期刊文献+
共找到73篇文章
< 1 2 4 >
每页显示 20 50 100
Negative Stiffness Mechanism on An Asymmetric Wave Energy Converter by Using A Weakly Nonlinear Potential Model
1
作者 Sunny Kumar POGULURI Dongeun KIM Yoon Hyeok BAE 《China Ocean Engineering》 SCIE EI CSCD 2024年第4期689-700,共12页
Salter's duck,an asymmetrical wave energy converter(WEC)device,showed high efficiency in extracting energy from 2D regular waves in the past;yet,challenges remain for fluctuating wave conditions.These can potentia... Salter's duck,an asymmetrical wave energy converter(WEC)device,showed high efficiency in extracting energy from 2D regular waves in the past;yet,challenges remain for fluctuating wave conditions.These can potentially be addressed by adopting a negative stiffness mechanism(NSM)in WEC devices to enhance system efficiency,even in highly nonlinear and steep 3D waves.A weakly nonlinear model was developed which incorporated a nonlinear restoring moment and NSM into the linear formulations and was applied to an asymmetric WEC using a time domain potential flow model.The model was initially validated by comparing it with published experimental and numerical computational fluid dynamics results.The current results were in good agreement with the published results.It was found that the energy extraction increased in the range of 6%to 17%during the evaluation of the effectiveness of the NSM in regular waves.Under irregular wave conditions,specifically at the design wave conditions for the selected test site,the energy extraction increased by 2.4%,with annual energy production increments of approximately 0.8MWh.The findings highlight the potential of NSM in enhancing the performance of asymmetric WEC devices,indicating more efficient energy extraction under various wave conditions. 展开更多
关键词 asymmetric wave energy converter negative stiffness mechanism weakly nonlinear potential flow POWER
下载PDF
Hydrodynamic Performance of An Integrated System of Breakwater and A Multi-Chamber OWC Wave Energy Converter
2
作者 NING De-zhi ZHANG Xiang-yu +1 位作者 WANG Rong-quan ZHAO Ming 《China Ocean Engineering》 SCIE EI CSCD 2024年第4期543-556,共14页
A multi-chamber oscillating water column wave energy converter(OWC-WEC)integrated to a breakwater is investigated.The hydrodynamic characteristics of the device are analyzed using an analytical model based on the line... A multi-chamber oscillating water column wave energy converter(OWC-WEC)integrated to a breakwater is investigated.The hydrodynamic characteristics of the device are analyzed using an analytical model based on the linear potential flow theory.A pneumatic model is employed to investigate the relationship between the air mass flux in the chamber and the turbine characteristics.The effects of chamber width,wall draft and wall thickness on the hydrodynamic performance of a dual-chamber OWC-WEC are investigated.The results demonstrate that the device,with a smaller front wall draft and a wider rear chamber exhibits a broader effective frequency bandwidth.The device with a chamber-width-ratio of 1:3 performs better in terms of power absorption.Additionally,results from the analysis of a triplechamber OWC-WEC demonstrate that reducing the front chamber width and increasing the rearward chamber width can improve the total performance of the device.Increasing the number of chambers from 1 to 2 or 3 can widen the effective frequency bandwidth. 展开更多
关键词 oscillating water column power extraction efficiency potential flow theory wave energy converter multi-chamber
下载PDF
Extreme Responses of An Integrated System with A Semi-Submersible Wind Turbine and Four Torus-Shaped Wave Energy Converters in Different Survival Modes
3
作者 WANG Kai LI Yu-meng +3 位作者 ONG Muk Chen WAN Ling LI Liang-bi CHENG Zhengshun 《China Ocean Engineering》 SCIE EI CSCD 2024年第5期877-892,共16页
