期刊文献+
共找到44,266篇文章
< 1 2 250 >
每页显示 20 50 100
Advances in the study of waterlogging tolerance in plants
1
作者 Zhengyuan Xu Lingzhen Ye +1 位作者 Qiufang Shen Guoping Zhang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第9期2877-2897,共21页
Waterlogging is one of the major abiotic stresses threatening crop yields globally.Under waterlogging stress,plants suffer from oxidative stress,heavy metal toxicity and energy deficiency,leading to metabolic disorder... Waterlogging is one of the major abiotic stresses threatening crop yields globally.Under waterlogging stress,plants suffer from oxidative stress,heavy metal toxicity and energy deficiency,leading to metabolic disorders and growth inhibition.On the other hand,plants have evolved waterlogging-tolerance or adaptive mechanisms,including morphological changes,alternation of respiratory pathways,antioxidant protection and endogenous hormonal regulation.In this review,recent advances in studies on the effects of waterlogging stress and the mechanisms of waterlogging tolerance in plants are presented,and the genetic differences in waterlogging tolerance among plant species or genotypes within a species are illustrated.We also summarize the identified QTLs and key genes associated with waterlogging tolerance. 展开更多
关键词 waterlogging adverse effects CEREALS MECHANISMS gene expression
下载PDF
SiRAP2-12,a Positive Regulatory Factor,Effectively Improves the Waterlogging Tolerance of Foxtail Millet(Setaria italica)
2
作者 Xueyan Xia Xiaohong Fu +10 位作者 Yu Zhao Jihan Cui Nuoya Xiao Jingxin Wang Yiwei Lu Meihong Huang Cheng Chu Jia Zhang Mengxin Yang Shunguo Li Jianfeng Liu 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第3期445-465,共21页
Foxtail millet(Setaria italica)growth was inhibited because of waterlogging stress,which has caused yield reduc-tion.ERF family plays an important role to plant adversity tolerance.In our study,we obtained 19,819 diff... Foxtail millet(Setaria italica)growth was inhibited because of waterlogging stress,which has caused yield reduc-tion.ERF family plays an important role to plant adversity tolerance.In our study,we obtained 19,819 differential expressed genes(DEGs)between the two treatments based on the RNA-seq sequencing of foxtail millet of water-logging stress.Furthermore,a total of 28 ERF family members were obtained,which have a complete open read-ing frame.We studied the evolution and function of SiERF family and how they affected the waterlogging tolerance.It was found that SiERF1A/B/C(GenBank ID:OR775217,OR775219,OR775218)and SiRAP2-12(GenBank ID:OR775216)have similar functions to the known waterlogging tolerance genes of other plants.Among them,the SiRAP2-12 expression was obviously significantly up-regulated in foxtail millet after 5d water-logging stress.After SiRAP2-12 was silenced,the activity of defense enzymes in millet decreased significantly.In details,superoxide dismutase(SOD),catalase(CAT)and peroxidase(POD),the osmotic regulator proline(Pro),and the activity of the anaerobic respiratory enzyme alcohol dehydrogenase(ADH)content were decreased by 78.61%,29.52%,79.95%,19.41%and 54.77%,respectively.In contrast,the relative electrical conductivity contents(REC),malondialdehyde(MDA),and hydrogen peroxide(H_(2)O_(2))of the foxtail millet subjected to virus-induced gene silencing clearly increased by 1.03-fold,36.09%,and 15.21%,respectively.The content of sodium(Na^(+))in the SiRAP2-12-silenced foxtail millet also increased,but that of potassium(K^(+))decreased.Interestingly,we found that ethylene content was significantly reduced.Further,the SiAOC1 expression,an essential gene for ethylene synthesis,was inhibited in SiRAP2-12-silenced foxtail millet after waterlogging stress.Taken together,we hypothesized that SiRAP2-12 might be a positive regulator of millet tolerance to waterlogging stress. 展开更多
关键词 Foxtail millet waterlogging SiRAP2-12 VIGS ETHYLENE
下载PDF
The Waterlogging Tolerance of Cut Rose by Field Observation and Variety Selection in Sanya 被引量:3
3
作者 林亚琼 陈冠铭 +1 位作者 许惠秋 张海良 《Agricultural Science & Technology》 CAS 2013年第11期1532-1535,共4页
[Objective] The aim was to master waterlogging tolerance of cut rose vari-eties, and provided technical reference for promoting cut rose largely. [Method] Based on natural rainfal information from July to October in S... [Objective] The aim was to master waterlogging tolerance of cut rose vari-eties, and provided technical reference for promoting cut rose largely. [Method] Based on natural rainfal information from July to October in Sanya, comprehensive performance of 22 varieties were observed in two consecutive years to analyze wa-terlogging tolerance ability of cut rose at waterlogging disaster. [Result] The mortality rates of Diana, Black Magic, Eric Red and Vendela were over 15%, and Diana ’s was 25.7%. Carola, Rouge Meil and, Perfume white, Lovers ’ Meeting, Choice, Tineke, Vendela, Marina, Samantha, Golden Emblem, Asagumo, Pink Fan and Dou-ble Delight grew better and recovered quickly after the disaster, with waterlogging tolerance. [Conclusion] The waterlogging tolerance of Carola, Rouge Meil and, My Choice, Tineke, Vendela, Marina, Samantha, Golden Emblem, Asagumo, Pink Fan and Double Delight was the best, which is also true for their comprehensive perfor-mances. But the waterlogging tolerance of other major cultivars such as Black Magic, Movie Star, Tineke and Vendela was poorer. 展开更多
