In this paper, a multiple population genetic algorithm (MPGA) is proposed to solve the problem of optimal load dispatch of gas turbine generation units. By introducing multiple populations on the basis of Standard Gen...In this paper, a multiple population genetic algorithm (MPGA) is proposed to solve the problem of optimal load dispatch of gas turbine generation units. By introducing multiple populations on the basis of Standard Genetic Algorithm (SGA), connecting each population through immigrant operator and preserving the best individuals of every generation through elite strategy, MPGA can enhance the efficiency in obtaining the global optimal solution. In this paper, MPGA is applied to optimize the load dispatch of 3×390MW gas turbine units. The results of MPGA calculation are compared with that of equal micro incremental method and AGC instruction. MPGA shows the best performance of optimization under different load conditions. The amount of saved gas consumption in the calculation is up to 2337.45m3N/h, which indicates that the load dispatch optimization of gas turbine units via MPGA approach can be effective.展开更多
The implementation and optimization of the traditional contour generation algorithms are always proposed for the common processor. When processing high resolution images, the performance often exists low efficiency. A...The implementation and optimization of the traditional contour generation algorithms are always proposed for the common processor. When processing high resolution images, the performance often exists low efficiency. A new graphics processing unit (GPU)-based algorithm is proposed to get the clear and integrated contour of leaves. Firstly we implement the classic Sobel operator of edge detection in GPU. Then a simple and effective method is designed to remove the fake edge and a heuristic algorithm is used to repair the broken edge. It is proved by the experiments that the results of our algorithm are natural and realistic in terms of morphology and can be good materials for the virtual plant.展开更多
The rapid spreading of the Photovoltaic (PV) Systems as Distributed Generation (DG) in medium and low voltage networks created many effects and changes on the existing power system networks. In this work, two methods ...The rapid spreading of the Photovoltaic (PV) Systems as Distributed Generation (DG) in medium and low voltage networks created many effects and changes on the existing power system networks. In this work, two methods have been used and applied to determine the optimal allocation and sizing of the PV to be installed as DGs (ranging from 250 kW up to 3 MW). The first one is to determine the location according to the maximal power losses reduction over the feeder. The second one is by using the Harmony Search Algorithm which is claimed to be a powerful technique for optimal allocation of PV systems. The results of the two techniques were compared and found to be nearly closed. Furthermore, investigation on the effects on the feeder in terms of voltage levels, power factor readings, and short circuit current levels has been done. All calculations and simulations are conducted by using the MATLAB Simulation Program. Some field calculations and observations have been expended in order to substantiate the research findings and validation.展开更多
Due to the characteristics of intermittent photovoltaic power generation and power fluctuations in distributed photovoltaic power generation,photovoltaic grid-connected systems are usually equipped with energy storage...Due to the characteristics of intermittent photovoltaic power generation and power fluctuations in distributed photovoltaic power generation,photovoltaic grid-connected systems are usually equipped with energy storage units.Most of the structures combined with energy storage are used as the DC side.At the same time,virtual synchronous generators have been widely used in distributed power generation due to their inertial damping and frequency and voltage regulation.For the PV-storage grid-connected system based on virtual synchronous generators,the existing control strategy has unclear function allocation,fluctuations in photovoltaic inverter output power,and high requirements for coordinated control of PV arrays,energy storage units,and photovoltaic inverters,which make the control strategy more complicated.In order to solve the above problems,a control strategy for PV-storage grid-connected system based on a virtual synchronous generator is proposed.In this strategy,the energy storage unit implements maximum power point tracking,and the photovoltaic inverter implements a virtual synchronous generator algorithm,so that the functions implemented by each part of the system are clear,which reduces the requirements for coordinated control.At the same time,the smooth power command is used to suppress the fluctuation of the output power of the photovoltaic inverter.The simulation validates the effectiveness of the proposed method from three aspects:grid-connected operating conditions,frequency-modulated operating conditions,and illumination sudden-drop operating condition.Compared with the existing control strategies,the proposed method simplifies the control strategies and stabilizes the photovoltaic inverter fluctuation in the output power of the inverter.展开更多
This paper presents a new approach via composite cost function to solve the unit commitment problem. The unit com-mitment problem involves determining the start-up and shut-down schedules for generating units to meet ...This paper presents a new approach via composite cost function to solve the unit commitment problem. The unit com-mitment problem involves determining the start-up and shut-down schedules for generating units to meet the fore-casted demand at the minimum cost. The commitment schedule must satisfy the other constraints such as the generating limits, spinning reserve, minimum up and down time, ramp level and individual units. The proposed algorithm gives the committed units and economic load dispatch for each specific hour of operation. Numerical simulations were carried out using three cases: four-generator, seven-generator, and ten-generator thermal unit power systems over a 24 h period. The produced schedule was compared with several other methods, such as Dynamic programming, Branch and bound, Ant colony system, and traditional Tabu search. The result demonstrated the accuracy of the proposed method.展开更多