Offshore wind power is a kind of important clean renewable energy and has attracted increasing attention due to the rapid consumption of non-renewable energy.To reduce the high cost of energy,a possible try is to util... Offshore wind power is a kind of important clean renewable energy and has attracted increasing attention due to the rapid consumption of non-renewable energy.To reduce the high cost of energy,a possible try is to utilize the combination of wind and wave energy considering their natural correlation.A combined concept consisting of a semi-submersible wind turbine and four torus-shaped wave energy converters was proposed and numerically studied under normal operating conditions.However,the dynamic behavior of the integrated system under extreme sea conditions has not been studied yet.In the present work,extreme responses of the integrated system under two different survival modes are evaluated.Fully coupled time-domain simulations with consideration of interactions between the semi-submersible wind turbine and the torus-shaped wave energy converters are performed to investigate dynamic responses of the integrated system,including mooring tensions,tower bending moments,end stop forces,and contact forces at the Column-Torus interface.It is found that the addition of four tori will reduce the mean motions of the yaw,pitch and surge.When the tori are locked at the still water line,the whole integrated system is more suitable for the survival modes. 展开更多
关键词 combined wind and wave energy concept wave energy converter survival mode extreme response
下载PDF
Effect of Different Raft Shapes on Hydrodynamic Characteristics of the Attenuator-Type Wave Energy Converter
4
作者 WANG Jin WANG Shu-qi +2 位作者 JIANG Qing-dian XU Yun-xin SHI Wei-chao 《China Ocean Engineering》 SCIE EI CSCD 2023年第4期645-659,共15页
A numerical simulation method based on CFD has been established to simulate the fully coupled motion for an atten-uator-type wave energy converter(WEC).Based on this method,a detailed parametric analysis has been cond... A numerical simulation method based on CFD has been established to simulate the fully coupled motion for an atten-uator-type wave energy converter(WEC).Based on this method,a detailed parametric analysis has been conducted to investigate the design of the rafts.The effects of different parameters(wave parameters,structural parameters and PTO parameters)on the hydrodynamic characteristics of the attenuator-type WEC were studied in detail.The results show that in terms of wave parameters,there is an optimal wave period,which makes the relative pitching angle amplitude of the WEC reach the maximum,and the increase of wave height is conducive to the relative pitching angle amplitude of wave energy.Under different wave conditions,the relative pitch angle of the parallelogram raft device is the maximum.In terms of structural parameters,the parallelogram attenuator-type device has the optimal values in different relative directions,different distances and different apex angle,which makes the relative motion amplitude of the device reach the maximum,and the spacing and the apex angle have influence on the motion frequency of the device,while the relative direction has almost no influence on it.In terms of PTO parameters,there is an optimal damping coefficient,which makes the power generation efficiency of the WEC reach the maximum.The research results provide a valuable reference for future research and design of the attenuator-type WEC. 展开更多
关键词 wave energy converter attenuator-type shape hydrodynamic analysis power generation efficiency
下载PDF
Hydrodynamic Performance and Power Absorption of A Coaxial DoubleBuoy Wave Energy Converter
5
作者 LI De-min DONG Xiao-chen +2 位作者 LI Yan-ni HUANG He-ao SHI Hong-da 《China Ocean Engineering》 SCIE EI CSCD 2023年第3期378-392,共15页
As an important wave energy converter(WEC),the double-buoy device has advantages of wider energy absorption band and deeper water adaptability,which attract an increasing number of attentions from researchers.This pap... As an important wave energy converter(WEC),the double-buoy device has advantages of wider energy absorption band and deeper water adaptability,which attract an increasing number of attentions from researchers.This paper makes an in-depth study on double-buoy WEC,by means of the combination of model experiment and numerical simulation.The Response Amplitude Operator(RAO)and energy capture of the double-buoy under constant power take-off(PTO)damping are investigated in the model test,while the average power output and capture width ratio(CWR)are calculated by the numerical simulation to analyze the influence of the wave condition,PTO,and the geometry parameters of the device.The AQWA-Fortran united simulation sy stem,including the secondary developme nt of AQWA software coupled with the flowchart of the Fortran code,models a new dynamic system.Various viscous damping and hydraulic friction from WEC system are measured from the experimental results,and these values are added to the equation of motion.As a result,the energy loss is contained in the final numerical model the by united simulation system.Using the developed numerical model,the optimal period of energy capture is identified.The power capture reaches the maximum value under the outer buoy's natural period.The paper gives the peak value of the energy capture under the linear PTO damping force,and calculates the optimal mass ratio of the device. 展开更多
