The waterproof construction of subway tunnels is a crucial and challenging aspect of subway tunnel engineering.Mastering excellent waterproof construction technology is essential to ensure that the construction meets ...The waterproof construction of subway tunnels is a crucial and challenging aspect of subway tunnel engineering.Mastering excellent waterproof construction technology is essential to ensure that the construction meets design requirements and guarantees the safe operation of subway lines.This paper focuses on discussing waterproof construction technology for subway station tunnels.By analyzing the main methods and techniques of underground tunnel construction,as well as the key techniques and difficulties of waterproofing construction,this paper examines the waterproofing construction project of Guangzhou Metro Culture Park Station as a case study.It analyzes the methods,quality management practices,and safety management strategies applied in the project.This paper serves as a reference for tunnel engineering design and construction units in our country,offering insights into effective waterproof construction techniques for subway tunnels.展开更多
Cementitious capillary crystalline waterproof materials(CCCW for short)offer durability and excellent waterproofing properties,making them a popular option for building waterproofing.Some scholars have studied the pro...Cementitious capillary crystalline waterproof materials(CCCW for short)offer durability and excellent waterproofing properties,making them a popular option for building waterproofing.Some scholars have studied the proportioning of such materials.However,these studies lack the relationship between the impermeability pressure of mortar and the components,and the mechanism of action is somewhat debatable.Therefore,we adopted a two-step method in our experiments.Firstly,we screened out the components that significantly impact impermeability from a variety of active components by orthogonal test.We then optimized the design of the active group ratio using the simplex lattice method.Lastly,we conducted a performance test of the optimal ratio and explored the waterproofing mechanism of homemade CCCW.展开更多
Elastic bio-based waterproof and breathable membranes(EBWBMs) allow the passage of water vapor effectively and resist the penetration of liquid water,making it ideal for use under extreme conditions.In this study,we u...Elastic bio-based waterproof and breathable membranes(EBWBMs) allow the passage of water vapor effectively and resist the penetration of liquid water,making it ideal for use under extreme conditions.In this study,we used a facile strategy to design the bio-based polyurethane(PU) nanofibrous membranes with the nanoscale porous structure to provide the membranes with high waterproof and breathable performances.The optimization of nanofibrous membrane formation was accomplished by controlling the relative ambient humidity to modulate the cooperating effects of charge dissipation and non-solvent-induced phase separation.The obtained EBWBMs showed multiple functional properties,with a hydrostatic pressure of 86.41 kPa and a water vapor transmission(WVT) rate of 10.1 kg·m^(-2)·d^(-1).After 1 000 cycles of stretching at 40% strain,the EBWBMs retained over 59% of the original maximum stress and exhibited an ideal elasticity recovery ratio of 85%.Besides,even after 80% deformation,the EBWBMs still maintained a hydrostatic pressure of 30.65 kPa and a WVT rate of 13.6 kg·m^(-2)·d^(-1),suggesting that bio-based PU nanofibrous membranes could be used for protection under extreme conditions.展开更多
As a kind of transportation mode for crossing channels, undersea tunnel has incomparable advantages for its directness, convenience, fastness, insusceptibility to weather conditions, and smaller influences on environm...As a kind of transportation mode for crossing channels, undersea tunnel has incomparable advantages for its directness, convenience, fastness, insusceptibility to weather conditions, and smaller influences on environments. In recent years, with the development of undersea tunnel construction, the design and construction technologies have been greatly enhanced. The first undersea tunnel in China has just been built. Waterproofing is the key technique of undersea tunneling. A new concept of waterproofing scheme of grouting, sealing, draining and divided sections was adopted in the construction of the tunnel based on the researches, the in-situ geological features, the astuteness of the current technology and the cost of construction. The structural details of the sealing and draining system are introduced to illustrate the salient features of the new waterproofing technique. It is hoped that experiences described in the paper can offer guidance for the construction of the extensive undersea tunnels in the coming years.展开更多
Planar and curved microlens arrays(MLAs)are the key components of miniaturized microoptical systems.In order to meet the requirements for advanced and multipurpose applications in microoptical field,a simple manufactu...Planar and curved microlens arrays(MLAs)are the key components of miniaturized microoptical systems.In order to meet the requirements for advanced and multipurpose applications in microoptical field,a simple manufacturing method is urgently required for fabricating MLAs with unique properties,such as waterproofness and variable field-of-view(FOV)imaging.Such properties are beneficial for the production of advanced artificial compound eyes for the significant applications in complex microcavity environments with high humidity,for instance,miniature medical endoscopy.However,the simple and effective fabrication of advanced artificial compound eyes still presents significant challenges.In this paper,bioinspired by the natural superhydrophobic surface of lotus leaf,we propose a novel method for the fabrication of waterproof artificial compound eyes.Electrohydrodynamic jet printing was used to fabricate hierarchical MLAs and nanolens arrays(NLAs)on polydimethylsiloxane film.The flexible film of MLAs hybridized with NLAs exhibited excellent superhydrophobic property with a water contact angle of 158°.The MLAs film was deformed using a microfluidics chip to create artificial compound eyes with variable FOV,which ranged from 0°to 160°.展开更多
The modified petroleum resin emulsion prepared from the C9petroleum resin was modified with maleic anhydride.The effects of maleic rosin and maleic anhydride addition level,the modification time and the alkali liquor ...The modified petroleum resin emulsion prepared from the C9petroleum resin was modified with maleic anhydride.The effects of maleic rosin and maleic anhydride addition level,the modification time and the alkali liquor on the properties of the emulsion were discussed.The results showed that the optimum process conditions covered:a maleic anhydride mass fraction of 1.5%,a maleic rosin mass fraction of 10%,a KOH mass fraction of 1%,a petroleum resin modification temperature of 200℃,a petroleum resin modification duration of 3 h,and a modified petroleum resin emulsion/wax emulsion mixing ratio of 1:1.The particle size of modified petroleum resin emulsion prepared under these conditions was equal to 104.166μm.展开更多