关键词 Sanya Rosa Hybrida for cutting waterlogging tolerance SELECT
下载PDF
Improvement of the Hydroponic Growth and Waterlogging Tolerance of Petunias by the Introduction of vhb Gene 被引量:4
4
作者 毛自朝 胡鸢雷 +3 位作者 钟瑾 王立霞 郭俊毅 林忠平 《Acta Botanica Sinica》 CSCD 2003年第2期205-210,共6页
The coding sequence of Vitreoscilla hemoglobin (vhb) was cloned with PCR technique from Vitreoscilla stercoraria Pringsheim. The plant expression vector with vhb gene under the control of CaMV 35S promoter was constru... The coding sequence of Vitreoscilla hemoglobin (vhb) was cloned with PCR technique from Vitreoscilla stercoraria Pringsheim. The plant expression vector with vhb gene under the control of CaMV 35S promoter was constructed and used in the transformation of Petunia hybrida Vilm by the Agrobacterium mediated procedure. The results of PCR amplification and Southern hybridization indicated that the vhb gene had been integrated into the petunia genome and the vhb gene expression had been detected by RT-PCR amplification. In hydroponic culture the transgenic petunias grew much better than non-transgenic controls. For further analysis of hypoxia tolerance of transgenic petunia, the petunia plants with vhb gene were submerged into liquid MS medium. The transgenic plants survived in hypoxic condition and grew out of the liquid surface in a few weeks, while non-transgenic plants were still submerged and suffocated in culture solution without ability to grow out of liquid medium in submersed culture for four to five weeks. The vhb gene transformed petunia plants had been planted and tested in a simulated flooding condition, and showed obvious tolerance to water-logging. It seen is that hemoglobin gene from Vitreoscilla might have the potential use in molecular breeding for the improvement of plant resistance to hypoxia and flooding. 展开更多
关键词 Vitreoscilla hemoglobin transgenic petunia hypoxic tolerance waterlogging
下载PDF
QTLs for Waterlogging Tolerance at Germination and Seedling Stages in Population of Recombinant Inbred Lines Derived from a Cross Between Synthetic and Cultivated Wheat Genotypes 被引量:9
5
作者 YU Ma MAO Shuang-lin +5 位作者 CHEN Guo-yue LIU Ya-xi LI Wei WEI Yu-ming LIU Chun-ji ZHENG You-liang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第1期31-39,共9页
Waterlogging is a widespread limiting factor for wheat production throughout the world. To identify quantitative trait loci (QTLs) associated with waterlogging tolerance at early stages of growth, survival rate (SR... Waterlogging is a widespread limiting factor for wheat production throughout the world. To identify quantitative trait loci (QTLs) associated with waterlogging tolerance at early stages of growth, survival rate (SR), germination rate index (GRI), leaf chlorophyll content index (CCI), root length index (RLI), plant height index (PHI), root dry weight index (RDWI), shoot dry weight index (SDWI), and total dry weight index (DWI) were assessed using the International Triticeae Mapping Initiative (ITMI) population W7984/Opata85. Significant and positive correlations were detected for all traits in this population except RLI. A total of 32 QTLs were associated with waterlogging tolerance on all chromosomes except 3A, 3D, 4B, 5A, 5D, 6A, and 6D. Some of the QTLs explained large proportions of the phenotypic variance. One of these is the QTL for GRI on 7A, which explained 23.92% of the phenotypic variation. Of them, 22 alleles from the synthetic hexaploid wheat W7984 contributed positively. These results suggested that synthetic hexaploid wheat W7984 is an important genetic resource for waterlogging tolerance in wheat. These alleles conferring waterlogging tolerance at early stages of growth in wheat could be utilized in wheat breeding for improving waterlogging tolerance. 展开更多
关键词 WHEAT waterlogging tolerance QTL germination and seedling stages
下载PDF
Screening Methods for Waterlogging Tolerance at Maize (Zea mays L.) Seedling Stage 被引量:16
6
作者 LIU Yong-zhong, TANG Bin, ZHENG Yong-lian, MA Ke-jun, XU Shang-zhong and QIU Fa-zhan National Key Laboratory of Crop Genetic Improvement/Huazhong Agricultural University, Wuhan 430070, P.R.China 《Agricultural Sciences in China》 CSCD 2010年第3期362-369,共8页