关键词 coaxial double-buoy wave energy converter physical model experiment numerical simulation hydrodynamic performance
下载PDF
Converted wave AVO inversion for average velocity ratio and shear wave reflection coefficient 被引量:5
6
作者 魏修成 陈天胜 季玉新 《Applied Geophysics》 SCIE CSCD 2008年第1期35-43,共9页
Based on the empirical Gardner equation describing the relationship between density and compressional wave velocity, the converted wave reflection coefficient extrema attributes for AVO analysis are proposed and the r... Based on the empirical Gardner equation describing the relationship between density and compressional wave velocity, the converted wave reflection coefficient extrema attributes for AVO analysis are proposed and the relations between the extrema position and amplitude, average velocity ratio across the interface, and shear wave reflection coefficient are derived. The extrema position is a monotonically decreasing function of average velocity ratio, and the extrema amplitude is a function of average velocity ratio and shear wave reflection coefficient. For theoretical models, the average velocity ratio and shear wave reflection coefficient are inverted from the extrema position and amplitude obtained from fitting a power function to converted wave AVO curves. Shear wave reflection coefficient sections have clearer physical meaning than conventional converted wave stacked sections and establish the theoretical foundation for geological structural interpretation and event correlation. "The method of inverting average velocity ratio and shear wave reflection coefficient from the extrema position and amplitude obtained from fitting a power function is applied to real CCP gathers. The inverted average velocity ratios are consistent with those computed from compressional and shear wave well logs. 展开更多
关键词 Converted wave AVO INVERSION ATTRIBUTE velocity ratio.
下载PDF
Anisotropic converted wave amplitude-preserving prestack time migration by the pseudo-offset method 被引量:1
7
作者 张丽艳 刘洋 《Applied Geophysics》 SCIE CSCD 2008年第3期204-211,共8页
In this paper, we use the method of pseudo-offset migration (POM) to complete converted wave pre-stack time migration with amplitude-preservation in an anisotropic medium. The method maps the original traces into co... In this paper, we use the method of pseudo-offset migration (POM) to complete converted wave pre-stack time migration with amplitude-preservation in an anisotropic medium. The method maps the original traces into common conversion scatter point (CCSP) gathers directly by POM, which simplifies the conventional processing procedure for converted waves. The POM gather fold and SNR are high, which is favorable for velocity analysis and especially suitable for seismic data with low SNR. We used equivalent anisotropic theory to compute anisotropic parameters. Based on the scattering wave traveltime equation in a VTI medium, the POM pseudo-offset migration in anisotropic media was deduced. By amplitude-preserving POM gather mapping, velocity analysis, stack processing, and so on, the anisotropic migration results were acquired. The forward modeling computation and actual data processing demonstrate the validity of converted wave pre-stack time migration with amplitude-preservation using the anisotropic POM method. 展开更多
关键词 ANISOTROPIC POM converted wave amplitude-preserving prestack time migration
下载PDF
Converted-wave diodic moveout and application in the land gas cloud area
8
作者 张四海 李向阳 戴恒昌 《Applied Geophysics》 SCIE CSCD 2011年第3期171-180,239,共11页