Tunnel seepage is an important factor affecting the progress and safety of tunnel construction. In this paper, the mining method tunnel construction in the water-rich weathered granite stratum is taken as the research...Tunnel seepage is an important factor affecting the progress and safety of tunnel construction. In this paper, the mining method tunnel construction in the water-rich weathered granite stratum is taken as the research object. Through the analytical calculation method, the distribution law of tunnel seepage field under different waterproof and drainage types is studied, and the comparative analysis is carried out. According to the analytical solution, the influencing factors of grouting parameters are proposed. The sensitivity of the tunnel seepage field to the variation of grouting parameters is analyzed. A novel waterproof and drainage system, and construction technology suitable for subway tunnels with large buried depth below groundwater level were proposed.展开更多
Polyurethane dispersions (PUD) have diversified into a myriad of applications over the years. This has led to extensive research on both industrial and laboratory fronts as polyurethane dispersions provide liberty to ...Polyurethane dispersions (PUD) have diversified into a myriad of applications over the years. This has led to extensive research on both industrial and laboratory fronts as polyurethane dispersions provide liberty to interplay at the molecular level to diversify the properties of the product which has also led to the development of eco-friendly waterborne dispersions. Yet, waterborne PUDs are limited in their mechanical and physical properties as compared to solvent-based products. The incorporation of crosslinkers in the PUD further bolsters these properties thus improving water and solvent resistance. The incorporation of silanols increases solvent resistance and adhesion of the resultant PUD. In this work, a post crosslinking system based on the ketone-hydrazine mechanism was incorporated into the PUD thus providing the required structural reinforcement for construction application. The targeted application for this work is the use of PUDs for waterproofing.展开更多
To address the need for producing a cheap,single-component,hot-applied compound joint sealant with high quality for sealing joints and cracks in concrete and flexible pavements without using primer for installation,a ...To address the need for producing a cheap,single-component,hot-applied compound joint sealant with high quality for sealing joints and cracks in concrete and flexible pavements without using primer for installation,a hot-applied modified asphalt sealant was produced by blending up about 30% starch into 20% citric acid.The starch and the asphalt cement were mixed at a temperature of above 160 ℃.Thus the waterproofing asphalt was manufactured to protect the surface of various shapes and types from water leakage using the citric acid.Results indicate that this sealant complies with the requirements of ASTM D-1191,D-6690-06a and D-7116-05.The citric acid is a kind of reliable materials for asphalt cement,which can be widely used in paving and waterproofing construction materials,and this offers profound engineering and economic advantages.展开更多
Polyurethane is enjoying a widespread use as a polymer-based waterproof material in civil engineering In the present study we consider a temperature-sensitive waterproof and moisture-permeable polyurethane material(PT...Polyurethane is enjoying a widespread use as a polymer-based waterproof material in civil engineering In the present study we consider a temperature-sensitive waterproof and moisture-permeable polyurethane material(PTPE-PU)characterized by one or more phase transition temperatures(critical temperatures).Near the critical temperature,the waterproof and moisture permeability of polyurethane undergo abrupt changes.The related stability,thermal performance,water resistance,hydrostatic pressure,and moisture permeability are investigated here considering a PTPE-PU traditionally used in bridge geotechnical engineering.The results show that the moisture permeability of the coated bridge rock and soil undergo sudden variations near the crystallization and melting temperature of the soft segment.The moisture permeability is 3000 g/(m^(2)d).The hydrostatic pressure of the coated bridge rock and soil is 3.5 kPa.展开更多
The waterproof and oil-repellent finishing of the dyed single-sided plain cotton fabric was carried out by two-dip and two-pad process. The influences of baking temperature (°C), baking time (min), concentrati...The waterproof and oil-repellent finishing of the dyed single-sided plain cotton fabric was carried out by two-dip and two-pad process. The influences of baking temperature (°C), baking time (min), concentration of finishing solution (g/L) and percentage of liquid on waterproof effect of fabric were analyzed;the influences of the contact angle and the baking temperature (°C), the baking time (min) and the concentration of the finishing agent (g/L) on the oil repellency of the fabric were investigated. The results showed that the best water-repellent finishing technology for cotton fabric was the concentration of finishing agent 30 g/L, the baking temperature 110°C, the baking time 1.5 min and the liquid-uptake 70%. The best oil-repellent finishing process for cotton fabric is 35 g/L for finishing agent, 150°C for baking temperature, and 1.5 min for baking time and pick up rate of 80%. After cotton fabric is treated with water-repellent and oil-repellent agent, the water-repellent contact angle of the fabric can reach 128°and the oil-repellent grade 6. The best finishing effect is obtained at this time. After the finishing agent acts on the surface of the fibre, the surface properties of the fibre can be changed, and the surface of the fibre can be changed from hydrophilicity to hydrophobicity. The finishing agent has good film-forming property, which makes the surface of cotton fibre smooth and has good waterproof and oil-repellent performance.展开更多
Condensation occurs when the local vapor pressure rises above the saturation vapor pressure at the local temperature in theory. A new measuring apparatus were made to obtain temperature and relative humidity simultane...Condensation occurs when the local vapor pressure rises above the saturation vapor pressure at the local temperature in theory. A new measuring apparatus were made to obtain temperature and relative humidity simultaneously for the purpose of investigating the mechanism of condensation occurred on the fabrics. The experiment conducted at the standard condition of temperature of 20℃ and relative humidity of 65%. The result obtained from experiment showed that condensation could occur under the situation closed to saturation line as the temperature on fabric may be lower than dew point of water vapor in the measuring box depending on the experiment conducted at an ambient environment temperature of 20℃ The range of fabrics studied showed that PTFE laminated fabrics except nylon gingham PTFE laminated fabric facilitates the loss of water vapor and therefore prevent condensation. It is necessary to develop studies from a wide range of fabrics, especially breathable fabrics and under bad experiment condition in order to develop fabrics, which could eliminate condensation, or transport water vapor through the fabric while remaining waterproof.展开更多