This paper focused on generation scheduling problem with consideration of wind, solar and PHES (pumped hydro energy storage) system. Wind, solar and PHES are being considered in the NEPS (northeast power system) o...This paper focused on generation scheduling problem with consideration of wind, solar and PHES (pumped hydro energy storage) system. Wind, solar and PHES are being considered in the NEPS (northeast power system) of Afghanistan to schedule all units power output so as to minimize the total operation cost of thermal units plus aggregate imported power tariffs during the scheduling horizon, subject to the system and unit operation constraints. Apart from determining the optimal output power of each unit, this research also involves in deciding the on/off status of thermal units. In order to find the optimal values of the variables, GA (genetic algorithm) is proposed. The algorithm performs efficiently in various sized thermal power system with equivalent wind, solar and PHES and can produce a high-quality solution. Simulation results reveal that with wind, solar and PHES the system is the most-cost effective than the other combinations.展开更多
Precipitation plays a crucial role in the water cycle of Northwest China.Obtaining accurate precipitation data is crucial for regional water resource management,hydrological forecasting,flood control and drought relie...Precipitation plays a crucial role in the water cycle of Northwest China.Obtaining accurate precipitation data is crucial for regional water resource management,hydrological forecasting,flood control and drought relief.Currently,the applicability of multi-source precipitation products for long time series in Northwest China has not been thoroughly evaluated.In this study,precipitation data from 183 meteorological stations in Northwest China from 1979 to 2020 were selected to assess the regional applicability of four precipitation products(the fifth generation of European Centre for Medium-Range Weather Forecasts(ECMWF)atmospheric reanalysis of the global climate(ERA5),Global Precipitation Climatology Centre(GPCC),Climatic Research Unit gridded Time Series Version 4.07(CRU TS v4.07,hereafter CRU),and Tropical Rainfall Measuring Mission(TRMM))based on the following statistical indicators:correlation coefficient,root mean square error(RMSE),relative bias(RB),mean absolute error(MAE),probability of detection(POD),false alarm ratio(FAR),and equitable threat score(ETS).The results showed that precipitation in Northwest China was generally high in the east and low in the west,and exhibited an increasing trend from 1979 to 2020.Compared with the station observations,ERA5 showed a larger spatial distribution difference than the other products.The overall overestimation of multi-year average precipitation was approximately 200.00 mm and the degree of overestimation increased with increasing precipitation intensity.The multi-year average precipitation of GPCC and CRU was relatively close to that of station observations.The trend of annual precipitation of TRMM was overestimated in high-altitude regions and the eastern part of Lanzhou with more precipitation.At the monthly scale,GPCC performed well but underestimated precipitation in the Tarim Basin(RB=-4.11%),while ERA5 and TRMM exhibited poor accuracy in high-altitude regions.ERA5 had a large bias(RB≥120.00%)in winter months and a strong dispersion(RMSE≥35.00 mm)in summer months.TRMM showed a relatively low correlation with station observations in winter months(correlation coefficients≤0.70).The capture performance analysis showed that ERA5,GPCC,and TRMM had lower POD and ETS values and higher FAR values in Northwest China as the precipitation intensity increased.ERA5 showed a high capture performance for small precipitation events and a slower decreasing trend of POD as the precipitation intensity increased.GPCC had the lowest FAR values.TRMM was statistically ineffective for predicting the occurrence of daily precipitation events.The findings provide a reference for data users to select appropriate datasets in Northwest China and for data developers to develop new precipitation products in the future.展开更多
Large-scale renewable energy integration decreases the system inertia and restricts frequency regulation. To maintain the frequency stability, allocating adequate frequency-support sources poses a critical challenge t...Large-scale renewable energy integration decreases the system inertia and restricts frequency regulation. To maintain the frequency stability, allocating adequate frequency-support sources poses a critical challenge to planners. In this context, we propose a frequency-constrained coordination planning model of thermal units, wind farms, and battery energy storage systems (BESSs) to provide satisfactory frequency supports. Firstly, a modified multi-machine system frequency response (MSFR) model that accounts for the dynamic responses from both synchronous generators and grid-connected inverters is constructed with preset power-headroom. Secondly, the rate-of-change-of-frequency (ROCOF) and frequency response power are deduced to construct frequency constraints. A data-driven piecewise linearization (DDPWL) method based on hyperplane fitting and data classification is applied to linearize the highly nonlinear frequency response power. Thirdly, frequency constraints are inserted into our planning model, while the unit commitment based on the coordinated operation of the thermal-hydro-wind-BESS hybrid system is implemented. At last, the proposed model is applied to the IEEE RTS-79 test system. The results demonstrate the effectiveness of our co-planning model to keep the frequency stability.展开更多