Waterlogging strongly affects agronomic performance of maize (Zea mays L.). In order to investigate the suitable selection criteria of waterflooding tolerant genotypes, and identify the most susceptible stage and th... Waterlogging strongly affects agronomic performance of maize (Zea mays L.). In order to investigate the suitable selection criteria of waterflooding tolerant genotypes, and identify the most susceptible stage and the best continuous treatment time to waterlogging, 20 common maize inbred lines were subjected to successive artificial waterflooding at seedling stage, and waterlogging tolerance coefficient (WTC) was used to screen waterflooding tolerant genotypes. In addition, peroxidase (POD) activities and malondialdehyde (MDA) contents were measured for 6 of 20 lines. The results showed that the second leaf stage (V2) was the most susceptible stage, and 6 d after waterflooding was the best continuous treatment time. Dry weight (DW) of both shoots and roots of all lines were significantly reduced at 6 d time-point of waterlogging, compared to control. POD activities and MDA contents were negatively and significantly correlated, and the correlation coefficient was -0.9686 (P 〈 0.0001). According to the results, WTC of shoot DW can be used for practical screening as a suitable index, which is significantly different from control and waterlogged plants happened 6 d earlier. Furthermore, leaf chlorosis, MDA content and POD activities could also be used as reference index for material screening. The implications of the results for waterlogging-tolerant material screening and waterlogging-tolerant breeding have been discussed in maize. 展开更多
关键词 maize (Zea mays L.) waterlogging tolerance screening method selection criteria
下载PDF
Unraveling waterlogging tolerance-related traits with QTL analysis in reciprocal intervarietal introgression lines using genotyping by sequencing in rapeseed(Brassica napus L.) 被引量:3
7
作者 DING Xiao-yu XU Jin-song +4 位作者 HUANG He QIAO Xing SHEN Ming-zhen CHENG Yong ZHANG Xue-kun 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2020年第8期1974-1983,共10页
Soil waterlogging is a major environmental stress that suppresses the growth and productivity of rapeseed(Brassica napus L.).Natural genetic variations in waterlogging tolerance(WT)were observed but no QTL mapping has... Soil waterlogging is a major environmental stress that suppresses the growth and productivity of rapeseed(Brassica napus L.).Natural genetic variations in waterlogging tolerance(WT)were observed but no QTL mapping has been done for WT related traits in rapeseed.In this study,QTL associated with three WT related traits including relative root length(RRL),relative hypocotyl length(RHL)and relative fresh weight(RFW)were dissected using a set of reciprocal introgression lines(ILs)derived from the cross GH01×ZS9,which showed significant difference in WT.Genotyping-by-sequencing(GBS)of the populations were performed,totally 1468 and 1450 binned SNPs were identified for GIL(GH01 as the recurrent parent)and ZIL(ZS9 as the recurrent parent)population,respectively.A total of 66 distinct QTLs for WT at the seedling establishment stage including 31 for RRL,17 for RHL and 18 for RFW were detected.Among the 66 QTLs,20(29.4%)QTLs were detected in both genetic backgrounds and then they were integrated into six QTL clusters,which can be targeted in rapeseed breeding for improvement of WT through marker-assisted selection(MAS).Based on the physical positions of SNPs and the functional annotation of the Arabidopsis thaliana genome,56 genes within the six QTL cluster regions were selected as preliminary candidate genes,then the resequencing and transcriptome information about parents were applied to narrow the extent of candidate genes.Twelve genes were determined as candidates for the six QTL clusters,some of them involved in RNA/protein degradation,most of them involved in oxidation-reduction process.These findings provided genetic resources,candidate genes to address the urgent demand of improving WT in rapeseed breeding. 展开更多
关键词 Brassica napus candidate genes marker-assisted selection quantitative trait loci mapping waterlogging tolerance
下载PDF
Identification of stable quantitative trait loci underlying waterlogging tolerance post-anthesis in common wheat(Triticum aestivum) 被引量:1
8
作者 Fugong Ding Jingyang Tong +9 位作者 Rui Xu Jing Chen Xiaoting Xu Muhammad Nadeem Shuping Wang Yingxin Zhang Zhanwang Zhu Fengju Wang Zhengwu Fang Yuanfeng Hao 《The Crop Journal》 SCIE CSCD 2023年第4期1163-1170,共8页