PS converted-waves (C-waves) have been commonly used to image through gas clouds but the C-wave imaging may also be degraded by the diodic effect introduced by the gas cloud. It may be compensated for using a veloci... PS converted-waves (C-waves) have been commonly used to image through gas clouds but the C-wave imaging may also be degraded by the diodic effect introduced by the gas cloud. It may be compensated for using a velocity perturbation method which decouples the diodic moveout into two parts: the base velocity and the velocity perturbation. Gas clouds are widely distributed in the Sanhu area in the Qaidam basin of northwest China which is rich in natural gas. A land 2D3C seismic dataset is analyzed from the Sanhu area and significant diodic effects are observed in the data which harm the C-wave imaging. The diodic correction is applied to this data and the resultant C-wave imaging and the details of the reservoir structure are significantly improved. The diodic moveout plays an important role in working out the residu~ shear wave statics and the association of diodie correction and shear wave residual statics computation is a key step of C-wave high fidelity imaging in the gas cloud area. Finally, the new process workflow with diodic moveout is given. 展开更多
关键词 Diodic converted wave gas cloud base velocity PERTURBATION
下载PDF
Design of A Hydraulic Power Take-off System for the Wave Energy Device with An Inverse Pendulum 被引量:13
9
作者 张大海 李伟 +2 位作者 赵海涛 鲍经纬 林勇刚 《China Ocean Engineering》 SCIE EI CSCD 2014年第2期283-292,共10页
This paper describes a dual-stroke acting hydraulic power take-off (PTO) system employed in the wave energy converter (WEC) with an inverse pendulum. The hydraulic PTO converts slow irregular reciprocating wave mo... This paper describes a dual-stroke acting hydraulic power take-off (PTO) system employed in the wave energy converter (WEC) with an inverse pendulum. The hydraulic PTO converts slow irregular reciprocating wave motions to relatively smooth, fast rotation of an electrical generator. The design of the hydraulic PTO system and its control are critical to maximize the generated power. A time domain simulation study and the laboratory experiment of the full-scale beach test are presented. The results of the simulation and laboratory experiments including their comparison at full-scale are also presented, which have validated the rationality of the design and the reliability of some key components of the prototype of the WEC with an inverse pendulum with the dual-stroke acting hydraulic PTO system. 展开更多
关键词 SIMULATION dual-stoke acting power take-off (PTO) laboratory experiment inverse pendulum wave energy converter
下载PDF
Power Maximization of A Point Absorber Wave Energy Converter Using Improved Model Predictive Control 被引量:3
10
作者 Farideh MILANI Reihaneh Kardehi MOGHADDAM 《China Ocean Engineering》 SCIE EI CSCD 2017年第4期510-516,共7页
This paper considers controlling and maximizing the absorbed power of wave energy converters for irregular waves. With respect to physical constraints of the system, a model predictive control is applied. Irregular wa... This paper considers controlling and maximizing the absorbed power of wave energy converters for irregular waves. With respect to physical constraints of the system, a model predictive control is applied. Irregular waves’ behavior is predicted by Kalman filter method. Owing to the great influence of controller parameters on the absorbed power, these parameters are optimized by imperialist competitive algorithm. The results illustrate the method’s efficiency in maximizing the extracted power in the presence of unknown excitation force which should be predicted by Kalman filter. 展开更多
关键词 wave energy converter Kalman filter model predictive control imperialist competitive algorithm
下载PDF
Parametric Study of Two-Body Floating-Point Wave Absorber 被引量:6
11
作者 Atena Amiri Roozbeh Panahi Soheil Radfar 《Journal of Marine Science and Application》 CSCD 2016年第1期41-49,共9页
In this paper, we present a comprehensive numerical simulation of a point wave absorber in deep water. Analyses are performed in both the frequency and time domains. The converter is a two-body floating-point absorber... In this paper, we present a comprehensive numerical simulation of a point wave absorber in deep water. Analyses are performed in both the frequency and time domains. The converter is a two-body floating-point absorber (FPA) with one degree of freedom in the heave direction. Its two parts are connected by a linear mass-spring-damper system. The commercial ANSYS-AQWA software used in this study performs well in considering validations. The velocity potential is obtained by assuming incompressible and irrotational flow. As such, we investigated the effects of wave characteristics on energy conversion and device efficiency, including wave height and wave period, as well as the device diameter, draft, geometry, and damping coefficient. To validate the model, we compared our numerical results with those from similar experiments. Our study results can clearly help to maximize the converter's efficiency when considering specific conditions. 展开更多