With the continuous development and progress of China's social economy,the construction speed of our construction industry is also accelerating.Compared with the traditional cast-in-place reinforced concrete and m...With the continuous development and progress of China's social economy,the construction speed of our construction industry is also accelerating.Compared with the traditional cast-in-place reinforced concrete and masonry building,it has been unable to meet the requirements of the construction industry and the development of the times.Because the prefabricated building has the advantages of fast speed,water saving,land saving,noise reduction,material saving and energy saving in installation.Compared with traditional buildings,the prefabricated building is more energy efficient and practical.Therefore,the new type of precast assembly architecture is constantly highlighted and has become the mainstream of the development of the future construction industry.However,the technology started late in China,and the immature technology and imperfect supporting standards led to slow progress and even stagnation in China's construction industry.Through the analysis of the present situation and problems of the waterproof and sealing of the prefabricated building exterior walls,the suggestions for the healthy development of the construction industry in China are put forward in time.展开更多
China West International Holdings Limited is an Australian listed company.It specialized in in- dustrial investments in construction materials,energy development,infrastructure,etc.At present, China west International...China West International Holdings Limited is an Australian listed company.It specialized in in- dustrial investments in construction materials,energy development,infrastructure,etc.At present, China west International Holdings Limited wholly controls Yuan Construction and sale of common Portland cement,limestone mining,etc.,also controls advanced technology companies.Wholly owns Chongqing Sino-Australia Waterproof Material Co.,Ltd.展开更多
Purpose–This study aims to investigate the service performances of a new full-section asphalt concrete waterproof sealing structure(FSACWSS)for the high-speed railway subgrade through on-site tracking,monitoring and ...Purpose–This study aims to investigate the service performances of a new full-section asphalt concrete waterproof sealing structure(FSACWSS)for the high-speed railway subgrade through on-site tracking,monitoring and post-construction investigation.Design/methodology/approach–Based on the working state of the waterproof sealing structure,the main functional characteristics were analyzed,and a kind of roller-compacted high elastic modulus asphalt concrete(HEMAC)was designed and evaluated by several groups of laboratory tests.It is applied to an engineering test section,and the long-term performance monitoring and subgrade dynamic performance testing system were installed to track and monitor working performances of the test section and the adjacent contrast section with fiber-reinforced concrete.Findings–Results show that both the dynamic performance of the track structure and the subgrade in the test section meet the requirements of the specification limits.The water content in the subgrade of the test section is maintained at 8–18%,which is less affected by the weather.However,the water content in the subgrade bed of the contrast section is 10–35%,which fluctuates significantly with the weather.The heat absorption effect of asphalt concrete in the test section makes the temperature of the subgrade at the shoulder larger than that in the contrastive section.The monitoring value of the subgrade vertical deformation in the test section is slightly larger than that in the contrastive section,but all of them meet the limit requirements.The asphalt concrete in the test section is in good contact with the base,and there are no diseases such as looseness or spalling.Only a number of cracks are found at the joints of the base plates.However,there are more longitudinal and lateral cracks in the contrastive section,which seriously affects the waterproof and sealing effects.Besides,the asphalt concrete is easier to repair,featuring good maintainability.Originality/value–This research can provide a basis for popularization and application of the asphalt concrete waterproof sealing structure in high-speed railways.展开更多
A novel waterproof electronic sphygmomanometer is presented in this paper, the special design of sealing structure is used in this sphygmomanometer that allows the system to function normally in water. The system also...A novel waterproof electronic sphygmomanometer is presented in this paper, the special design of sealing structure is used in this sphygmomanometer that allows the system to function normally in water. The system also adopts the rigid air cylinder as air source to ensure accurate detection and chooses the MP3VS050 piezoresistive transducer to ensure the measurement precision of the systolic and diastolic pressure. TI's MSP430FC,437 is used as the central processor so that the system can be of advantages of low-power, fast digital processing and high-reliability. The sphygmomanometer was validated by three groups of participants. The experimental data indicates that the measured values of this waterproof electronic sphygmomanometer are consistent with the results of common electric sphygmomanometer, the measure error is less than 5 mmHg, and the system is stable and credible. So the waterproof electronic sphygmomanometer can realize real-time monitoring of blood pressure and heart rate in the water and other special environment.展开更多
Double-bonded spray membrane waterproofing materials have excellent waterproofing performance and can improve the load-bearing capacity of tunnel linings,leading to an increasing global application.However,due to the ...Double-bonded spray membrane waterproofing materials have excellent waterproofing performance and can improve the load-bearing capacity of tunnel linings,leading to an increasing global application.However,due to the double-bonded capability of spray membrane materials,traditional interlayer drainage methods cannot be applied.This limitation makes it difficult to use them in drainage-type tunnels,significantly restricting their range of applications.In this regard,a novel tunnel waterproof-drainage system based on double-bonded spray membrane materials was proposed in this paper.The proposed drainage system primarily comprises upper drainage sheets and bottom drainage blind pipes,both located in the tunnel circumferential direction,as well as longitudinal drainage pipes within the tunnel.Subsequently,numerical calculation methods are employed to analyze the seepage characteristics of this system,revealing the water