As an important soil and water conservation engineering measure,more than 100,000 check dams are constructed across the Loess Plateau;these dams play a vital role in reducing floods and sediment in the region.However,...As an important soil and water conservation engineering measure,more than 100,000 check dams are constructed across the Loess Plateau;these dams play a vital role in reducing floods and sediment in the region.However,the effects of check dams on hydrologic process are still unclear,particularly when they are deployed as a system for watershed soil and water management.This study examined the watershed hydrologic process modulated by the check dam system in a typical Loess Plateau catchment.By simulating scenarios with various numbers of check dams using a distributed physically-based hydro-logical model,the effects of the number of check dams on runoff generation and concentration were analyzed for the study catchment.The results showed that the presence of check dams reduced the peak discharge and the flood volume and extended the flood duration;the reduction effect on peak discharge was most significant among the three factors.The system of check dams substantially decreased the runoff coefficient,and the runoff coefficient reduction rate was greater for rainstorms with shorter return periods than for rainstorms with longer return periods.The check dams increased the capacity of the catchment regulating and storing floods and extended the average runoff concentration time in the catchment that flattened the instantaneous unit hydrograph.This study reveals the influencing mech-anism of check dam system on the watershed hydrological process under heavy rainstorm conditions and provides a theoretical basis for evaluating the effects of numerous check dams on regional hydrology and water resources on the Loess Plateau.展开更多
Background: On the analogy of the non-pathogenic microbiota found in oral cavity, skin and gastrointestinal tract, existence of blood microbiota was confirmed by DNA sequencing, but never deeply characterized. Hypothe...Background: On the analogy of the non-pathogenic microbiota found in oral cavity, skin and gastrointestinal tract, existence of blood microbiota was confirmed by DNA sequencing, but never deeply characterized. Hypothesis for the existence of dormant blood microbiota in healthy humans have been arisen and single species have been isolated. The aim of our study was to resuscitate and investigate the biodiversity of bacterial and fungal dormant blood microbiota in healthy individuals by blood culturing and NGS DNA sequencing. Results: Twenty eight blood samples of healthy individuals, seven for each blood type, were studied. Several culture media were tested. Blood microbiota resuscitation was performed in BHI broth supplemented with vitamin K 1 mg/ml, 2% sucrose, 0.25% sodium citrate and 0.2% yeastolate at 43?C for 72 h. All tested blood samples were culture positive, as confirmed by Gram staining and TEM. TEM images demonstrated well defined cell structures. Analysis for bacterial and eukaryotic species was performed by 16S rRNA and ITS2 targeted sequencing. The obtained sequences were clustered (≥97% identity) in Operational Taxonomic Units (OTUs). Among cultured and uncultured samples we identified OTUs similarity with 47 bacterial orders belonging to 15 phyla and 39 fungi orders blonging to 2 phyla. For the first time we demonstrated isolation and sequencing identification of fungal blood microbiota in healthy individuals. Blood-group differences were identified among the bacterial microbiome compositions. Conclusion: The dormant blood microbiome is innate of the healthy individuals. Interventional strategies to bind the host blood microbiome with the states of health and disease remain an unmet research goal.展开更多
Due to the high penetration of renewable distributed generation(RDG),many issues have become conspicuous during the intentional island operation such as the power mismatch of load shedding during the transition proces...Due to the high penetration of renewable distributed generation(RDG),many issues have become conspicuous during the intentional island operation such as the power mismatch of load shedding during the transition process and the power imbalance during the restoration process.In this paper,a phase measurement unit(PMU)based online load shedding strategy and a conservation voltage reduction(CVR)based multi-period restoration strategy are proposed for the intentional island with RDG.The proposed load shedding strategy,which is driven by the blackout event,consists of the load shedding optimization and correction table.Before the occurrence of the large-scale blackout,the load shedding optimization is solved periodically to obtain the optimal load shedding plan,which meets the dynamic and steady constraints.When the blackout occurs,the correction table updated in real time based on the PMU data is used to modify the load shedding plan to eliminate the power mismatch caused by the fluctuation of RDG.After the system transits to the intentional island seamlessly,multi-period restoration plans are generated to optimize the restoration performance while maintaining power balance until the main grid is repaired.Besides,CVR technology is implemented to restore more loads by regulating load demand.The proposed load shedding optimization and restoration optimization are linearized to mixed-integer quadratic constraint programming(MIQCP)models.The effectiveness of the proposed strategies is verified with the modified IEEE 33-node system on the real-time digital simulation(RTDS)platform.展开更多
Nonlinear optical(NLO)crystals are key materials for solid-state lasers,which play an important role in modern science and technology.However,owing to the intrinsic limitation of functional building units(FBUs)in conv...Nonlinear optical(NLO)crystals are key materials for solid-state lasers,which play an important role in modern science and technology.However,owing to the intrinsic limitation of functional building units(FBUs)in conventional compounds,it is difficult to surpass the performance of existing materials.Therefore,it is necessary to continuously explore new NLO-active FBUs to overcome the recent stagnant situation.Recently,a lot of new FBUs were discovered as NLO-active units in different wavelength ranges.Their contributions are confirmed by the performance of corresponding crystals.In this review,newly identified NLO-active units and corresponding NLO crystals are summarized and discussed in terms of crystal structure,NLO performance,and structure-property relationship.One can find that the heteroleptic coordinated tetrahedra and organic π-conjugated planar groups are the main source of new FUBs that will be a research hotspot in further research work.This review concludes the feasible directions on the exploration of new NLO crystals to satisfy the urgent requirements.展开更多
