A rockbolt acting in the rock mass is subjected to the combined action of the pull-out load and confining pressure, and the bond quality of the rockbolt directly affects the stability of the roadway and cavern. Theref...A rockbolt acting in the rock mass is subjected to the combined action of the pull-out load and confining pressure, and the bond quality of the rockbolt directly affects the stability of the roadway and cavern. Therefore, in this study, confining pressure and pull-out load are applied to grouted rockbolt systems with bond defects by a numerical simulation method, and the rockbolt is detected by ultrasonic guided waves to study the propagation law of ultrasonic guided waves in defective rockbolt systems and the bond quality of rockbolts under the combined action of pull-out load and confining pressure. The numerical simulation results show that the length and location of bond defects can be detected by ultrasonic guided waves under the combined action of pull-out load and confining pressure. Under no pull-out load, with increasing confining pressure, the low-frequency part of the guided wave frequency in the rockbolt increases, the high-frequency part decreases, the weakening effect of the confining pressure on the guided wave propagation law increases, and the bond quality of the rockbolt increases. The existence of defects cannot change the strengthening effect of the confining pressure on the guided wave propagation law under the same pull-out load or the weakening effect of the pull-out load on the guided wave propagation law under the same confining pressure.展开更多
This paper studies quantitatively the generation of Lamb waves in thin bonded plates subjected to laser illumination, after considering the viscoelasticity of the adhesive layer. The displacements of such plates have ...This paper studies quantitatively the generation of Lamb waves in thin bonded plates subjected to laser illumination, after considering the viscoelasticity of the adhesive layer. The displacements of such plates have been calculated in the frequency domain by using the finite element method, and the time domain response has been reconstructed by applying an inverse fast Fourier transform. Numerical results are presented showing the normal surface displacement for several configurations: a single aluminum plate, a three-layer bonded plate, and a two-layer plate. The characteristics of the laser-generated Lamb waves for each particular case have been investigated. In addition, the sensitivity of the transient responses to variations of material properties (elastic modulus, viscoelastic modulus, and thickness) of the adhesive layer has been studied in detail.展开更多
The effect of introducing attenuation on Lamb wave dispersion curves is studied in this paper. Attenuation is introduced to a three-layered composite plate by an adhesive bond layer with viscous behavior. No changes a...The effect of introducing attenuation on Lamb wave dispersion curves is studied in this paper. Attenuation is introduced to a three-layered composite plate by an adhesive bond layer with viscous behavior. No changes are required to the transfer matrix formulation for the propagation of elastic waves. By introduction of a complex wavenumber, the model can be used to the propagation of attenuative Lamb waves. Numerical examples for a three-layered aluminium-epoxy-aluminium plate show that attenuation values of each mode in plates are related not only to attenuation, but also to the thickness of the bonded layer, which is in agreement with practical situations.展开更多
In order to investigate the bonding behavior and mechanism of the interface prepared by explosive welding, the bonding interfaces of 0 Crl 8Ni9/16MnR were observed and analyzed by means of optical microscope (OM) , ...In order to investigate the bonding behavior and mechanism of the interface prepared by explosive welding, the bonding interfaces of 0 Crl 8Ni9/16MnR were observed and analyzed by means of optical microscope (OM) , scanning electron microscope (SEM) and electron probe microanalysis ( EPMA ). It is found that the welding interfaces are wavy due to the wavy explosive loading. There are three kinds of bonding interfaces i. e. big wave, small wave and micro wave. There are a few seam defects and all elements contents are less than both of the base and .flyer plate in the transition zone of big wavy interface. Moreover, some "holes" result in the lowest bonding strength of big wavy interface nearby the interface in the base plate. All elements contents of the small wavy interface are between two metals, and there are few seam and hole defects, so it is the higher for the bonding strength of small wavy interface. There is no transition zone and defects in the micro wavy interface, so the interface is the best. To gain the high quality small and micro wavy bonding interface the explosive charge should be controlled.展开更多
Attenuative Lamb wave propagation in adhesively bonded anisotropic composite plates is introduced. The isotropic adhesive exhibits viscous behavior to stimulate the poor curing of the middle layer. Viscosity is assume...Attenuative Lamb wave propagation in adhesively bonded anisotropic composite plates is introduced. The isotropic adhesive exhibits viscous behavior to stimulate the poor curing of the middle layer. Viscosity is assumed to vary linearly with frequency, implying that attenuation per wavelength is constant. Attenuation can be implemented in the analysis through modification of elastic properties of isotropic adhesive. The new properties become complex, but cause no further complications in the analysis. The characteristic equation is the same as that used for the elastic plate case, except that both real and imaginary parts of the wave number (i.e., the attenuation) must be computed. Based on the Lowe’s solution in finding the complex roots of characteristic equation, the effect of longitudinal and shear attenuation coefficients of the middle adhesive layer on phase velocity dispersion curves and attenuation dispersion curves of Lamb waves propagating in bonded anisotropic composites is visualized numerically.展开更多
Cement bond model wells (1:10 scaled-down) were made with a gradually degrading cement annulus for cement bond evaluation of the first interface (between the casing and the cement annulus) and the second interfa...Cement bond model wells (1:10 scaled-down) were made with a gradually degrading cement annulus for cement bond evaluation of the first interface (between the casing and the cement annulus) and the second interface (between the cement annulus and the formation). Experimental simulation on cement bond logging was carried out with these model wells. The correlation of acoustic waveforms, casing wave energy and flee casing area before and after cement bonding of the second interface was established. The experimental results showed that the arrival of the casing waves had no relationship with the cement bonding of the second interface, but the amplitude of the casing head wave decreased obviously after the second interface was bonded. So, cement bonding of the second interface had little effect on the evaluation of the cement bond quality of the first interface by using casing head wave arrivals. Strong cement annulus waves with early arrivals were observed before the second interface was bonded, while obvious "formation waves" instead of cement annulus waves were observed after the second interface was bonded.展开更多
文摘A rockbolt acting in the rock mass is subjected to the combined action of the pull-out load and confining pressure, and the bond quality of the rockbolt directly affects the stability of the roadway and cavern. Therefore, in this study, confining pressure and pull-out load are applied to grouted rockbolt systems with bond defects by a numerical simulation method, and the rockbolt is detected by ultrasonic guided waves to study the propagation law of ultrasonic guided waves in defective rockbolt systems and the bond quality of rockbolts under the combined action of pull-out load and confining pressure. The numerical simulation results show that the length and location of bond defects can be detected by ultrasonic guided waves under the combined action of pull-out load and confining pressure. Under no pull-out load, with increasing confining pressure, the low-frequency part of the guided wave frequency in the rockbolt increases, the high-frequency part decreases, the weakening effect of the confining pressure on the guided wave propagation law increases, and the bond quality of the rockbolt increases. The existence of defects cannot change the strengthening effect of the confining pressure on the guided wave propagation law under the same pull-out load or the weakening effect of the pull-out load on the guided wave propagation law under the same confining pressure.