关键词 floating-point absorber wave energy energy absorption wave Energy Converter (WEC) Power Take Off (PTO) numerical simulation
下载PDF
Dynamic Properties and Energy Conversion Efficiency of A Floating Multi-Body Wave Energy Converter 被引量:3
12
作者 YANG Shao-hui WANG Yong-qing +2 位作者 HE Hong-zhou ZHANG Jun CHEN Hu 《China Ocean Engineering》 SCIE EI CSCD 2018年第3期347-357,共11页
The present study proposed a floating multi-body wave energy converter composed of a floating central platform,multiple oscillating bodies and multiple actuating arms. The relative motions between the oscillating bodi... The present study proposed a floating multi-body wave energy converter composed of a floating central platform,multiple oscillating bodies and multiple actuating arms. The relative motions between the oscillating bodies and the floating central platform capture multi-point wave energy simultaneously. The converter was simplified as a forced vibration system with three degrees of freedom, namely two heave motions and one rotational motion. The expressions of the amplitude-frequency response and the wave energy capture width were deduced from the motion equations of the converter. Based on the built mathematical model, the effects of the PTO damping coefficient, the PTO elastic coefficient, the connection length between the oscillating body and central platform, and the total number of oscillating bodies on the performance of the wave energy converter were investigated. Numerical results indicate that the dynamical properties and the energy conversion efficiency are related not only to the incident wave circle frequency but also to the converter’s physical parameters and interior PTO coefficients. By adjusting the connection length, higher wave energy absorption efficiencies can be obtained. More oscillating bodies installed result in more stable floating central platform and higher wave energy conversion efficiency. 展开更多
关键词 wave energy converter multi-point absorption conversion efficiency vibration properties
下载PDF
Fully Nonlinear Time Domain Analysis for Hydrodynamic Performance of An Oscillating Wave Surge Converter 被引量:4
13
作者 SUN Shi-yan SUN Shi-li WU Guo-xiong 《China Ocean Engineering》 SCIE EI CSCD 2018年第5期582-592,共11页
The hydrodynamic behaviour of an oscillating wave surge converter(OWSC) in large motion excited by nonlinear waves is investigated. The mechanism through which the wave energy is absorbed in the nonlinear system is an... The hydrodynamic behaviour of an oscillating wave surge converter(OWSC) in large motion excited by nonlinear waves is investigated. The mechanism through which the wave energy is absorbed in the nonlinear system is analysed. The mathematical model used is based on the velocity potential theory together with the fully nonlinear boundary conditions on the moving body surface and deforming free surface. The problem is solved by the boundary element method. Numerical results are obtained to show how to adjust the mechanical properties of the OWSC to achieve the best efficiency in a given wave, together with the nonlinear effect of the wave height. Numerical results are also provided to show the behaviour of a given OWSC in waves of different frequencies and different heights. 展开更多
关键词 wave energy oscillating wave surge converter nonlinear wave/structure interactions boundary element method
下载PDF
Offshore Multi-Wave Seismic Exploration in Bohai 被引量:4
14
作者 LiuChuncheng XiaQinglong 《Applied Geophysics》 SCIE CSCD 2004年第1期26-30,共5页
