This paper presents a simulation model based on the finite element method. The method is used to analyze the motion response and mooring line tension of the flatfish cage system in waves. The cage system consists of t...This paper presents a simulation model based on the finite element method. The method is used to analyze the motion response and mooring line tension of the flatfish cage system in waves. The cage system consists of top frames, netting, mooring lines, bottom frames, and floats. A series of scaled physical model tests in regular waves are conducted to verify the numerical model. The comparison results show that the simulated and the experimental results agree well under the wave conditions, and the maximum pitch of the bottom frame with two orientations is about 12o. The motion process of the whole cage system in the wave can be described with the computer visualized technology. Then, the mooring line tensions and the motion of the bottom frame with three kinds of weight are calculated under different wave conditions. According to the numerical results, the differences in mooring line tensions of flatfish cages with three weight modes are indistinct. The maximum pitch of the bottom frame decreases with the increase of the bottom weight.展开更多
We used acoustic tests on a quarter-sawn poplar timbers to study the effects of wood anisotropy and cavity defects on acoustic wave velocity and travel path, and we investigated acoustic wave propagation behavior in w...We used acoustic tests on a quarter-sawn poplar timbers to study the effects of wood anisotropy and cavity defects on acoustic wave velocity and travel path, and we investigated acoustic wave propagation behavior in wood. The timber specimens were first tested in unmodified condition and then tested after introduction of cavity defects of varying sizes to quantify the transmitting time of acoustic waves in laboratory conditions. Two-dimensional acoustic wave contour maps on the radial section of specimens were then simulated and analyzed based on the experimental data. We tested the relationship between wood grain and acoustic wave velocity as waves passed in various directions through wood. Wood anisotropy has significant effects on both velocity and travel path of acoustic waves, and the velocity of waves passing longitudinally through timbers exceeded the radial velocity. Moreover, cavity defects altered acoustic wave time contours on radial sections of timbers. Acous-tic wave transits from an excitation point to the region behind a cavity in defective wood more slowly than in intact wood.展开更多
In this paper, studied are the dynamics of a moored buoy near the surface subjected to wave excitation. According to the physical structure, submersible buoy moored by tethered line is modeled firstly. Then from the d...In this paper, studied are the dynamics of a moored buoy near the surface subjected to wave excitation. According to the physical structure, submersible buoy moored by tethered line is modeled firstly. Then from the differential equations, the natural frequencies are estimated by neglecting the coupling between tangential and normal direction. By use of numerical integration method, solutions are obtained. On this basis, strange attractors and bifurcation phenomena are obtained by applying Poineare map, phase plots and bifurcation diagram, showing the existence of the chaotic response in this system when wave steepness is high enough.展开更多
We study dynamical behaviors of traveling wave solutions to a Fujimoto-Watanabe equation using the method of dynamical systems. We obtain all possible bifurcations of phase portraits of the system in different regions...We study dynamical behaviors of traveling wave solutions to a Fujimoto-Watanabe equation using the method of dynamical systems. We obtain all possible bifurcations of phase portraits of the system in different regions of the threedimensional parameter space. Then we show the required conditions to guarantee the existence of traveling wave solutions including solitary wave solutions, periodic wave solutions, kink-like(antikink-like) wave solutions, and compactons. Moreover, we present exact expressions and simulations of these traveling wave solutions. The dynamical behaviors of these new traveling wave solutions will greatly enrich the previews results and further help us understand the physical structures and analyze the propagation of nonlinear waves.展开更多
Lower hybrid heating (LHH) has been successfully carried out in the HT-6M toka-mak. The H-mode has been obtained with a power threshold of 50 kW under a boronized wall condition. Both energy and particle confinements ...Lower hybrid heating (LHH) has been successfully carried out in the HT-6M toka-mak. The H-mode has been obtained with a power threshold of 50 kW under a boronized wall condition. Both energy and particle confinements have been improved along with a dropped edge plasma density and an increase electron temperature during the LHH phase. A negative Er well plays a key role of triggering and sustaining the good confinement. Both electrostatic fluctuation of the plasma potential and the density fluctuations dropped to an ultra-low level. The observation of an enhanced Er shear before the reduction in turbulence level is consistent with an increased Er shear as the cause of turbulence suppression.展开更多