pressure distribution around the tunnel.The results indicate that in the novel waterproof-drainage system,the water pressure in the secondary lining exhibits a“mushroom-shaped”distribution in the circumferential direction,while the water pressure in the longitudinal direction exhibits a“wave-like”distribution.Furthermore,comparative results with other waterproof-drainage systems indicate that under typical working conditions with a water head of 160 m and a rock permeability coefficient of 10^(−6)m/s,the maximum water pressure in the secondary lining of the novel waterproof-drainage system is 0.6 MPa.This represents a significant reduction compared to fully encapsulated waterproofing and traditional drainage systems,which respectively reduce the water pressure by 65%and 30%.The applicability analysis of the double-bonded waterproofing and drainage system reveals that it can reduce at least 40%of the static water pressure in any groundwater environments.The novel drainage system provides a valuable reference for the application of double-bonded spray membrane waterproofing materials in drainage-type tunnels.展开更多
Thermoelectric sensors have attracted increasing attention in smart wearables due to the recognition of multiple signals in self-powered mode.However,present thermoelectric devices show disadvantages of low durability...Thermoelectric sensors have attracted increasing attention in smart wearables due to the recognition of multiple signals in self-powered mode.However,present thermoelectric devices show disadvantages of low durability,weak wearability,and complex preparation processes and are susceptible to moisture in the microenvironment of the human body,which hinders their further application in wearable electronics.Herein,we prepared a new thermoelectric fabric with thermoplastic polyurethane/carbon nanotubes(TPU/CNTs)by combining vacuum filtration and electrospraying techniques.Electrospraying TPU microsphere coating with good biocompatibility and environmental friendliness made the fabric worn directly and exhibits preferred water resistance,mechanical durability,and stability even after being bent 4000 times,stretched 1000 times,and washed 1000 times.Moreover,this fabric showed a Seebeck coefficient of 49μVK−1 and strain range of 250%and could collect signals well and avoided interference from moisture.Based on the biocompatibility and safety of the fabric,it can be fabricated into devices and mounted on the human face and elbow for long-term and continuous collection of data on the body’s motion and breathing simultaneously to provide collaborative support information.This thermoelectric fabric-based sensor will show great potential in advanced smart wearables for health monitoring,motion detection,and human–computer interaction.展开更多
Groundwater leakage in shield tunnels poses a threat to the safety and durability of tunnel structures. Disturbance of adjacent constructions during the operation of shield tunnels frequently occurs in China, leading ...Groundwater leakage in shield tunnels poses a threat to the safety and durability of tunnel structures. Disturbance of adjacent constructions during the operation of shield tunnels frequently occurs in China, leading to deformation of tunnel lining and leakage in joints. Understanding the impact of adjacent constructions on the waterproofing performance of the lining is critical for the protection of shield tunnels. In this study, the weakening behavior of waterproof performance was investigated in the joints of shield tunnels under transverse deformation induced by adjacent construction. First, the relationship between the joint opening and transverse deformation under three typical adjacent constructions (upper loading, upper excavation, and side excavation) was investigated via elaborate numerical simulations. Subsequently, the evolution of the waterproof performance of a common gasket with a joint opening was examined by establishing a coupled Eulerian-Lagrangian model of joint seepage, and a formula describing the relationship between waterproof performance and joint opening was proposed. Finally, the weakening law of waterproofing performance was investigated based on the results of the aforementioned studies. It was determined that the joints with the greatest decline in waterproof performance were located at the tunnel shoulder in the upper loading case, tunnel crown in the upper excavation case, and tunnel shoulder in the side excavation case. When the waterproof performance of these joints decreased to 50% and 30%, the transverse deformations were 60 and 90 mm under upper loading, 90 and 140 mm under upper excavation, and 45 and 70 mm under side excavation, respectively. The results provide a straightforward reference for setting a controlled deformation standard considering the waterproof performance.展开更多
Recently,waterproof lighting and luminescent displays have been achieved in perovskite–polymer composite materials.However,practical large-area display applications are still limited to the strong electrostatic adhes...Recently,waterproof lighting and luminescent displays have been achieved in perovskite–polymer composite materials.However,practical large-area display applications are still limited to the strong electrostatic adhesion(EA)and high productivity.To overcome these deficiencies,large-area(~600 cm2)homogeneous perovskite–polymer fiber membranes(PPFMs)are synthesized by an electrospinning strategy in this work.Due to the microscopic cladding of the hydrophobic polymer fibers,the electrospun PPFMs exhibit ultrastable underwater luminescence for more than 90 days,and strong EA to diverse materials without pretreatments or additional adhesives.Moreover,by utilizing a proposed programmable laser lithography strategy,designed PPFM patterns are fabricated as the assembly blocks of large-area colorful or tridimensional displays.Interestingly,due to laser thermal ablation effects,the disengaged edges of these blocks are self-stitched with high mechanical stability and operability.This work provides a simple and effective strategy to realize waterproof,self-adhesive,and large-area display applications of perovskite nanomaterials in real world settings.展开更多
文摘The waterproof construction of subway tunnels is a crucial and challenging aspect of subway tunnel engineering.Mastering excellent waterproof construction technology is essential to ensure that the construction meets design requirements and guarantees the safe operation of subway lines.This paper focuses on discussing waterproof construction technology for subway station tunnels.By analyzing the main methods and techniques of underground tunnel construction,as well as the key techniques and difficulties of waterproofing construction,this paper examines the waterproofing construction project of Guangzhou Metro Culture Park Station as a case study.It analyzes the methods,quality management practices,and safety management strategies applied in the project.This paper serves as a reference for tunnel engineering design and construction units in our country,offering insights into effective waterproof construction techniques for subway tunnels.