In Oilfield A, of south Bohai, the large area (20km^2) of gas in the shallow layer of the main structure makes a "gas cloud" effect in the seismic section. It makes the seismic migration imaging of the deepe... In Oilfield A, of south Bohai, the large area (20km^2) of gas in the shallow layer of the main structure makes a "gas cloud" effect in the seismic section. It makes the seismic migration imaging of the deeper aim layer inconsistent with the actual features of a geologic structure. But, the converted waves,PS waves, containing effective information of incident compressed (P) waves, can create converted S waves. The S wave is affected little by the shallow layer screen, allowing better imaging of the deeper layer. So, 4C seismic acquisition was carried out on the structure. Through geologic reconnaissance on the site, shallow layer drilling analysis and multicomponent seismic experiments, the offshore acquisition flows are designed. Choosing appropriate processing flows for converted waves and paying attention to the key tache of processing, a high quality 2D converted wave section was obtained. By identifying the character of the seismic wave correctly, making use of the full wave logging, producing synthetic converted wave seismogram, and identifying horizon, we can carry out structure interpretation and reserve evaluation of the oilfield. 展开更多
关键词 ulti-component seismic converted wave gas cloud
下载PDF
CFD Simulation and Experimental Study of a New Elastic Blade Wave Energy Converter 被引量:4
15
作者 Chongfei Sun Jianzhong Shang +3 位作者 Zirong Luo Xin Li Zhongyue Lu Guoheng Wu 《Fluid Dynamics & Materials Processing》 EI 2020年第6期84-96,共13页
Small moving vehicles represent an important category of marine engineering tools and devices(equipment)typically used for ocean resource detection and maintenance of marine rights and interests.The lack of efficient ... Small moving vehicles represent an important category of marine engineering tools and devices(equipment)typically used for ocean resource detection and maintenance of marine rights and interests.The lack of efficient power supply modes is one of the technical bottlenecks restricting the effective utilisation of this type of equipment.In this work,the performance characteristics of a new type of elastic-blade/wave-energy converter(EBWEC)and its core energy conversion component(named wave energy absorber)are comprehensively studied.In particular,computational fluid dynamics(CFD)simulations and experiments have been used to analyze the hydrodynamics and performance characteristics of the EBWEC.The pressure cloud diagrams relating to the surface of the elastic blade were obtained through two-way fluid-solid coupling simulations.The influence of blade thickness and relative speed on the performance characteristics of EBWEC was analyzed accordingly.A prototype of the EBWEC and its bucket test platform were also developed.The power characteristics of the EBWEC were analyzed and studied by using the blade thickness and motion cycle as control variables.The present research shows that the EBWEC can effectively overcome the performance disadvantages related to the transmission shaft torque load and power curve fluctuations of rigid blade wave energy converters(RBWEC). 展开更多
关键词 Elastic blade wave energy converter structural design energy conversion mechanism computational fluid dynamics simulation EXPERIMENT hydrodynamic characteristics
下载PDF
The Assessment of Ocean Wave Energy Along the Coasts of Taiwan 被引量:2
16
作者 LIN Yu-Hsien FANG Ming-Chung 《China Ocean Engineering》 SCIE EI 2012年第3期413-430,共18页
The wave energy resource around the coasts of Taiwan is investigated with wave buoy data covering a 3-year period (2007-2009). Eleven study sites within the region bounded by the 21.5^°N-25.5°N latitudes a... The wave energy resource around the coasts of Taiwan is investigated with wave buoy data covering a 3-year period (2007-2009). Eleven study sites within the region bounded by the 21.5^°N-25.5°N latitudes and 118°E-122°E longitudes are selected for analysis. The monthly moving-average filter is used to obtain the low-frequency trend based on the available hourly data. After quantifying the wave power and annual wave energy, the substantial resource is the result of Penghu buoy station, which is at the northeastern side of Penghu Island in the Taiwan Strait. it is investigated that the Penghu sea area is determined to be the optimal place for wave energy production according to its abundant resource of northeasterly monsoon waves, sheltering of the Taiwan Island, operation and maintenance in terms of seasonal conditions, and constructability of wave power devices. 展开更多
关键词 ocean wave energy wave energy converter wave climate Taiwan Strait monsoon waves
下载PDF
Converted-wave Seismology in Anisotropic Media Revisited, Part II: Application to Parameter Estimation 被引量:2
17