Waterlogging is a growing threat to wheat production in high-rainfall areas.In this study,a doubled haploid(DH) population developed from a cross between Yangmai 16(waterlogging-tolerant) and Zhongmai895(waterlogging-... Waterlogging is a growing threat to wheat production in high-rainfall areas.In this study,a doubled haploid(DH) population developed from a cross between Yangmai 16(waterlogging-tolerant) and Zhongmai895(waterlogging-sensitive) was used to map quantitative trait loci(QTL) for waterlogging tolerance using a high-density 660K single-nucleotide polymorphism(SNP) array.Two experimental designs,waterlogging concrete tank(CT) and waterlogging plastic tank(PT),were used to simulate waterlogging during anthesis in five environments across three growing seasons.Waterlogging significantly decreased thousand-kernel weight(TKW) relative to non-waterlogged controls,although the degree varied across lines.Three QTL for waterlogging tolerance were identified on chromosomes 4AL,5AS,and 7DL in at least two environments.All favorable alleles were contributed by the waterlogging-tolerant parent Yangmai16.QWTC.caas-4AL exhibited pleiotropic effects on both enhancing waterlogging tolerance and decreasing plant height.Six high-confidence genes were annotated within the QTL interval.The combined effects of QWTC.caas-4AL and QWTC.caas-5AS greatly improved waterlogging tolerance,while the combined effects of all three identified QTL(QWTC.caas-4AL,QWTC.caas-5AS,and QWTC.caas-7DL) exhibited the most significant effect on waterlogging tolerance.Breeder-friendly kompetitive allele-specific PCR(KASP) markers(K_AX_111523809,K_AX_108971224,and K_AX_110553316) flanking the interval of QWTC.caas-4AL,QWTC.caas-5AS,and QWTC.caas-7DL were produced.These markers were tested in a collection of 240 wheat accessions,and three superior polymorphisms of the markers distributed over 67elite cultivars in the test population,from the Chinese provinces of Jiangsu,Anhui,and Hubei.The three KASP markers could be used for marker-assisted selection(MAS) to improve waterlogging tolerance in wheat. 展开更多
关键词 Genetic mapping QTL waterlogging tolerance WHEAT
下载PDF
Changes of Physiological Characters of Wheat After Water-logging at Booting and Relations Between Physiological Characters and Waterlogging Tolerance 被引量:1
9
作者 ZHOU Guang-sheng and ZHU Xu-tong(Department of Agronomy, Huazhong Agricultural University, Wuhan 430070, P.R.China) 《Agricultural Sciences in China》 CAS CSCD 2002年第8期878-884,共7页
Effects of waterlogging on some physiological characters and relationship between waterlogging tolerance and some characters of their own were studied by using 12 varieties of wheat. Results showed waterlogging made t... Effects of waterlogging on some physiological characters and relationship between waterlogging tolerance and some characters of their own were studied by using 12 varieties of wheat. Results showed waterlogging made the content of malondialdehyde in flag leaf increase, made the root vigor, the content of chlorophyll, the net photosynthesis rate, the nitrate reductase activity, the relative water content of flag leaf decrease, the content of organic matter change obviously, and then the yield per plant declined. The correlations 展开更多
关键词 WHEAT waterlogging waterlogging tolerance
下载PDF
Effects of Waterlogging on Photosynthesis and Antioxidant Enzyme Activities of Six Barley Genotypes with Different Waterlogging Tolerance 被引量:4
10
作者 XIAOYu-ping WEIKang +2 位作者 CHENJin-xin ZHOUMei-xue ZHANGGuo-ping 《Agricultural Sciences in China》 CAS CSCD 2005年第4期310-316,共7页
A field experiment was carried out to study genotypic difference in the effect of waterlogging on photosynthesis, chlorophyll content and antioxidative enzyme activities in barley. Waterlogging caused a rapid decline ... A field experiment was carried out to study genotypic difference in the effect of waterlogging on photosynthesis, chlorophyll content and antioxidative enzyme activities in barley. Waterlogging caused a rapid decline in net photosynthetic rate (Pn) and stomatal conductance (gs), and little change in chlorophyll content during early days of the treatment. A dramatic increase in malondialdehyde (MDA) content, superoxide dismutase (SOD) and peroxidase (POD) in waterlogged plants in the early days of the experiment was found, indicating the occurrence of oxidative stress in barley plants exposed to waterlogging. There was a highly significant difference in the changed extent of all these parameters among genotypes. Franklin and Yongjiahong Liuleng Damai, which were relatively sensitive to waterlogging in terms of growth, photosynthesis and chlorophyll content, accumulated much more MDA than the other two relatively tolerant genotypes (93-3143 and QS). After removal of waterlogging, the genotypic difference became much greater in recovering of these examined parameters. Yongjiahong Liuleng Damai showed higher recovery, while Franklin only recovered to 50% of the control at the 14 day after waterlogging removal. It may be concluded that it is the difference in anti-oxidative stress caused by waterlogging that account for the major difference in photosynthesis among barley genotypes. 展开更多