文摘Cementitious capillary crystalline waterproof materials(CCCW for short)offer durability and excellent waterproofing properties,making them a popular option for building waterproofing.Some scholars have studied the proportioning of such materials.However,these studies lack the relationship between the impermeability pressure of mortar and the components,and the mechanism of action is somewhat debatable.Therefore,we adopted a two-step method in our experiments.Firstly,we screened out the components that significantly impact impermeability from a variety of active components by orthogonal test.We then optimized the design of the active group ratio using the simplex lattice method.Lastly,we conducted a performance test of the optimal ratio and explored the waterproofing mechanism of homemade CCCW.
基金National Key R&D Program of China(No.2021YFE0105100)Fok Ying-Tung Education Foundation,China(No.171065)Shanghai Rising-Star Program,China(No.20QA1400500)。
文摘Elastic bio-based waterproof and breathable membranes(EBWBMs) allow the passage of water vapor effectively and resist the penetration of liquid water,making it ideal for use under extreme conditions.In this study,we used a facile strategy to design the bio-based polyurethane(PU) nanofibrous membranes with the nanoscale porous structure to provide the membranes with high waterproof and breathable performances.The optimization of nanofibrous membrane formation was accomplished by controlling the relative ambient humidity to modulate the cooperating effects of charge dissipation and non-solvent-induced phase separation.The obtained EBWBMs showed multiple functional properties,with a hydrostatic pressure of 86.41 kPa and a water vapor transmission(WVT) rate of 10.1 kg·m^(-2)·d^(-1).After 1 000 cycles of stretching at 40% strain,the EBWBMs retained over 59% of the original maximum stress and exhibited an ideal elasticity recovery ratio of 85%.Besides,even after 80% deformation,the EBWBMs still maintained a hydrostatic pressure of 30.65 kPa and a WVT rate of 13.6 kg·m^(-2)·d^(-1),suggesting that bio-based PU nanofibrous membranes could be used for protection under extreme conditions.
基金supported by the National Basic Research Program of China (973 Program,Grant No. 2010CB732104)the Fundamental Research Funds for the Central Universities (Grant No. 2011JBM133)
文摘As a kind of transportation mode for crossing channels, undersea tunnel has incomparable advantages for its directness, convenience, fastness, insusceptibility to weather conditions, and smaller influences on environments. In recent years, with the development of undersea tunnel construction, the design and construction technologies have been greatly enhanced. The first undersea tunnel in China has just been built. Waterproofing is the key technique of undersea tunneling. A new concept of waterproofing scheme of grouting, sealing, draining and divided sections was adopted in the construction of the tunnel based on the researches, the in-situ geological features, the astuteness of the current technology and the cost of construction. The structural details of the sealing and draining system are introduced to illustrate the salient features of the new waterproofing technique. It is hoped that experiences described in the paper can offer guidance for the construction of the extensive undersea tunnels in the coming years.
基金The authors wish to acknowledge the funding provided by the National Natural Science Foundation of China(Grant Nos.61727811,61703395,91748212,U1613220,and 61821005)the Scientific Instrument Developing Project of the Chinese Academy of Sciences(Grant No.YJKYYQ20180027)+2 种基金the External Cooperation Program of the Chinese Academy of Sciences(Grant No.173321KYSB20170015)Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.Y201943)LiaoNing Revitalization Talents Program(Grant No.XLYC1807006).
文摘Planar and curved microlens arrays(MLAs)are the key components of miniaturized microoptical systems.In order to meet the requirements for advanced and multipurpose applications in microoptical field,a simple manufacturing method is urgently required for fabricating MLAs with unique properties,such as waterproofness and variable field-of-view(FOV)imaging.Such properties are beneficial for the production of advanced artificial compound eyes for the significant applications in complex microcavity environments with high humidity,for instance,miniature medical endoscopy.However,the simple and effective fabrication of advanced artificial compound eyes still presents significant challenges.In this paper,bioinspired by the natural superhydrophobic surface of lotus leaf,we propose a novel method for the fabrication of waterproof artificial compound eyes.Electrohydrodynamic jet printing was used to fabricate hierarchical MLAs and nanolens arrays(NLAs)on polydimethylsiloxane film.The flexible film of MLAs hybridized with NLAs exhibited excellent superhydrophobic property with a water contact angle of 158°.The MLAs film was deformed using a microfluidics chip to create artificial compound eyes with variable FOV,which ranged from 0°to 160°.