The energy-saving analytics of coal-fired power units in China is confronting new challenges especially with even more complicated system structure, higher working medium parameters, time-dependent varying operation c...The energy-saving analytics of coal-fired power units in China is confronting new challenges especially with even more complicated system structure, higher working medium parameters, time-dependent varying operation conditions and boundaries such as load rate, coal quality, ambient temperature and humidity. Compared with the traditional optimization of specific operating parameters, the idea of the energy-consumption benchmark state was proposed. The equivalent specific fuel consumption(ESFC) analytics was introduced to determine the energy-consumption benchmark state, with the minimum ESFC under varying operation boundaries. Models for the energy-consumption benchmark state were established, and the endogenous additional specific consumption(ASFC) and exogenous ASFC were calculated. By comparing the benchmark state with the actual state, the energy-saving tempospacial effect can be quantified. As a case study, the energy consumption model of a 1000 MW ultra supercritical power unit was built. The results show that system energy consumption can be mainly reduced by improving the performance of turbine subsystem. This nearly doubles the resultant by improving the boiler system. The energy saving effect of each component increases with the decrease of load and has a greater influence under a lower load rate. The heat and mass transfer process takes priority in energy saving diagnosis of related components and processes. This makes great reference for the design and operation optimization of coal-fired power units.展开更多
We propose a scheme to simultaneously widen and heighten the high-order harmonic plateau on a large scale. More specifically, by adopting a united two-atom system with a suitable inter-nuclear separation instead of a ...We propose a scheme to simultaneously widen and heighten the high-order harmonic plateau on a large scale. More specifically, by adopting a united two-atom system with a suitable inter-nuclear separation instead of a single-atom, the harmonic plateau is widened from Ip + 3.2Up to Ip +8.5Up; further, by adopting the combined pulse, the extended plateau (harmonics near Ip+ 5.6Up) is selectively heightened in excess of 4 orders of magnitude compared with the case of the low-frequency pulse alone. By means of the wavelet transform for the induced dipole of these harmonics, a single x-ray pulse as short as 210 asec is achieved.展开更多
Underwater scene is one of the most marvelous environments in the world. In this study, we present an efficient procedural modeling and rendering system to generate marine ecosystems for swim-through graphic applicati...Underwater scene is one of the most marvelous environments in the world. In this study, we present an efficient procedural modeling and rendering system to generate marine ecosystems for swim-through graphic applications. To produce realistic and natural underwater scenes, several techniques and algorithms have been presented and introduced. First, to distribute sealife naturally on a seabed, we employ an ecosystem simulation that considers the influence of the underwater environment. Second, we propose a two-level procedural modeling system to generate sealife with unique biological features. At the base level, a series of grammars are designed to roughly represent underwater sealife on a central processing unit(CPU). Then at the fine level, additional details of the sealife are created and rendered using graphic processing units(GPUs). Such a hybrid CPU-GPU framework best adopts sequential and parallel computation in modeling a marine ecosystem, and achieves a high level of performance.Third, the proposed system integrates dynamic simulations in the proposed procedural modeling process to support dynamic interactions between sealife and the underwater environment, where interactions and physical factors of the environment are formulated into parameters and control the geometric generation at the fine level. Results demonstrate that this system is capable of generating and rendering scenes with massive corals and sealife in real time.展开更多
Phasor Measurement Units(PMUs)provide Global Positioning System(GPS)time-stamped synchronized measurements of voltage and current with the phase angle of the system at certain points along with the grid system.Those s...Phasor Measurement Units(PMUs)provide Global Positioning System(GPS)time-stamped synchronized measurements of voltage and current with the phase angle of the system at certain points along with the grid system.Those synchronized data measurements are extracted in the form of amplitude and phase from various locations of the power grid to monitor and control the power system condition.A PMU device is a crucial part of the power equipment in terms of the cost and operative point of view.However,such ongoing development and improvement to PMUs’principal work are essential to the network operators to enhance the grid quality and the operating expenses.This paper introduces a proposed method that led to lowcost and less complex techniques to optimize the performance of PMU using Second-Order Kalman Filter.It is based on the Asyncrhophasor technique resulting in a phase error minimization when receiving the signal from an access point or from the main access point.The MATLAB model has been created to implement the proposed method in the presence of Gaussian and non-Gaussian.The results have shown the proposed method which is Second-Order Kalman Filter outperforms the existing model.The results were tested usingMean Square Error(MSE).The proposed Second-Order Kalman Filter method has been replaced with a synchronization unit into thePMUstructure to clarify the significance of the proposed new PMU.展开更多
文摘In this paper, a multiple population genetic algorithm (MPGA) is proposed to solve the problem of optimal load dispatch of gas turbine generation units. By introducing multiple populations on the basis of Standard Genetic Algorithm (SGA), connecting each population through immigrant operator and preserving the best individuals of every generation through elite strategy, MPGA can enhance the efficiency in obtaining the global optimal solution. In this paper, MPGA is applied to optimize the load dispatch of 3×390MW gas turbine units. The results of MPGA calculation are compared with that of equal micro incremental method and AGC instruction. MPGA shows the best performance of optimization under different load conditions. The amount of saved gas consumption in the calculation is up to 2337.45m3N/h, which indicates that the load dispatch optimization of gas turbine units via MPGA approach can be effective.