This paper is concerned with the dynamic behaviors of wave propagation in layered periodic composites consisting of piezoelectric and piezomagnetic phases. The dispersion relations of Lamb waves axe derived. Dispersio...This paper is concerned with the dynamic behaviors of wave propagation in layered periodic composites consisting of piezoelectric and piezomagnetic phases. The dispersion relations of Lamb waves axe derived. Dispersion curves and displacement fields are calculated with different piezoelectric volume fractions. Numerical results for BaTiO3/CoFe2O4 composites show that the dispersion curves resemble the symmetric Lamb waves in a plate. Exchange between the longitudinal (i.e. thickness) mode and coupled mode takes place at the crossover point between dispersion curves of the first two branches. With the increase of BaTiO3 volume fraction, the crossover point appears at a lower wave number and wave velocity is higher. These findings are useful for magnetoelectric transducer applications.展开更多
This paper investigates the following model equation:where A>0 and p'(v)<0.It proves that the equation admits a unique global discontinuous solution on in a class of piecewise continuous and piecewise smooth...This paper investigates the following model equation:where A>0 and p'(v)<0.It proves that the equation admits a unique global discontinuous solution on in a class of piecewise continuous and piecewise smooth drictiom with a backward rarefaction wave and a forward shock wave under certain conditions.展开更多
The global fast dynamics for the generalized symmetric regularized long wave equation with damping term is considered. The squeezing property of the nonlinear semi_group associated with this equation and the existence...The global fast dynamics for the generalized symmetric regularized long wave equation with damping term is considered. The squeezing property of the nonlinear semi_group associated with this equation and the existence of exponential attractor are proved. The upper bounds of its fractal dimension are also estimated.展开更多
In this article, we study the 1-dimensional bipolar quantum hydrodynamic model for semiconductors in the form of Euler-Poisson equations, which contains dispersive terms with third order derivations. We deal with this...In this article, we study the 1-dimensional bipolar quantum hydrodynamic model for semiconductors in the form of Euler-Poisson equations, which contains dispersive terms with third order derivations. We deal with this kind of model in one dimensional case for general perturbations by constructing some correction functions to delete the gaps between the original solutions and the diffusion waves in L2-space, and by using a key inequality we prove the stability of diffusion waves. As the same time, the convergence rates are also obtained.展开更多
The electroanalytical method of ferriheme was studied by linear sweep voltammetry in medium of 0.05 mol/L Tris+0.05 mol/L NH3?NH4Cl buffer at hang mercury drop electrodes (HMDE). Heme exhibits two pair reversible redo...The electroanalytical method of ferriheme was studied by linear sweep voltammetry in medium of 0.05 mol/L Tris+0.05 mol/L NH3?NH4Cl buffer at hang mercury drop electrodes (HMDE). Heme exhibits two pair reversible redox peaks and one irreversible peak. The cathodic peak potentials are?;0.236 V, ?0.422 V and ?1.408 V respectively. The first and the third peaks can be used for directly quantitative determination of heme concentrations. The peak currents are good linear relationship with heme concentration in ranges of 3×10?6–6×10?5 mol/L and 3×10?7–1.5×10?5 mol/L respectively.展开更多
The identification method in the CurveExpert-1.40 software environment revealed asymmetric wavelets of changes in the average monthly temperature of New Delhi from 1931 to 2021.The maximum increment for 80 years of th...The identification method in the CurveExpert-1.40 software environment revealed asymmetric wavelets of changes in the average monthly temperature of New Delhi from 1931 to 2021.The maximum increment for 80 years of the average monthly temperature of 5.1℃was in March 2010.An analysis of the wave patterns of the dynamics of the average monthly temperature up to 2110 was carried out.For forecasting,formulas were adopted containing four components,among which the second component is the critical heat wave of India.The first component is the Mandelbrot law(in physics).It shows the natural trend of decreasing temperature.The second component increases according to the critical law.The third component with a correlation coefficient of 0.9522 has an annual fluctuation cycle.The fourth component with a semi-annual cycle shows the influence of vegetation cover.The warming level of 2010 will repeat again in 2035-2040.From 2040 the temperature will rise steadily.June is the hottest month.At the same time,the maximum temperature of 35.1℃in 2010 in June will again reach by 2076.But according to the second component of the heat wave,the temperature will rise from 0.54℃to 16.29°C.The annual and semi-annual cycles had an insignificant effect on the June temperature dynamics.Thus,the identification method on the example of meteorological observations in New Delhi made it possible to obtain summary models containing a different number of components.The temperature at a height of 2 m is insufficient.On the surface,according to space measurements,the temperature reaches 55°C.As a result,in order to identify more accurate asymmetric wavelets for forecasting,the results of satellite measurements of the surface temperature of India at various geographical locations of meteorological stations are additionally required.展开更多