文摘The modified petroleum resin emulsion prepared from the C9petroleum resin was modified with maleic anhydride.The effects of maleic rosin and maleic anhydride addition level,the modification time and the alkali liquor on the properties of the emulsion were discussed.The results showed that the optimum process conditions covered:a maleic anhydride mass fraction of 1.5%,a maleic rosin mass fraction of 10%,a KOH mass fraction of 1%,a petroleum resin modification temperature of 200℃,a petroleum resin modification duration of 3 h,and a modified petroleum resin emulsion/wax emulsion mixing ratio of 1:1.The particle size of modified petroleum resin emulsion prepared under these conditions was equal to 104.166μm.
文摘Tunnel seepage is an important factor affecting the progress and safety of tunnel construction. In this paper, the mining method tunnel construction in the water-rich weathered granite stratum is taken as the research object. Through the analytical calculation method, the distribution law of tunnel seepage field under different waterproof and drainage types is studied, and the comparative analysis is carried out. According to the analytical solution, the influencing factors of grouting parameters are proposed. The sensitivity of the tunnel seepage field to the variation of grouting parameters is analyzed. A novel waterproof and drainage system, and construction technology suitable for subway tunnels with large buried depth below groundwater level were proposed.
文摘Polyurethane dispersions (PUD) have diversified into a myriad of applications over the years. This has led to extensive research on both industrial and laboratory fronts as polyurethane dispersions provide liberty to interplay at the molecular level to diversify the properties of the product which has also led to the development of eco-friendly waterborne dispersions. Yet, waterborne PUDs are limited in their mechanical and physical properties as compared to solvent-based products. The incorporation of crosslinkers in the PUD further bolsters these properties thus improving water and solvent resistance. The incorporation of silanols increases solvent resistance and adhesion of the resultant PUD. In this work, a post crosslinking system based on the ketone-hydrazine mechanism was incorporated into the PUD thus providing the required structural reinforcement for construction application. The targeted application for this work is the use of PUDs for waterproofing.
文摘To address the need for producing a cheap,single-component,hot-applied compound joint sealant with high quality for sealing joints and cracks in concrete and flexible pavements without using primer for installation,a hot-applied modified asphalt sealant was produced by blending up about 30% starch into 20% citric acid.The starch and the asphalt cement were mixed at a temperature of above 160 ℃.Thus the waterproofing asphalt was manufactured to protect the surface of various shapes and types from water leakage using the citric acid.Results indicate that this sealant complies with the requirements of ASTM D-1191,D-6690-06a and D-7116-05.The citric acid is a kind of reliable materials for asphalt cement,which can be widely used in paving and waterproofing construction materials,and this offers profound engineering and economic advantages.
基金Indoor hydrothermal experimental study on seepage drainage geogrid clay subgrade under temperature change(No.SQ21008).
文摘Polyurethane is enjoying a widespread use as a polymer-based waterproof material in civil engineering In the present study we consider a temperature-sensitive waterproof and moisture-permeable polyurethane material(PTPE-PU)characterized by one or more phase transition temperatures(critical temperatures).Near the critical temperature,the waterproof and moisture permeability of polyurethane undergo abrupt changes.The related stability,thermal performance,water resistance,hydrostatic pressure,and moisture permeability are investigated here considering a PTPE-PU traditionally used in bridge geotechnical engineering.The results show that the moisture permeability of the coated bridge rock and soil undergo sudden variations near the crystallization and melting temperature of the soft segment.The moisture permeability is 3000 g/(m^(2)d).The hydrostatic pressure of the coated bridge rock and soil is 3.5 kPa.
文摘The waterproof and oil-repellent finishing of the dyed single-sided plain cotton fabric was carried out by two-dip and two-pad process. The influences of baking temperature (°C), baking time (min), concentration of finishing solution (g/L) and percentage of liquid on waterproof effect of fabric were analyzed;the influences of the contact angle and the baking temperature (°C), the baking time (min) and the concentration of the finishing agent (g/L) on the oil repellency of the fabric were investigated. The results showed that the best water-repellent finishing technology for cotton fabric was the concentration of finishing agent 30 g/L, the baking temperature 110°C, the baking time 1.5 min and the liquid-uptake 70%. The best oil-repellent finishing process for cotton fabric is 35 g/L for finishing agent, 150°C for baking temperature, and 1.5 min for baking time and pick up rate of 80%. After cotton fabric is treated with water-repellent and oil-repellent agent, the water-repellent contact angle of the fabric can reach 128°and the oil-repellent grade 6. The best finishing effect is obtained at this time. After the finishing agent acts on the surface of the fibre, the surface properties of the fibre can be changed, and the surface of the fibre can be changed from hydrophilicity to hydrophobicity. The finishing agent has good film-forming property, which makes the surface of cotton fibre smooth and has good waterproof and oil-repellent performance.
文摘Condensation occurs when the local vapor pressure rises above the saturation vapor pressure at the local temperature in theory. A new measuring apparatus were made to obtain temperature and relative humidity simultaneously for the purpose of investigating the mechanism of condensation occurred on the fabrics. The experiment conducted at the standard condition of temperature of 20℃ and relative humidity of 65%. The result obtained from experiment showed that condensation could occur under the situation closed to saturation line as the temperature on fabric may be lower than dew point of water vapor in the measuring box depending on the experiment conducted at an ambient environment temperature of 20℃ The range of fabrics studied showed that PTFE laminated fabrics except nylon gingham PTFE laminated fabric facilitates the loss of water vapor and therefore prevent condensation. It is necessary to develop studies from a wide range of fabrics, especially breathable fabrics and under bad experiment condition in order to develop fabrics, which could eliminate condensation, or transport water vapor through the fabric while remaining waterproof.