基金Project supported by the Shanghai Leading Academic Discipline Project(Grant No.J50103)the National Natural Science Foundation of China(Grant No.60970150)
文摘The implementation and optimization of the traditional contour generation algorithms are always proposed for the common processor. When processing high resolution images, the performance often exists low efficiency. A new graphics processing unit (GPU)-based algorithm is proposed to get the clear and integrated contour of leaves. Firstly we implement the classic Sobel operator of edge detection in GPU. Then a simple and effective method is designed to remove the fake edge and a heuristic algorithm is used to repair the broken edge. It is proved by the experiments that the results of our algorithm are natural and realistic in terms of morphology and can be good materials for the virtual plant.
文摘The rapid spreading of the Photovoltaic (PV) Systems as Distributed Generation (DG) in medium and low voltage networks created many effects and changes on the existing power system networks. In this work, two methods have been used and applied to determine the optimal allocation and sizing of the PV to be installed as DGs (ranging from 250 kW up to 3 MW). The first one is to determine the location according to the maximal power losses reduction over the feeder. The second one is by using the Harmony Search Algorithm which is claimed to be a powerful technique for optimal allocation of PV systems. The results of the two techniques were compared and found to be nearly closed. Furthermore, investigation on the effects on the feeder in terms of voltage levels, power factor readings, and short circuit current levels has been done. All calculations and simulations are conducted by using the MATLAB Simulation Program. Some field calculations and observations have been expended in order to substantiate the research findings and validation.
基金supported by National Natural Science Foundation of China Key program(51937003)。
文摘Due to the characteristics of intermittent photovoltaic power generation and power fluctuations in distributed photovoltaic power generation,photovoltaic grid-connected systems are usually equipped with energy storage units.Most of the structures combined with energy storage are used as the DC side.At the same time,virtual synchronous generators have been widely used in distributed power generation due to their inertial damping and frequency and voltage regulation.For the PV-storage grid-connected system based on virtual synchronous generators,the existing control strategy has unclear function allocation,fluctuations in photovoltaic inverter output power,and high requirements for coordinated control of PV arrays,energy storage units,and photovoltaic inverters,which make the control strategy more complicated.In order to solve the above problems,a control strategy for PV-storage grid-connected system based on a virtual synchronous generator is proposed.In this strategy,the energy storage unit implements maximum power point tracking,and the photovoltaic inverter implements a virtual synchronous generator algorithm,so that the functions implemented by each part of the system are clear,which reduces the requirements for coordinated control.At the same time,the smooth power command is used to suppress the fluctuation of the output power of the photovoltaic inverter.The simulation validates the effectiveness of the proposed method from three aspects:grid-connected operating conditions,frequency-modulated operating conditions,and illumination sudden-drop operating condition.Compared with the existing control strategies,the proposed method simplifies the control strategies and stabilizes the photovoltaic inverter fluctuation in the output power of the inverter.
文摘This paper presents a new approach via composite cost function to solve the unit commitment problem. The unit com-mitment problem involves determining the start-up and shut-down schedules for generating units to meet the fore-casted demand at the minimum cost. The commitment schedule must satisfy the other constraints such as the generating limits, spinning reserve, minimum up and down time, ramp level and individual units. The proposed algorithm gives the committed units and economic load dispatch for each specific hour of operation. Numerical simulations were carried out using three cases: four-generator, seven-generator, and ten-generator thermal unit power systems over a 24 h period. The produced schedule was compared with several other methods, such as Dynamic programming, Branch and bound, Ant colony system, and traditional Tabu search. The result demonstrated the accuracy of the proposed method.