关键词 Barley (Hordeum vulgare L.) waterlogging PHOTOSYNTHESIS Oxidative stress
下载PDF
Screening and Identification of Waterlogging Tolerance in Brassica napus Germplasm Resources 被引量:1
11
作者 Yun LI Cunkou QI +2 位作者 Sanxiong FU Feng CHEN Song CHEN 《Agricultural Biotechnology》 CAS 2019年第1期17-20,共4页
In order to evaluate,screen and identify waterlogging-tolerant Brassica napus resources and provide good germplasm materials for breeding of waterlogging-tolerant rape,608 B. napus germplasm materials from different s... In order to evaluate,screen and identify waterlogging-tolerant Brassica napus resources and provide good germplasm materials for breeding of waterlogging-tolerant rape,608 B. napus germplasm materials from different sources were identified and screened for waterlogging-tolerant germplasms. The identification results showed that tested materials had dead seedling rates in the range of 0-100%,indicating that these rape germplasm materials varied extensively in waterlogging tolerance. Among the 608 materials,waterlogging-tolerant materials( grade I,relative dead seedling rate≤21%) accounted for 25. 49%; non-tolerant materials( grade Ⅳ + V,dead seedling rate≥61%) accounted for 29. 43%; and other materials had waterlogging tolerance between the two. The identification results of waterlogging tolerance in the 349 rape germplasm resource from the upper,middle and lower reaches of Yangtze River and Huang-Huai Basin showed that materials from the lower Yangtze River had the lowest average dead seedling rate of 38. 8%,which was remarkably lower than materials from other ecological regions,and waterlogging-tolerant materials among them accounted for 33. 6%,which was also remarkably higher than materials from other ecological regions. It could thus be seen that materials from the lower Yangtze River have stronger waterlogging tolerance than those from other ecological regions overall. In this study,24 highly-tolerant B. napus germplasms( dead seedling rate < 1%) were selected from the 608 B. napus germplasm materials,which could be used for breeding of waterlogging-tolerant rape and related fundamental research. 展开更多
关键词 Brassica NAPUS IDENTIFICATION of waterlogging tolerance GERMPLASM SCREENING
下载PDF
Preliminary Study on the Waterlogging Tolerance of 116 Corn Materials
12
作者 Shilong ZHANG Haitao JIA +2 位作者 Yinshan GU Zhenghua HE Yiqin HUANG 《Agricultural Biotechnology》 CAS 2020年第6期79-82,共4页
Maize is one of the most important food crops in the world.With the global warming,waterlogging stress has become an important abiotic stress factor that affects crop growth,including maize.Waterlogging seriously affe... Maize is one of the most important food crops in the world.With the global warming,waterlogging stress has become an important abiotic stress factor that affects crop growth,including maize.Waterlogging seriously affects 10%of the arable land and can lead to a 15%-80%reduction in crop yield[1].In this study,115 inbred line materials commonly used in spring maize planting areas in the Jianghan Plain,Hubei,and maize inbred line B73 with complete genome information,were collected and stressed by waterlogging for two weeks in the seven-leaf and one-heart stage,and the survival rate was statistically compared and analyzed,aiming to screen germplasms with strong waterlogging tolerance for the genetic improvement of waterlogging tolerance of Hubei maize lines. 展开更多
关键词 MAIZE waterlogging tolerance Survival rate waterlogging stress Genetic improvement
下载PDF
Hypoxia-Responsive Root Hydraulic Conductivity Influences Soybean Cultivar-Specific Waterlogging Tolerance
13
作者 Yutaka Jitsuyama 《American Journal of Plant Sciences》 2017年第4期770-790,共21页
Excess soil moisture induces hypoxic conditions and causes waterlogging injury in soybean [Glycine max (L.) Merr.]. This study investigated the mechanism underlying the development of waterlogging injury. Nine Japanes... Excess soil moisture induces hypoxic conditions and causes waterlogging injury in soybean [Glycine max (L.) Merr.]. This study investigated the mechanism underlying the development of waterlogging injury. Nine Japanese soybean cultivars with varying degrees of waterlogging tolerance were grown in a hydroponic system for 14 days under hypoxic conditions. Shoot and root biomasses and root hydraulic conductivity were measured at an early vegetative stage for plants under control and hypoxic conditions. Root morphological traits and intramembrane aquaporin proteins were also analyzed. The tolerance of each cultivar to field waterlogging was based on biomass changes induced by the hypoxia treatment. Root hydraulic conductivity responses to hypoxia were associated with changes in total dry weight, leaf dry weight, and leaf area. The effects of hypoxic conditions on root hydraulic conductivity were also represented by the changes in root morphology, such as total root length, thick-root length, and number of root tips. Additionally, a 32.3 kDa aquaporin-like protein seemed to regulate root hydraulic conductivity. Our results from a hydroponic culture suggest that the soybean cultivar-specific responses to hypoxic conditions in the rhizosphere reflect fluctuations in hydraulic conductivity related to root morphological or qualitative changes. 展开更多