A one-dimensional quantum hydrodynamic model (or quantum Euler-Poisson system) for semiconductors with initial boundary conditions is considered for general pressure-density function. The existence and uniqueness of...A one-dimensional quantum hydrodynamic model (or quantum Euler-Poisson system) for semiconductors with initial boundary conditions is considered for general pressure-density function. The existence and uniqueness of the classical solution of the corresponding steady-state quantum hydrodynamic equations is proved. Furthermore, the global existence of classical solution, when the initial datum is a perturbation of t he steadystate solution, is obtained. This solution tends to the corresponding steady-state solution exponentially fast as the time tends to infinity.展开更多
Great interest has been aroused on deeply-situated Osaka clay since Kobe Earthquake in 1994. In this paper is presented the analysis on the results of a series of lab tests on Osaka clay situated from 100 m to 1500 m ...Great interest has been aroused on deeply-situated Osaka clay since Kobe Earthquake in 1994. In this paper is presented the analysis on the results of a series of lab tests on Osaka clay situated from 100 m to 1500 m under the ground. The wave velocity method, bender element method, LDT and the formula derived by the authors are used, focus is put on the pre-failure mechanical behavior of the clay. The analysis shows that, (i) pore-pressure coefficient B is less than 1.0, (ii) the relationship between shear modulus and Poisson's ratio is not in agreement with that reported before, (iii) the modulus measured with LDT is still less than that measured with bender element method, and (iv) there are two threshold strains, within which the clay can be considered as elastic, and both of them are larger than that reported before.展开更多
With the development of wireless technology, Frequency-Modulated Continuous Wave (FMCW) radar has increased sensing capability and can be used to recognize human activity. These applications have gained wide-spread at...With the development of wireless technology, Frequency-Modulated Continuous Wave (FMCW) radar has increased sensing capability and can be used to recognize human activity. These applications have gained wide-spread attention and become a hot research area. FMCW signals reflected by target activity can be collected, and human activity can be recognized based on the measurements. This paper focused on human activity recognition based on FMCW and DenseNet. We collected point clouds from FMCW and analyzed them to recognize human activity because different activities could lead to unique point cloud features. We built and trained the neural network to implement human activities using a FMCW signal. Firstly, this paper presented recent reviews about human activity recognition using wireless signals. Then, it introduced the basic concepts of FMCW radar and described the fundamental principles of the system using FMCW radar. We also provided the system framework, experiment scenario, and DenseNet neural network structure. Finally, we presented the experimental results and analyzed the accuracy of different neural network models. The system achieved recognition accuracy of 100 percent for five activities using the DenseNet. We concluded the paper by discussing the current issues and future research directions.展开更多
Blast-induced mild traumatic brain injury(m TBI) is of particular concern among military personnel due to exposure to blast energy during military training and combat.The impact of primary low-intensity blast mediat...Blast-induced mild traumatic brain injury(m TBI) is of particular concern among military personnel due to exposure to blast energy during military training and combat.The impact of primary low-intensity blast mediated pathophysiology upon later neurobehavioral disorders has been controversial.Developing a military preclinical blast model to simulate the pathophysiology of human blast injury is an important first step.This article provides an overview of primary blast effects and perspectives of our recent studies demonstrating ultrastructural changes in the brain and behavioral disorders resulting from open-field blast exposures up to 46.6 k Pa using a murine model.The model is scalable and permits exposure to varying magnitudes of primary blast injuries by placing animals at different distances from the blast center or by changing the amount of C4 charge.We here review the implications and future applications and directions of using this animal model to uncover the underlying mechanisms related to primary blast injury.Overall,these studies offer the prospect of enhanced understanding of the pathogenesis of primary low-intensity blast-induced TBI and insights for prevention,diagnosis and treatment of blast induced TBI,particularly m TBI/concussion related to current combat exposures.展开更多