文摘This paper focused on generation scheduling problem with consideration of wind, solar and PHES (pumped hydro energy storage) system. Wind, solar and PHES are being considered in the NEPS (northeast power system) of Afghanistan to schedule all units power output so as to minimize the total operation cost of thermal units plus aggregate imported power tariffs during the scheduling horizon, subject to the system and unit operation constraints. Apart from determining the optimal output power of each unit, this research also involves in deciding the on/off status of thermal units. In order to find the optimal values of the variables, GA (genetic algorithm) is proposed. The algorithm performs efficiently in various sized thermal power system with equivalent wind, solar and PHES and can produce a high-quality solution. Simulation results reveal that with wind, solar and PHES the system is the most-cost effective than the other combinations.
基金supported by the National Key Research and Development Program of China(2023YFC3206300)the National Natural Science Foundation of China(42477529,42371145,42261026)+2 种基金the China-Pakistan Joint Program of the Chinese Academy of Sciences(046GJHZ2023069MI)the Gansu Provincial Science and Technology Program(22ZD6FA005)the National Cryosphere Desert Data Center(E01Z790201).
文摘Precipitation plays a crucial role in the water cycle of Northwest China.Obtaining accurate precipitation data is crucial for regional water resource management,hydrological forecasting,flood control and drought relief.Currently,the applicability of multi-source precipitation products for long time series in Northwest China has not been thoroughly evaluated.In this study,precipitation data from 183 meteorological stations in Northwest China from 1979 to 2020 were selected to assess the regional applicability of four precipitation products(the fifth generation of European Centre for Medium-Range Weather Forecasts(ECMWF)atmospheric reanalysis of the global climate(ERA5),Global Precipitation Climatology Centre(GPCC),Climatic Research Unit gridded Time Series Version 4.07(CRU TS v4.07,hereafter CRU),and Tropical Rainfall Measuring Mission(TRMM))based on the following statistical indicators:correlation coefficient,root mean square error(RMSE),relative bias(RB),mean absolute error(MAE),probability of detection(POD),false alarm ratio(FAR),and equitable threat score(ETS).The results showed that precipitation in Northwest China was generally high in the east and low in the west,and exhibited an increasing trend from 1979 to 2020.Compared with the station observations,ERA5 showed a larger spatial distribution difference than the other products.The overall overestimation of multi-year average precipitation was approximately 200.00 mm and the degree of overestimation increased with increasing precipitation intensity.The multi-year average precipitation of GPCC and CRU was relatively close to that of station observations.The trend of annual precipitation of TRMM was overestimated in high-altitude regions and the eastern part of Lanzhou with more precipitation.At the monthly scale,GPCC performed well but underestimated precipitation in the Tarim Basin(RB=-4.11%),while ERA5 and TRMM exhibited poor accuracy in high-altitude regions.ERA5 had a large bias(RB≥120.00%)in winter months and a strong dispersion(RMSE≥35.00 mm)in summer months.TRMM showed a relatively low correlation with station observations in winter months(correlation coefficients≤0.70).The capture performance analysis showed that ERA5,GPCC,and TRMM had lower POD and ETS values and higher FAR values in Northwest China as the precipitation intensity increased.ERA5 showed a high capture performance for small precipitation events and a slower decreasing trend of POD as the precipitation intensity increased.GPCC had the lowest FAR values.TRMM was statistically ineffective for predicting the occurrence of daily precipitation events.The findings provide a reference for data users to select appropriate datasets in Northwest China and for data developers to develop new precipitation products in the future.
基金This work was supported by the National Key R&D Program of China (No. 2016YFB0900100)the National Natural Science Foundation of China (No. 51807116).
文摘Large-scale renewable energy integration decreases the system inertia and restricts frequency regulation. To maintain the frequency stability, allocating adequate frequency-support sources poses a critical challenge to planners. In this context, we propose a frequency-constrained coordination planning model of thermal units, wind farms, and battery energy storage systems (BESSs) to provide satisfactory frequency supports. Firstly, a modified multi-machine system frequency response (MSFR) model that accounts for the dynamic responses from both synchronous generators and grid-connected inverters is constructed with preset power-headroom. Secondly, the rate-of-change-of-frequency (ROCOF) and frequency response power are deduced to construct frequency constraints. A data-driven piecewise linearization (DDPWL) method based on hyperplane fitting and data classification is applied to linearize the highly nonlinear frequency response power. Thirdly, frequency constraints are inserted into our planning model, while the unit commitment based on the coordinated operation of the thermal-hydro-wind-BESS hybrid system is implemented. At last, the proposed model is applied to the IEEE RTS-79 test system. The results demonstrate the effectiveness of our co-planning model to keep the frequency stability.