关键词 AQUAPORIN HYPOXIA ROOT Hydraulic Conductivity ROOT Morphology SOYBEAN waterlogging tolerance
下载PDF
Enhancing waterlogging tolerance in cotton through agronomic practices
14
作者 ZHANG Yanjun DONG Hezhong 《Journal of Cotton Research》 CAS 2023年第4期306-307,共2页
Recent publications have highlighted significant progress in utilizing agronomic interventions to alleviate waterlogging stress in cotton production.Based on these advancements,we provide a concise comment on the effe... Recent publications have highlighted significant progress in utilizing agronomic interventions to alleviate waterlogging stress in cotton production.Based on these advancements,we provide a concise comment on the effects and underlying mechanisms of various strategies such as utilizing stress-tolerant cotton varieties,applying nitric oxide(NO),and implementing ridge intertillage.Finally,we recommend a combination of measures to enhance cotton’s ability to withstand waterlogging and reduce yield losses. 展开更多
关键词 COTTON waterlogging Agronomic practice
下载PDF
Genetic gains with genomic versus phenotypic selection for drought and waterlogging tolerance in tropical maize(Zea mays L.)
15
作者 Reshmi Rani Das Madhumal Thayil Vinayan +8 位作者 Kaliyamoorthy Seetharam Manish Patel Ramesh Kumar Phagna Shyam Bir Singh Jai Prakash Shahi Akashi Sarma Nagendra Sarma Barua Raman Babu Pervez Haider Zaidi 《The Crop Journal》 SCIE CSCD 2021年第6期1438-1448,共11页
Erratic rainfall often results in intermittent drought and/or waterlogging and limits maize(Zea mays L.)productivity in many parts of the Asian tropics.Developing climate-resilient maize germplasm possessing tolerance... Erratic rainfall often results in intermittent drought and/or waterlogging and limits maize(Zea mays L.)productivity in many parts of the Asian tropics.Developing climate-resilient maize germplasm possessing tolerance to these key abiotic stresses without a yield penalty under optimal growing conditions is a challenge for breeders working in stress-vulnerable agro-ecologies in the region.Breeding stress-resilient maize for rainfed stress-prone ecologies is identified as one of the priority areas for CIMMYT-Asia maize program.We applied rapid cycle genomic selection(RCGS)on two multiparent yellow synthetic populations(MYS-1 and MYS-2)to improve grain yield simultaneously under drought and waterlogging conditions using genomic-estimated breeding values(GEBVs).Also,the populations were simultaneously advanced using recurrent phenotypic selection(PS)by exposing them to managed drought and waterlogging and intermating tolerant plants from the two selection environments.Selection cycles per se(C1,C2,and C3)of the two populations developed using RCGS and PS approach and their test-cross progenies were evaluated separately in multilocation trials under managed drought,waterlogging,and optimal moisture conditions.Significant genetic gains were observed with both GS and PS,except with PS in MYS-2 under drought and with GS in MYS-1 under waterlogging.Realized genetic gains from GS were relatively higher under drought conditions(110 and 135 kg ha^(-1) year^(-1))compared to waterlogging(38 and 113 kg ha^(-1) year^(-1))in both MYS-1 and MYS-2,respectively.However,under waterlogging stress PS showed at par or better than GS as gain per year with PS was 80 and 90 kg ha^(-1),whereas with GS it was 90 and 43 kg ha^(-1) for MYS-1 and MYS-2,respectively.Our findings suggested that careful constitution of a multiparent population by involving trait donors for targeted stresses,along with elite highyielding parents from diverse genetic background,and its improvement using RCGS is an effective breeding approach to build multiple stress tolerance without compromising yield when tested under optimal conditions. 展开更多
关键词 DROUGHT Genomic selection MAIZE Phenotypic selection waterlogging
下载PDF
Waterlogging tolerance and wood properties of transgenic Populus alba×glandulosa expressing Vitreoscilla hemoglobin gene(Vgb)
16
作者 Yiliang Li Weixi Zhang +3 位作者 Wenxu Zhu Bingyu Zhang Qinjun Huang Xiaohua Su 《Journal of Forestry Research》 SCIE CAS CSCD 2021年第2期831-839,共9页
