Partial agglomeration is a major problem in fluidized beds. A chaotic analytical method based on the phase-plane invariant of the pressure fluctuations in the fluidized beds has been used to warn of agglomeration at a...Partial agglomeration is a major problem in fluidized beds. A chaotic analytical method based on the phase-plane invariant of the pressure fluctuations in the fluidized beds has been used to warn of agglomeration at an early stage. Cold tests (no combustion) and hot tests (combustion) in fluidized beds show that the phase-plane invariant of the pressure fluctuations can distinguish the dynamic behavior of fluidized beds with different flow rates in cold tests. With combustion, when the flow rate was kept constant, agglomeration was detected very early by looking at the phase-plane invariant. The phase-plane invariant can be used to distinguish changes in fluidized beds due to changes in the flow rate, agglomeration, or various other factors. Therefore, this reliable agglomeration early warning system can be used for better control of circulating fluidized beds.展开更多
基金the Ishikawajima-Harima Heavy Industries Co., Ltd., Japan
文摘Partial agglomeration is a major problem in fluidized beds. A chaotic analytical method based on the phase-plane invariant of the pressure fluctuations in the fluidized beds has been used to warn of agglomeration at an early stage. Cold tests (no combustion) and hot tests (combustion) in fluidized beds show that the phase-plane invariant of the pressure fluctuations can distinguish the dynamic behavior of fluidized beds with different flow rates in cold tests. With combustion, when the flow rate was kept constant, agglomeration was detected very early by looking at the phase-plane invariant. The phase-plane invariant can be used to distinguish changes in fluidized beds due to changes in the flow rate, agglomeration, or various other factors. Therefore, this reliable agglomeration early warning system can be used for better control of circulating fluidized beds.