基金This research was supported by the National Natural Science Foundation of China(51779204,51879281,5207910)Program for Science&Technology Innovation Research Team of Shaanxi Province(2018TD-037)the Research Fund of the State Key Laboratory of Eco-hydraulics in Northwest Arid Region,Xi'an University of Technology(Grant No.2018KFKT-1).
文摘As an important soil and water conservation engineering measure,more than 100,000 check dams are constructed across the Loess Plateau;these dams play a vital role in reducing floods and sediment in the region.However,the effects of check dams on hydrologic process are still unclear,particularly when they are deployed as a system for watershed soil and water management.This study examined the watershed hydrologic process modulated by the check dam system in a typical Loess Plateau catchment.By simulating scenarios with various numbers of check dams using a distributed physically-based hydro-logical model,the effects of the number of check dams on runoff generation and concentration were analyzed for the study catchment.The results showed that the presence of check dams reduced the peak discharge and the flood volume and extended the flood duration;the reduction effect on peak discharge was most significant among the three factors.The system of check dams substantially decreased the runoff coefficient,and the runoff coefficient reduction rate was greater for rainstorms with shorter return periods than for rainstorms with longer return periods.The check dams increased the capacity of the catchment regulating and storing floods and extended the average runoff concentration time in the catchment that flattened the instantaneous unit hydrograph.This study reveals the influencing mech-anism of check dam system on the watershed hydrological process under heavy rainstorm conditions and provides a theoretical basis for evaluating the effects of numerous check dams on regional hydrology and water resources on the Loess Plateau.
文摘Background: On the analogy of the non-pathogenic microbiota found in oral cavity, skin and gastrointestinal tract, existence of blood microbiota was confirmed by DNA sequencing, but never deeply characterized. Hypothesis for the existence of dormant blood microbiota in healthy humans have been arisen and single species have been isolated. The aim of our study was to resuscitate and investigate the biodiversity of bacterial and fungal dormant blood microbiota in healthy individuals by blood culturing and NGS DNA sequencing. Results: Twenty eight blood samples of healthy individuals, seven for each blood type, were studied. Several culture media were tested. Blood microbiota resuscitation was performed in BHI broth supplemented with vitamin K 1 mg/ml, 2% sucrose, 0.25% sodium citrate and 0.2% yeastolate at 43?C for 72 h. All tested blood samples were culture positive, as confirmed by Gram staining and TEM. TEM images demonstrated well defined cell structures. Analysis for bacterial and eukaryotic species was performed by 16S rRNA and ITS2 targeted sequencing. The obtained sequences were clustered (≥97% identity) in Operational Taxonomic Units (OTUs). Among cultured and uncultured samples we identified OTUs similarity with 47 bacterial orders belonging to 15 phyla and 39 fungi orders blonging to 2 phyla. For the first time we demonstrated isolation and sequencing identification of fungal blood microbiota in healthy individuals. Blood-group differences were identified among the bacterial microbiome compositions. Conclusion: The dormant blood microbiome is innate of the healthy individuals. Interventional strategies to bind the host blood microbiome with the states of health and disease remain an unmet research goal.
基金This work was supported in part by the National Key R&D Program of China(No.2017YFB0902900)the National Natural Science Foundation of China(No.51707136)the Natural Science Foundation of Hubei Province(No.2018CFA080).
文摘Due to the high penetration of renewable distributed generation(RDG),many issues have become conspicuous during the intentional island operation such as the power mismatch of load shedding during the transition process and the power imbalance during the restoration process.In this paper,a phase measurement unit(PMU)based online load shedding strategy and a conservation voltage reduction(CVR)based multi-period restoration strategy are proposed for the intentional island with RDG.The proposed load shedding strategy,which is driven by the blackout event,consists of the load shedding optimization and correction table.Before the occurrence of the large-scale blackout,the load shedding optimization is solved periodically to obtain the optimal load shedding plan,which meets the dynamic and steady constraints.When the blackout occurs,the correction table updated in real time based on the PMU data is used to modify the load shedding plan to eliminate the power mismatch caused by the fluctuation of RDG.After the system transits to the intentional island seamlessly,multi-period restoration plans are generated to optimize the restoration performance while maintaining power balance until the main grid is repaired.Besides,CVR technology is implemented to restore more loads by regulating load demand.The proposed load shedding optimization and restoration optimization are linearized to mixed-integer quadratic constraint programming(MIQCP)models.The effectiveness of the proposed strategies is verified with the modified IEEE 33-node system on the real-time digital simulation(RTDS)platform.
基金supported by the National Natural Science Foundation of China(No.52072109)the Top Young Talents Project of Hebei Education Department(BJK2023029).