Because overexpression of Vitreoscilla hemoglobin gene(Vgb)gene in plants can enhance tolerance to waterlogging,here Vgb was inserted into Populus alba×glandulosa to investigate its expression and effects on grow... Because overexpression of Vitreoscilla hemoglobin gene(Vgb)gene in plants can enhance tolerance to waterlogging,here Vgb was inserted into Populus alba×glandulosa to investigate its expression and effects on growth and physiological responses to waterlogging stress in the transgenic poplars.Southern blotting and RT-PCR analysis of Vgb-transgenic P.alba×glandulosa showed that the Vgb gene was integrated into the genome of the V13-81 and V13-85 transgenic lines and expressed.In greenhouse waterlogging stress tests,mortality of the transgenic poplar was significant lower than that of nontransgenic plants with increasing treatment time from 2 to 22 days.The transgenic plants had higher chlorophyll content and less chloroplast damage than in the control plants.Additionally,starch accumulation increased,and growth was enhanced in the transgenic plants,suggesting that the Vgb-expressing lines had improved energy reserves.Field trials of the transgenic poplar suggested that Vgb expression promotes growth and influences wood quality.Taken together,our results suggest that the expression of Vgb can increase the accumulation of chlorophyll and starch in the transgenic poplar,improve its ability to endure flooding,and improve growth and wood quality of the transgenic plants. 展开更多
关键词 Populus alba×glandulosa vgb gene waterlogging stress GROWTH MICROSCOPY
下载PDF
Compositional and Hollow Engineering of Silicon Carbide/Carbon Microspheres as High-Performance Microwave Absorbing Materials with Good Environmental Tolerance 被引量:2
17
作者 Lixue Gai Yahui Wang +5 位作者 Pan Wan Shuping Yu Yongzheng Chen Xijiang Han Ping Xu Yunchen Du 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期128-146,共19页
Microwave absorbing materials(MAMs)characterized by high absorption efficiency and good environmental tolerance are highly desirable in practical applications.Both silicon carbide and carbon are considered as stable M... Microwave absorbing materials(MAMs)characterized by high absorption efficiency and good environmental tolerance are highly desirable in practical applications.Both silicon carbide and carbon are considered as stable MAMs under some rigorous conditions,while their composites still fail to produce satisfactory microwave absorption performance regardless of the improvements as compared with the individuals.Herein,we have successfully implemented compositional and structural engineering to fabricate hollow Si C/C microspheres with controllable composition.The simultaneous modulation on dielectric properties and impedance matching can be easily achieved as the change in the composition of these composites.The formation of hollow structure not only favors lightweight feature,but also generates considerable contribution to microwave attenuation capacity.With the synergistic effect of composition and structure,the optimized SiC/C composite exhibits excellent performance,whose the strongest reflection loss intensity and broadest effective absorption reach-60.8 dB and 5.1 GHz,respectively,and its microwave absorption properties are actually superior to those of most SiC/C composites in previous studies.In addition,the stability tests of microwave absorption capacity after exposure to harsh conditions and Radar Cross Section simulation data demonstrate that hollow SiC/C microspheres from compositional and structural optimization have a bright prospect in practical applications. 展开更多
关键词 SiC/C composites Compositional engineering Hollow engineering Microwave absorption Environmental tolerance
下载PDF
Abiotic stress treatment reveals expansin like A gene OfEXLA1 improving salt and drought tolerance of Osmanthus fragrans by responding to abscisic acid 被引量:1
18
作者 Bin Dong Qianqian Wang +7 位作者 Dan Zhou Yiguang Wang Yunfeng Miao Shiwei Zhong Qiu Fang Liyuan Yang Zhen Xiao Hongbo Zhao 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第2期573-585,共13页
Sweet osmanthus(Osmanthus fragrans) is a having general approval aromatic tree in China that is widely applied to landscaping and gardening. However, the evergreen tree adaptability is limited by many environmental st... Sweet osmanthus(Osmanthus fragrans) is a having general approval aromatic tree in China that is widely applied to landscaping and gardening. However, the evergreen tree adaptability is limited by many environmental stresses. Currently, limited information is available regarding the genetic analysis and functional identification of expansin genes in response to abiotic stress in sweet osmanthus. In this study, a total of 29 expansin genes were identified and divided into four groups by genome-wide analysis from the sweet osmanthus genome. Transcriptome and quantitative Real-time PCR analysis showed that the cell wall-localized protein expansin-like A(OfEXLA1) gene