文摘With the continuous development and progress of China's social economy,the construction speed of our construction industry is also accelerating.Compared with the traditional cast-in-place reinforced concrete and masonry building,it has been unable to meet the requirements of the construction industry and the development of the times.Because the prefabricated building has the advantages of fast speed,water saving,land saving,noise reduction,material saving and energy saving in installation.Compared with traditional buildings,the prefabricated building is more energy efficient and practical.Therefore,the new type of precast assembly architecture is constantly highlighted and has become the mainstream of the development of the future construction industry.However,the technology started late in China,and the immature technology and imperfect supporting standards led to slow progress and even stagnation in China's construction industry.Through the analysis of the present situation and problems of the waterproof and sealing of the prefabricated building exterior walls,the suggestions for the healthy development of the construction industry in China are put forward in time.
文摘China West International Holdings Limited is an Australian listed company.It specialized in in- dustrial investments in construction materials,energy development,infrastructure,etc.At present, China west International Holdings Limited wholly controls Yuan Construction and sale of common Portland cement,limestone mining,etc.,also controls advanced technology companies.Wholly owns Chongqing Sino-Australia Waterproof Material Co.,Ltd.
基金funded by the National Natural Science Foundation of China[51778136 and 41972299].
文摘Purpose–This study aims to investigate the service performances of a new full-section asphalt concrete waterproof sealing structure(FSACWSS)for the high-speed railway subgrade through on-site tracking,monitoring and post-construction investigation.Design/methodology/approach–Based on the working state of the waterproof sealing structure,the main functional characteristics were analyzed,and a kind of roller-compacted high elastic modulus asphalt concrete(HEMAC)was designed and evaluated by several groups of laboratory tests.It is applied to an engineering test section,and the long-term performance monitoring and subgrade dynamic performance testing system were installed to track and monitor working performances of the test section and the adjacent contrast section with fiber-reinforced concrete.Findings–Results show that both the dynamic performance of the track structure and the subgrade in the test section meet the requirements of the specification limits.The water content in the subgrade of the test section is maintained at 8–18%,which is less affected by the weather.However,the water content in the subgrade bed of the contrast section is 10–35%,which fluctuates significantly with the weather.The heat absorption effect of asphalt concrete in the test section makes the temperature of the subgrade at the shoulder larger than that in the contrastive section.The monitoring value of the subgrade vertical deformation in the test section is slightly larger than that in the contrastive section,but all of them meet the limit requirements.The asphalt concrete in the test section is in good contact with the base,and there are no diseases such as looseness or spalling.Only a number of cracks are found at the joints of the base plates.However,there are more longitudinal and lateral cracks in the contrastive section,which seriously affects the waterproof and sealing effects.Besides,the asphalt concrete is easier to repair,featuring good maintainability.Originality/value–This research can provide a basis for popularization and application of the asphalt concrete waterproof sealing structure in high-speed railways.
文摘A novel waterproof electronic sphygmomanometer is presented in this paper, the special design of sealing structure is used in this sphygmomanometer that allows the system to function normally in water. The system also adopts the rigid air cylinder as air source to ensure accurate detection and chooses the MP3VS050 piezoresistive transducer to ensure the measurement precision of the systolic and diastolic pressure. TI's MSP430FC,437 is used as the central processor so that the system can be of advantages of low-power, fast digital processing and high-reliability. The sphygmomanometer was validated by three groups of participants. The experimental data indicates that the measured values of this waterproof electronic sphygmomanometer are consistent with the results of common electric sphygmomanometer, the measure error is less than 5 mmHg, and the system is stable and credible. So the waterproof electronic sphygmomanometer can realize real-time monitoring of blood pressure and heart rate in the water and other special environment.
基金supported by the Fundamental Research Funds for the Central Universities of Central South University(No.2023ZZTS0183)the Fundamental Research Funds for the Central Universities(No.502802002).
文摘Double-bonded spray membrane waterproofing materials have excellent waterproofing performance and can improve the load-bearing capacity of tunnel linings,leading to an increasing global application.However,due to the double-bonded capability of spray membrane materials,traditional interlayer drainage methods cannot be applied.This limitation makes it difficult to use them in drainage-type tunnels,significantly restricting their range of applications.In this regard,a novel tunnel waterproof-drainage system based on double-bonded spray membrane materials was proposed in this paper.The proposed drainage system primarily comprises upper drainage sheets and bottom drainage blind pipes,both located in the tunnel circumferential direction,as well as longitudinal drainage pipes within the tunnel.Subsequently,numerical calculation methods are employed to analyze the seepage characteristics of this system,revealing the water pressure distribution around the tunnel.The results indicate that in the novel waterproof-drainage system,the water pressure in the secondary lining exhibits a“mushroom-shaped”distribution in the circumferential direction,while the water pressure in the longitudinal direction exhibits a“wave-like”distribution.Furthermore,comparative results with other waterproof-drainage systems indicate that under typical working conditions with a water head of 160 m and a rock permeability coefficient of 10^(−6)m/s,the maximum water pressure in the secondary lining of the novel waterproof-drainage system is 0.6 MPa.This represents a significant reduction compared to fully encapsulated waterproofing and traditional drainage systems,which respectively reduce the water pressure by 65%and 30%.The applicability analysis of the double-bonded waterproofing and drainage system reveals that it can reduce at least 40%of the static water pressure in any groundwater environments.The novel drainage system provides a valuable reference for the application of double-bonded spray membrane waterproofing materials in drainage-type tunnels.