基金financially supported by the Earmarked Fund for Modern Agro-industry Technology Research System(Grant No.CARS-50-G05)the National Natural Science Foundation of China(Grant Nos.31101938+1 种基金30972256 and 51239002)Science and Technology Development Project of Shandong Province(Grant No.2009GG10005005)
文摘This paper presents a simulation model based on the finite element method. The method is used to analyze the motion response and mooring line tension of the flatfish cage system in waves. The cage system consists of top frames, netting, mooring lines, bottom frames, and floats. A series of scaled physical model tests in regular waves are conducted to verify the numerical model. The comparison results show that the simulated and the experimental results agree well under the wave conditions, and the maximum pitch of the bottom frame with two orientations is about 12o. The motion process of the whole cage system in the wave can be described with the computer visualized technology. Then, the mooring line tensions and the motion of the bottom frame with three kinds of weight are calculated under different wave conditions. According to the numerical results, the differences in mooring line tensions of flatfish cages with three weight modes are indistinct. The maximum pitch of the bottom frame decreases with the increase of the bottom weight.
基金financially supported by "the national natural science foundation of China(31300474)""China Postdoctoral Science Foundation funded project(2014M551203)""the Fundamental Research Funds for the Central Universities of China(DL12BB18),(DL11CB02)and(2572014CB35)"
文摘We used acoustic tests on a quarter-sawn poplar timbers to study the effects of wood anisotropy and cavity defects on acoustic wave velocity and travel path, and we investigated acoustic wave propagation behavior in wood. The timber specimens were first tested in unmodified condition and then tested after introduction of cavity defects of varying sizes to quantify the transmitting time of acoustic waves in laboratory conditions. Two-dimensional acoustic wave contour maps on the radial section of specimens were then simulated and analyzed based on the experimental data. We tested the relationship between wood grain and acoustic wave velocity as waves passed in various directions through wood. Wood anisotropy has significant effects on both velocity and travel path of acoustic waves, and the velocity of waves passing longitudinally through timbers exceeded the radial velocity. Moreover, cavity defects altered acoustic wave time contours on radial sections of timbers. Acous-tic wave transits from an excitation point to the region behind a cavity in defective wood more slowly than in intact wood.
基金supported by the Key Program of National Natural Science Foundation of China (Grant No.50739004) the Shandong Province Key Lab of Ocean Engineering in Ocean University of China
文摘In this paper, studied are the dynamics of a moored buoy near the surface subjected to wave excitation. According to the physical structure, submersible buoy moored by tethered line is modeled firstly. Then from the differential equations, the natural frequencies are estimated by neglecting the coupling between tangential and normal direction. By use of numerical integration method, solutions are obtained. On this basis, strange attractors and bifurcation phenomena are obtained by applying Poineare map, phase plots and bifurcation diagram, showing the existence of the chaotic response in this system when wave steepness is high enough.
基金Project supported by the National Natural Science Foundation of China(Grant No.11701191)Subsidized Project for Cultivating Postgraduates’ Innovative Ability in Scientific Research of Huaqiao University,China
文摘We study dynamical behaviors of traveling wave solutions to a Fujimoto-Watanabe equation using the method of dynamical systems. We obtain all possible bifurcations of phase portraits of the system in different regions of the threedimensional parameter space. Then we show the required conditions to guarantee the existence of traveling wave solutions including solitary wave solutions, periodic wave solutions, kink-like(antikink-like) wave solutions, and compactons. Moreover, we present exact expressions and simulations of these traveling wave solutions. The dynamical behaviors of these new traveling wave solutions will greatly enrich the previews results and further help us understand the physical structures and analyze the propagation of nonlinear waves.
基金This work was supported by National Science Foundation Project of China No.19975063.
