degradation rates of sodium dodecylbenzene sulphonate (DBS) with TiO 2 as catalyst. The anions were added as Na 2SO 4, NaNO 3, NaCl, NaHCO 3, NaH 2PO 4 and Na 3PO 4, and two levels of anion content, i.e. 12 mmol/L and 36 mmol/L in terms of Na +, were studied. The results revealed that: Cl -, SO 2- 4, NO - 3 and HCO - 3 retarded the rates of DBS degradation to different degrees; PO 3- 4 increased the DBS degradation rate at low concentration and decreased the rate at high concentration; H 2PO - 4 accelerated the rate of DBS degradation. The mechanism of the effects of anions on DBS degradation was concluded as the following three aspects: anions compete for the radicals; anions are absorbed on the surface of catalyst and block the active site of catalyst; anions added to the solution change the pH value and influence the formation of ·OH radicals and the adsorption of DBS on catalyst.
基金Supported by China Petroleum Science and Technology Innovation Fund(2017D-5007-0601)State Key Laboratory of Heavy Oil Processing and China University of Petroleum(East China)2018 Graduate Engineering Innovation Project Found(SLKZZ-2017002)
文摘Micro-emulsion usually consists of water, oil, surfactants and co-surfactants, and each component has an effect on the phase behavior and solubilization of the micro-emulsion. When the surfactant in the micro-emulsion system is quaternary ammonium cationic Gemini surfactant, the surfactant mainly combines with the anions in the salt. With the increase of salt concentration, the phase transformation of Winsor I → Winsor III → Winsor II occurred, but the optimum salinity and salt width are different because of the type of salt. The effects of 5 different kinds of monovalent anions, including C_6H_5SO_3^-, I-, Br-, NO_3^- and Cl-, on the phase behavior and solubilization of quaternary ammonium cationic Gemini micro-emulsion are researched by Winsor phase diagram. It is found that the effects of organic anions C_6H_5SO_3-and I-on the phase behavior and solubilization of quaternary ammonium cationic Gemini micro-emulsion are most significant, and the effects of Br-, NO_3^- and Cl-are less significant. Meanwhile, when the optimum solubilization is achieved, the amount of sodium benzoate is the least, indicating that the organic anion has stronger self-organization behavior with quaternary ammonium cationic Gemini surfactants.
基金the Thailand Research Fund through Thai Basic Research Grant(BRG5680020 to V.B.J.)the Royal Golden Jubilee Ph.D.Program and Mahidol。
文摘Nanocrystals,a carrier-free colloidal delivery system in nano-sized range,is an interesting approach for poorly soluble drugs.Nanocrystals provide special features including enhancement of saturation solubility,dissolution velocity and adhesiveness to surface/cell membranes.Several strategies are applied for nanocrystals production including precipitation,milling,high pressure homogenization and combination methods such as Nano-Edge^(TM),SmartCrystal and Precipitation-lyophilization-homogenization(PLH)technology.For oral administration,many publications reported useful advantages of nanocrystals to improve in vivo performances i.e.pharmacokinetics,pharmacodynamics,safety and targeted delivery which were discussed in this review.Additionally,transformation of nanocrystals to final formulations and future trends of nanocrystals were also described.
文摘The rate constants of reactions between the SO4^- radical and some common anions in atmospheric aqueous droplets e.g. Cl^-,NO^-, HSO3^- and HCO3^- were determined using the laser flash photolysis technique.Absorption spectra of SO4^- and the product radicals were also reported.The chloride ion was evaluated among all the anions to be the most efficient scavenger of SO4^-.The results may supply useful information for a better understanding of the vigorous radical-initiated reactions in atmospheric aqueous droplets such as clouds, rains or fogs.
基金The project supported by the National Natural Science Foundation of China(No.20474020).
文摘A novel water-soluble cystine C60 derivative was synthesized in the presence of the catalyst, tetrabutylammonium hydroxide (TBAH). The product was characterized by FT-IR, UV, ^1H NMR, ^13C NMR, MS and elemental analysis. Furthermore, the scavenging ability to superoxygen anion radical O2^·- and hydroxyl radical ^·OH was studied by chemiluminescence. It was found that cystine C60 derivative showed an excellent efficiency in eliminating superoxygen anion radical and hydroxyl radical. The 50% inhibition concentration (IC50) for superoxygen anion radical and hydroxyl radical were 0.167 and 0.008 mg/mL, respectively.
文摘A simple, sensitive and convenient ion chromatography(IC) method was established for the simultaneous determination of twelve water-soluble inorganic anions(F -, Cl -, NO - 2, NO - 3, SO 2- 3, SO 2- 4, PO 3- 4), and fifteen water-soluble organic ions(formate, acetate, MSA, oxalate, malonate, succinate, phthalates, etc.) in atmospheric aerosols. The linear concentrations ranged from 0.005 μg/m 3 to 500 μg/m 3(r = 0.999—0.9999). The relative standard deviation(RSD) were 0.43%—2.00% and the detection limits were from 2.7 ng/m 3 to 88 ng/m 3. The proposed method was successfully applied to the simultaneous determination of those inorganic ions and organic ions in PM 2.5 of Beijing.
基金Project(41371475)supported by the National Natural Science Foundation of ChinaProject(201509048)supported by the Environmental Protection’s Special Scientific Research for Chinese Public Welfare Industry
文摘Bauxite residue is a highly alkaline waste containing soluble alkaline anions, which can cause environmental concerns. The optimal leaching conditions, distribution of alkaline anions, types of pivotal alkaline anions and their dissolution behaviors were investigated based on the combination of single factors-orthogonal experiments and leaching stage experiment. Using a two-stage leaching, 86% of the soluble alkaline anions(CO3^2-, HCO4^-,Al(OH)4^-, OH^-) were leached with a L/S ratio of 2 mL/g, at 30 ℃, over 23 h. During the first stage of leaching, approximately 88% of alkaline anions were leached from the dissolution of free alkali(Na OH, carbonate, bicarbonate, NaAl(OH)4) with the rest originating from the dissolution of alkaline minerals(calcite, cancrinite and hydrogarnet). Supernatant alkalinity was 69.78 mmol/L with CO3^2- accounting for 75%. Furthermore, carbonate leaching was controlled by solid film diffusion using the Stumm Model with an apparent activation energy of 10.24 kJ/mol.
文摘Zn2Al layered double hydroxide pillared with Dawson polyoxometalates,P2W17ZO8-61(Z=Mn2+,Co2+,Ni2+,Cu2+,Zn2+)was prepared.A basal space ofca.16 nm indicates the intercalated Dawson ions to be oriented with their C2 axis perpendicular to the double hydroxide layers(with the exception of P2W17ZnLDH).The IR and^(13)P MASNMR spectral reveal that the Dawson ions retain their integrity in the interlayer space of LDH.A preliminary study shows that these compounds are highly active catalysts for the oxidation of cyclohexene with molecular oxygen.