基金Project supported by the National Natural Science Foundation of China(Grant No.11074125)the Major Project of the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.10KJA140006)+1 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.08KJB140003)the Student Research Foundation of the Jiangsu University,China(Grant Nos.2010074 and 09A101)
文摘This paper studies quantitatively the generation of Lamb waves in thin bonded plates subjected to laser illumination, after considering the viscoelasticity of the adhesive layer. The displacements of such plates have been calculated in the frequency domain by using the finite element method, and the time domain response has been reconstructed by applying an inverse fast Fourier transform. Numerical results are presented showing the normal surface displacement for several configurations: a single aluminum plate, a three-layer bonded plate, and a two-layer plate. The characteristics of the laser-generated Lamb waves for each particular case have been investigated. In addition, the sensitivity of the transient responses to variations of material properties (elastic modulus, viscoelastic modulus, and thickness) of the adhesive layer has been studied in detail.
文摘The effect of introducing attenuation on Lamb wave dispersion curves is studied in this paper. Attenuation is introduced to a three-layered composite plate by an adhesive bond layer with viscous behavior. No changes are required to the transfer matrix formulation for the propagation of elastic waves. By introduction of a complex wavenumber, the model can be used to the propagation of attenuative Lamb waves. Numerical examples for a three-layered aluminium-epoxy-aluminium plate show that attenuation values of each mode in plates are related not only to attenuation, but also to the thickness of the bonded layer, which is in agreement with practical situations.
文摘In order to investigate the bonding behavior and mechanism of the interface prepared by explosive welding, the bonding interfaces of 0 Crl 8Ni9/16MnR were observed and analyzed by means of optical microscope (OM) , scanning electron microscope (SEM) and electron probe microanalysis ( EPMA ). It is found that the welding interfaces are wavy due to the wavy explosive loading. There are three kinds of bonding interfaces i. e. big wave, small wave and micro wave. There are a few seam defects and all elements contents are less than both of the base and .flyer plate in the transition zone of big wavy interface. Moreover, some "holes" result in the lowest bonding strength of big wavy interface nearby the interface in the base plate. All elements contents of the small wavy interface are between two metals, and there are few seam and hole defects, so it is the higher for the bonding strength of small wavy interface. There is no transition zone and defects in the micro wavy interface, so the interface is the best. To gain the high quality small and micro wavy bonding interface the explosive charge should be controlled.
文摘Attenuative Lamb wave propagation in adhesively bonded anisotropic composite plates is introduced. The isotropic adhesive exhibits viscous behavior to stimulate the poor curing of the middle layer. Viscosity is assumed to vary linearly with frequency, implying that attenuation per wavelength is constant. Attenuation can be implemented in the analysis through modification of elastic properties of isotropic adhesive. The new properties become complex, but cause no further complications in the analysis. The characteristic equation is the same as that used for the elastic plate case, except that both real and imaginary parts of the wave number (i.e., the attenuation) must be computed. Based on the Lowe’s solution in finding the complex roots of characteristic equation, the effect of longitudinal and shear attenuation coefficients of the middle adhesive layer on phase velocity dispersion curves and attenuation dispersion curves of Lamb waves propagating in bonded anisotropic composites is visualized numerically.
基金supported by the National Natural Science Foundation of China(Grant No.10534040 and No.40574049)key laboratory of well logging of China National Petroleum Corporation(CNPC).
文摘Cement bond model wells (1:10 scaled-down) were made with a gradually degrading cement annulus for cement bond evaluation of the first interface (between the casing and the cement annulus) and the second interface (between the cement annulus and the formation). Experimental simulation on cement bond logging was carried out with these model wells. The correlation of acoustic waveforms, casing wave energy and flee casing area before and after cement bonding of the second interface was established. The experimental results showed that the arrival of the casing waves had no relationship with the cement bonding of the second interface, but the amplitude of the casing head wave decreased obviously after the second interface was bonded. So, cement bonding of the second interface had little effect on the evaluation of the cement bond quality of the first interface by using casing head wave arrivals. Strong cement annulus waves with early arrivals were observed before the second interface was bonded, while obvious "formation waves" instead of cement annulus waves were observed after the second interface was bonded.