文摘Lower hybrid heating (LHH) has been successfully carried out in the HT-6M toka-mak. The H-mode has been obtained with a power threshold of 50 kW under a boronized wall condition. Both energy and particle confinements have been improved along with a dropped edge plasma density and an increase electron temperature during the LHH phase. A negative Er well plays a key role of triggering and sustaining the good confinement. Both electrostatic fluctuation of the plasma potential and the density fluctuations dropped to an ultra-low level. The observation of an enhanced Er shear before the reduction in turbulence level is consistent with an increased Er shear as the cause of turbulence suppression.
基金supported by the National Natural Science Foundation of China(Nos.10672108 and 10632020)the key project of the Ministry of Education of China(No.206014).
文摘This paper is concerned with the dynamic behaviors of wave propagation in layered periodic composites consisting of piezoelectric and piezomagnetic phases. The dispersion relations of Lamb waves axe derived. Dispersion curves and displacement fields are calculated with different piezoelectric volume fractions. Numerical results for BaTiO3/CoFe2O4 composites show that the dispersion curves resemble the symmetric Lamb waves in a plate. Exchange between the longitudinal (i.e. thickness) mode and coupled mode takes place at the crossover point between dispersion curves of the first two branches. With the increase of BaTiO3 volume fraction, the crossover point appears at a lower wave number and wave velocity is higher. These findings are useful for magnetoelectric transducer applications.
文摘This paper investigates the following model equation:where A>0 and p'(v)<0.It proves that the equation admits a unique global discontinuous solution on in a class of piecewise continuous and piecewise smooth drictiom with a backward rarefaction wave and a forward shock wave under certain conditions.
基金ProjectsupportedbytheNationalNaturalScienceFoundationofChina (No .1 0 2 71 0 3 4)
文摘The global fast dynamics for the generalized symmetric regularized long wave equation with damping term is considered. The squeezing property of the nonlinear semi_group associated with this equation and the existence of exponential attractor are proved. The upper bounds of its fractal dimension are also estimated.
基金X.Li’s research was supported in part by NSFC(11301344)Y.Yong’sresearch was supported in part by NSFC(11201301)
文摘In this article, we study the 1-dimensional bipolar quantum hydrodynamic model for semiconductors in the form of Euler-Poisson equations, which contains dispersive terms with third order derivations. We deal with this kind of model in one dimensional case for general perturbations by constructing some correction functions to delete the gaps between the original solutions and the diffusion waves in L2-space, and by using a key inequality we prove the stability of diffusion waves. As the same time, the convergence rates are also obtained.
文摘The electroanalytical method of ferriheme was studied by linear sweep voltammetry in medium of 0.05 mol/L Tris+0.05 mol/L NH3?NH4Cl buffer at hang mercury drop electrodes (HMDE). Heme exhibits two pair reversible redox peaks and one irreversible peak. The cathodic peak potentials are?;0.236 V, ?0.422 V and ?1.408 V respectively. The first and the third peaks can be used for directly quantitative determination of heme concentrations. The peak currents are good linear relationship with heme concentration in ranges of 3×10?6–6×10?5 mol/L and 3×10?7–1.5×10?5 mol/L respectively.
文摘The identification method in the CurveExpert-1.40 software environment revealed asymmetric wavelets of changes in the average monthly temperature of New Delhi from 1931 to 2021.The maximum increment for 80 years of the average monthly temperature of 5.1℃was in March 2010.An analysis of the wave patterns of the dynamics of the average monthly temperature up to 2110 was carried out.For forecasting,formulas were adopted containing four components,among which the second component is the critical heat wave of India.The first component is the Mandelbrot law(in physics).It shows the natural trend of decreasing temperature.The second component increases according to the critical law.The third component with a correlation coefficient of 0.9522 has an annual fluctuation cycle.The fourth component with a semi-annual cycle shows the influence of vegetation cover.The warming level of 2010 will repeat again in 2035-2040.From 2040 the temperature will rise steadily.June is the hottest month.At the same time,the maximum temperature of 35.1℃in 2010 in June will again reach by 2076.But according to the second component of the heat wave,the temperature will rise from 0.54℃to 16.29°C.The annual and semi-annual cycles had an insignificant effect on the June temperature dynamics.Thus,the identification method on the example of meteorological observations in New Delhi made it possible to obtain summary models containing a different number of components.The temperature at a height of 2 m is insufficient.On the surface,according to space measurements,the temperature reaches 55°C.As a result,in order to identify more accurate asymmetric wavelets for forecasting,the results of satellite measurements of the surface temperature of India at various geographical locations of meteorological stations are additionally required.