文摘Nonlinear optical(NLO)crystals are key materials for solid-state lasers,which play an important role in modern science and technology.However,owing to the intrinsic limitation of functional building units(FBUs)in conventional compounds,it is difficult to surpass the performance of existing materials.Therefore,it is necessary to continuously explore new NLO-active FBUs to overcome the recent stagnant situation.Recently,a lot of new FBUs were discovered as NLO-active units in different wavelength ranges.Their contributions are confirmed by the performance of corresponding crystals.In this review,newly identified NLO-active units and corresponding NLO crystals are summarized and discussed in terms of crystal structure,NLO performance,and structure-property relationship.One can find that the heteroleptic coordinated tetrahedra and organic π-conjugated planar groups are the main source of new FUBs that will be a research hotspot in further research work.This review concludes the feasible directions on the exploration of new NLO crystals to satisfy the urgent requirements.
文摘The energy-saving analytics of coal-fired power units in China is confronting new challenges especially with even more complicated system structure, higher working medium parameters, time-dependent varying operation conditions and boundaries such as load rate, coal quality, ambient temperature and humidity. Compared with the traditional optimization of specific operating parameters, the idea of the energy-consumption benchmark state was proposed. The equivalent specific fuel consumption(ESFC) analytics was introduced to determine the energy-consumption benchmark state, with the minimum ESFC under varying operation boundaries. Models for the energy-consumption benchmark state were established, and the endogenous additional specific consumption(ASFC) and exogenous ASFC were calculated. By comparing the benchmark state with the actual state, the energy-saving tempospacial effect can be quantified. As a case study, the energy consumption model of a 1000 MW ultra supercritical power unit was built. The results show that system energy consumption can be mainly reduced by improving the performance of turbine subsystem. This nearly doubles the resultant by improving the boiler system. The energy saving effect of each component increases with the decrease of load and has a greater influence under a lower load rate. The heat and mass transfer process takes priority in energy saving diagnosis of related components and processes. This makes great reference for the design and operation optimization of coal-fired power units.
基金Supported by the National Natural Science Foundation of China under Grant No. 10474028
文摘We propose a scheme to simultaneously widen and heighten the high-order harmonic plateau on a large scale. More specifically, by adopting a united two-atom system with a suitable inter-nuclear separation instead of a single-atom, the harmonic plateau is widened from Ip + 3.2Up to Ip +8.5Up; further, by adopting the combined pulse, the extended plateau (harmonics near Ip+ 5.6Up) is selectively heightened in excess of 4 orders of magnitude compared with the case of the low-frequency pulse alone. By means of the wavelet transform for the induced dipole of these harmonics, a single x-ray pulse as short as 210 asec is achieved.
基金Project supported by the Zhejiang Provincial Natural Science Foundation of China(No.LY13F020002)the National Natural Science Foundation of China(No.61272301)+1 种基金the National Key Technology R&D Program of China(No.2012BAH35B03)the Fundamental Research Funds for the Central Universities,China
文摘Underwater scene is one of the most marvelous environments in the world. In this study, we present an efficient procedural modeling and rendering system to generate marine ecosystems for swim-through graphic applications. To produce realistic and natural underwater scenes, several techniques and algorithms have been presented and introduced. First, to distribute sealife naturally on a seabed, we employ an ecosystem simulation that considers the influence of the underwater environment. Second, we propose a two-level procedural modeling system to generate sealife with unique biological features. At the base level, a series of grammars are designed to roughly represent underwater sealife on a central processing unit(CPU). Then at the fine level, additional details of the sealife are created and rendered using graphic processing units(GPUs). Such a hybrid CPU-GPU framework best adopts sequential and parallel computation in modeling a marine ecosystem, and achieves a high level of performance.Third, the proposed system integrates dynamic simulations in the proposed procedural modeling process to support dynamic interactions between sealife and the underwater environment, where interactions and physical factors of the environment are formulated into parameters and control the geometric generation at the fine level. Results demonstrate that this system is capable of generating and rendering scenes with massive corals and sealife in real time.
文摘Phasor Measurement Units(PMUs)provide Global Positioning System(GPS)time-stamped synchronized measurements of voltage and current with the phase angle of the system at certain points along with the grid system.Those synchronized data measurements are extracted in the form of amplitude and phase from various locations of the power grid to monitor and control the power system condition.A PMU device is a crucial part of the power equipment in terms of the cost and operative point of view.However,such ongoing development and improvement to PMUs’principal work are essential to the network operators to enhance the grid quality and the operating expenses.This paper introduces a proposed method that led to lowcost and less complex techniques to optimize the performance of PMU using Second-Order Kalman Filter.It is based on the Asyncrhophasor technique resulting in a phase error minimization when receiving the signal from an access point or from the main access point.The MATLAB model has been created to implement the proposed method in the presence of Gaussian and non-Gaussian.The results have shown the proposed method which is Second-Order Kalman Filter outperforms the existing model.The results were tested usingMean Square Error(MSE).The proposed Second-Order Kalman Filter method has been replaced with a synchronization unit into thePMUstructure to clarify the significance of the proposed new PMU.