was significantly induced by salt and drought treatment. Histochemical GUS staining of transgenic Arabidopsis lines in which GUS activity was driven with the OfEXLA1 promoter, GUS activity was significantly induced by salt, drought, and exogenous abscisic acid(ABA). In yeast, we found OfEXLA1overexpression significantly improved the population of cells compared with wild-type strains after NaCl and polyethylene glycol(PEG)treatment. Additionally, OfEXLA1 overexpression not only promoted plant growth, but also improved the salt and drought tolerance in Arabidopsis. To gain insight into the role of ABA signaling in the regulation of OfEXLA1 improving abiotic tolerance in sweet osmanthus, four differentially expressed ABA Insensitive 5(ABI5)-like genes(OfABL4, OfABL5, OfABL7, and OfABL8) were identified from transcriptome, and dualluciferase(dual-LUC) and yeast one hybrid(Y1H) assay showed that OfABL4 and OfABL5 might bind to OfEXLA1 promoter to accumulate the OfEXLA1 expression by responding to ABA signaling to improve abiotic tolerance in sweet osmanthus. These results provide the information for understanding the molecular functions of expansin-like A gene and molecular breeding of sweet osmanthus in future. 展开更多
关键词 Osmanthus fragrans Abiotic tolerance EXPANSIN Abscisic acid
下载PDF
MIR1868 negatively regulates rice cold tolerance at both the seedling and booting stages 被引量:1
19
作者 Yang Shen Xiaoxi Cai +7 位作者 Yan Wang Wanhong Li Dongpeng Li Hao Wu Weifeng Dong Bowei Jia Mingzhe Sun Xiaoli Sun 《The Crop Journal》 SCIE CSCD 2024年第2期375-383,共9页
Low temperature causes rice yield losses of up to 30%–40%,therefore increasing its cold tolerance is a breeding target.Few genes in rice are reported to confer cold tolerance at both the vegetative and reproductive s... Low temperature causes rice yield losses of up to 30%–40%,therefore increasing its cold tolerance is a breeding target.Few genes in rice are reported to confer cold tolerance at both the vegetative and reproductive stages.This study revealed a rice-specific 24-nt miRNA,miR1868,whose accumulation was suppressed by cold stress.Knockdown of MIR1868 increased seedling survival,pollen fertility,seed setting,and grain yield under cold stress,whereas its overexpression conferred the opposite phenotype.Knockdown of MIR1868 increased reactive oxygen species(ROS)scavenging and soluble sugar content under cold stress by increasing the expression of peroxidase genes and sugar metabolism genes,and its overexpression produced the opposite effect.Thus,MIR1868 negatively regulated rice cold tolerance via ROS scavenging and sugar accumulation. 展开更多
关键词 RICE Cold tolerance MIRNA ROS scavenging Soluble sugar accumulation
下载PDF
PHD17 acts as a target of miR1320 to negatively control cold tolerance via JA-activated signaling in rice 被引量:1
20
作者 Yan Wang Yang Shen +6 位作者 Weifeng Dong Xiaoxi Cai Junkai Yang Yue Chen Bowei Jia Mingzhe Sun Xiaoli Sun 《The Crop Journal》 SCIE CSCD 2024年第5期1447-1458,共12页
Plant Homeo Domain(PHD)proteins are involved in diverse biological processes during plant growth.However,the regulation of PHD genes on rice cold stress response remains largely unknown.Here,we reported that PHD17 neg... Plant Homeo Domain(PHD)proteins are involved in diverse biological processes during plant growth.However,the regulation of PHD genes on rice cold stress response remains largely unknown.Here,we reported that PHD17 negatively regulated cold tolerance in rice seedlings as a cleavage target of miR1320.PHD17 expression was greatly induced by cold stress,and was down-regulated by miR1320 overexpression and up-regulated by miR1320 knockdown.Through 5'RACE and dual luciferase assays,we found that miR1320 targeted and cleaved the 3'UTR region of PHD17.PHD17 was a nuclearlocalized protein and acted as a transcriptional activator in yeast.PHD17 overexpression reduced cold tolerance of rice seedlings,while knockout of PHD17 increased cold tolerance,partially via the CBF cold signaling.By combining transcriptomic and physiological analyses,we demonstrated that PHD17 modulated ROS homeostasis and flavonoid accumulation under cold stress.K-means clustering analysis revealed that differentially expressed genes in PHD17 transgenic lines were significantly enriched in the jasmonic acid(JA)biosynthesis pathway,and expression of JA biosynthesis and signaling genes was verified to be affected by PHD17.Cold stress tests applied with MeJA or IBU(JA synthesis inhibitor)further suggested the involvement of PHD17 in JA-mediated cold signaling.Taken together,our results suggest that PHD17 acts downstream of miR1320 and negatively regulates cold tolerance of rice seedlings through JA-mediated signaling pathway. 展开更多
关键词 RICE Cold tolerance PHD protein miR1320 JA signaling
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部