基金The first author was supported by the China Postdoctoral Science Foundation(2005037318)The second author acknowledges partial support from the Austrian-Chinese Scientific-Technical Collaboration Agreement, the CTS of Taiwanthe Wittgenstein Award 2000 of P.A. Markowich, funded by the Austrian FWF, the Grants-in-Aid of JSPS No.14-02036the NSFC(10431060)the Project-sponsored by SRF for ROCS, SEM
文摘A one-dimensional quantum hydrodynamic model (or quantum Euler-Poisson system) for semiconductors with initial boundary conditions is considered for general pressure-density function. The existence and uniqueness of the classical solution of the corresponding steady-state quantum hydrodynamic equations is proved. Furthermore, the global existence of classical solution, when the initial datum is a perturbation of t he steadystate solution, is obtained. This solution tends to the corresponding steady-state solution exponentially fast as the time tends to infinity.
文摘Great interest has been aroused on deeply-situated Osaka clay since Kobe Earthquake in 1994. In this paper is presented the analysis on the results of a series of lab tests on Osaka clay situated from 100 m to 1500 m under the ground. The wave velocity method, bender element method, LDT and the formula derived by the authors are used, focus is put on the pre-failure mechanical behavior of the clay. The analysis shows that, (i) pore-pressure coefficient B is less than 1.0, (ii) the relationship between shear modulus and Poisson's ratio is not in agreement with that reported before, (iii) the modulus measured with LDT is still less than that measured with bender element method, and (iv) there are two threshold strains, within which the clay can be considered as elastic, and both of them are larger than that reported before.
文摘With the development of wireless technology, Frequency-Modulated Continuous Wave (FMCW) radar has increased sensing capability and can be used to recognize human activity. These applications have gained wide-spread attention and become a hot research area. FMCW signals reflected by target activity can be collected, and human activity can be recognized based on the measurements. This paper focused on human activity recognition based on FMCW and DenseNet. We collected point clouds from FMCW and analyzed them to recognize human activity because different activities could lead to unique point cloud features. We built and trained the neural network to implement human activities using a FMCW signal. Firstly, this paper presented recent reviews about human activity recognition using wireless signals. Then, it introduced the basic concepts of FMCW radar and described the fundamental principles of the system using FMCW radar. We also provided the system framework, experiment scenario, and DenseNet neural network structure. Finally, we presented the experimental results and analyzed the accuracy of different neural network models. The system achieved recognition accuracy of 100 percent for five activities using the DenseNet. We concluded the paper by discussing the current issues and future research directions.
基金possible by funding from the DoD Congressionally Directed Medical Research Programs(CDMRP)for the Peer Reviewed Alzheimer’s Research Program Convergence Science Research Award(PRARP-CSRAAZ140109)the research funds of the University of Missouri(to ZG)
文摘Blast-induced mild traumatic brain injury(m TBI) is of particular concern among military personnel due to exposure to blast energy during military training and combat.The impact of primary low-intensity blast mediated pathophysiology upon later neurobehavioral disorders has been controversial.Developing a military preclinical blast model to simulate the pathophysiology of human blast injury is an important first step.This article provides an overview of primary blast effects and perspectives of our recent studies demonstrating ultrastructural changes in the brain and behavioral disorders resulting from open-field blast exposures up to 46.6 k Pa using a murine model.The model is scalable and permits exposure to varying magnitudes of primary blast injuries by placing animals at different distances from the blast center or by changing the amount of C4 charge.We here review the implications and future applications and directions of using this animal model to uncover the underlying mechanisms related to primary blast injury.Overall,these studies offer the prospect of enhanced understanding of the pathogenesis of primary low-intensity blast-induced TBI and insights for prevention,diagnosis and treatment of blast induced TBI,particularly m TBI/concussion related to current combat exposures.