基金National Natural Science Foundation of China,Grant/Award Numbers:51973027,52003044Fundamental Research Funds for the Central Universities,Grant/Award Numbers:2232023A-05,2232020A-08+5 种基金International Cooperation Fund of Science and Technology Commission of Shanghai Municipality,Grant/Award Number:21130750100Major Scientific and Technological Innovation Projects of Shandong Province,Grant/Award Number:2021CXGC011004Chang Jiang Scholars Program and the Innovation Program of Shanghai Municipal Education Commission,Grant/Award Number:2019-01-07-00-03-E00023State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,Grant/Award Number:KF2216DHU Distinguished Young Professor ProgramCentral Universities and Graduate Student Innovation Fund of Donghua University,Grant/Award Number:CUSF-DH-D-2022040。
文摘Thermoelectric sensors have attracted increasing attention in smart wearables due to the recognition of multiple signals in self-powered mode.However,present thermoelectric devices show disadvantages of low durability,weak wearability,and complex preparation processes and are susceptible to moisture in the microenvironment of the human body,which hinders their further application in wearable electronics.Herein,we prepared a new thermoelectric fabric with thermoplastic polyurethane/carbon nanotubes(TPU/CNTs)by combining vacuum filtration and electrospraying techniques.Electrospraying TPU microsphere coating with good biocompatibility and environmental friendliness made the fabric worn directly and exhibits preferred water resistance,mechanical durability,and stability even after being bent 4000 times,stretched 1000 times,and washed 1000 times.Moreover,this fabric showed a Seebeck coefficient of 49μVK−1 and strain range of 250%and could collect signals well and avoided interference from moisture.Based on the biocompatibility and safety of the fabric,it can be fabricated into devices and mounted on the human face and elbow for long-term and continuous collection of data on the body’s motion and breathing simultaneously to provide collaborative support information.This thermoelectric fabric-based sensor will show great potential in advanced smart wearables for health monitoring,motion detection,and human–computer interaction.
基金The present study was conducted with the support of the Youth Science and Technology Innovation Talent Project of Hunan Province(No.2021RC3043)National Natural Science Foundation of China(Grant Nos.52090082,51878267,52122807,and 51938005)the High-level Talent of Innovative Research Team of Hunan Province,China(No.2019RS1030).We gratefully acknowledge their financial support.
文摘Groundwater leakage in shield tunnels poses a threat to the safety and durability of tunnel structures. Disturbance of adjacent constructions during the operation of shield tunnels frequently occurs in China, leading to deformation of tunnel lining and leakage in joints. Understanding the impact of adjacent constructions on the waterproofing performance of the lining is critical for the protection of shield tunnels. In this study, the weakening behavior of waterproof performance was investigated in the joints of shield tunnels under transverse deformation induced by adjacent construction. First, the relationship between the joint opening and transverse deformation under three typical adjacent constructions (upper loading, upper excavation, and side excavation) was investigated via elaborate numerical simulations. Subsequently, the evolution of the waterproof performance of a common gasket with a joint opening was examined by establishing a coupled Eulerian-Lagrangian model of joint seepage, and a formula describing the relationship between waterproof performance and joint opening was proposed. Finally, the weakening law of waterproofing performance was investigated based on the results of the aforementioned studies. It was determined that the joints with the greatest decline in waterproof performance were located at the tunnel shoulder in the upper loading case, tunnel crown in the upper excavation case, and tunnel shoulder in the side excavation case. When the waterproof performance of these joints decreased to 50% and 30%, the transverse deformations were 60 and 90 mm under upper loading, 90 and 140 mm under upper excavation, and 45 and 70 mm under side excavation, respectively. The results provide a straightforward reference for setting a controlled deformation standard considering the waterproof performance.
基金supported by the Key Project of the National Key R&D program of China(Grant No.2022YFA1404500)the National Natural Science Foundation of China(NSFC)(Grant Nos.62005183 and 12074267)+2 种基金the Science and Technology Planning Project of Guangdong Province(2020B010190001)the Guangdong Natural Science Funds Grant(2021A1515012069)The authors would like to acknowledge the assistance with SEM and HRTEM observations received from the Electron Microscope Center of Shenzhen University.
文摘Recently,waterproof lighting and luminescent displays have been achieved in perovskite–polymer composite materials.However,practical large-area display applications are still limited to the strong electrostatic adhesion(EA)and high productivity.To overcome these deficiencies,large-area(~600 cm2)homogeneous perovskite–polymer fiber membranes(PPFMs)are synthesized by an electrospinning strategy in this work.Due to the microscopic cladding of the hydrophobic polymer fibers,the electrospun PPFMs exhibit ultrastable underwater luminescence for more than 90 days,and strong EA to diverse materials without pretreatments or additional adhesives.Moreover,by utilizing a proposed programmable laser lithography strategy,designed PPFM patterns are fabricated as the assembly blocks of large-area colorful or tridimensional displays.Interestingly,due to laser thermal ablation effects,the disengaged edges of these blocks are self-stitched with high mechanical stability and operability.This work provides a simple and effective strategy to realize waterproof,self-adhesive,and large-area display applications of perovskite nanomaterials in real world settings.