作者 李向阳 Yuan Jianxin 《Applied Geophysics》 SCIE CSCD 2005年第3期153-167,i0001,F0003,共17页
In transversely isotropic media with a vertical symmetry axis (VTI), the converted-wave (C-wave) moveout over intermediate-to-far offsets is determined by four parameters. These are the C-wave stacking velocity Vc... In transversely isotropic media with a vertical symmetry axis (VTI), the converted-wave (C-wave) moveout over intermediate-to-far offsets is determined by four parameters. These are the C-wave stacking velocity Vc2 , the vertical and effective velocity ratios γ0 and γeff, and the anisotropic parameter χeff. We refer to the four parameters as the C-wave stacking velocity model. The purpose of C-wave velocity analysis is to determine this stacking velocity model. The C-wave stacking velocity model Vc2, γ0, γeff, and χeff can be determined from P-and C-wave reflection moveout data. However, error propagation is a severe problem in C-wave reflection-moveout inversion. The current short-spread stacking velocity as deduced from hyperbolic moveout does not provide sufficient accuracy to yield meaningful inverted values for the anisotropic parameters. The non-hyperbolic moveout over intermediate-offsets (x/z from 1.0 to 1.5) is no longer negligible and can be quantified using a background γ. Non-hyperbolic analysis with a γ correction over the intermediate offsets can yield Vc2 with errors less than 1% for noise free data. The procedure is very robust, allowing initial guesses of γ with up to 20% errors. It is also applicable for vertically inhomogeneous anisotropic media. This improved accuracy makes it possible to estimate anisotropic parameters using 4C seismic data. Two practical work flows are presented for this purpose: the double-scanning flow and the single-scanning flow. Applications to synthetic and real data show that the two flows yield results with similar accuracy but the single-scanning flow is more efficient than the double-scanning flow. 展开更多
关键词 converted wave ANISOTROPIC MOVEOUT VELOCITY and seismology
下载PDF
Wave Slamming on An OWSC Wave Energy Converter in Coupled Wave-Current Conditions with Variable-Depth Seabed 被引量:2
18
作者 CHENG Yong JI Chun-yan +1 位作者 YUAN Zhi-ming Atilla INCECIK 《China Ocean Engineering》 SCIE EI CSCD 2021年第5期646-661,共16页
Coastal wave energy resources have enormous exploitation potential due to shorter weather window,closer installation distance and lower maintenance cost.However,impact loads generated by depth variation from offshore ... Coastal wave energy resources have enormous exploitation potential due to shorter weather window,closer installation distance and lower maintenance cost.However,impact loads generated by depth variation from offshore to nearshore and wave-current interaction,may lead to a catastrophic damage or complete destruction to wave energy converters(WECs).This objective of this paper is to investigate slamming response of a coastal oscillating wave surge converter(OWSC)entering or leaving water freely.Based on fully nonlinear potential flow theory,a time-domain wave-current-structure interaction model combined with higher-order boundary element method(HOBEM),is developed to analyze the coupled hydrodynamic problem.The variable-depth seabed is considered in the model to illustrate the shallow water effect on impact loads and free surface profiles in coastal zone.A domain decomposition approach is utilized to simulate the overlapping phenomenon generated by a jet falling into water under gravity effect.Through a series of Lagrangian interpolation methods,the meshes on boundaries are rearranged to avoid the mismatch between element size on free surface and body surface.The present model is validated against the existing experimental and numerical results.Simulations are also provided for the effects of wave-current interaction and uneven local seabed on the slamming responses.It is found that the length of the splash jet increases for a following current and decreases for an opposing current,and that the slamming response of the OWSC device is sensitive to the geometric features of the uneven seabed. 展开更多
关键词 wave-current interaction oscillating wave surge converter fully nonlinear potential flow theory slamming response higher-order boundary element method
下载PDF
Inversion of shear wave interval velocity on prestack converted wave data 被引量:2
19
作者 魏修成 王建民 陈天胜 《Acta Seismologica Sinica(English Edition)》 CSCD 2007年第2期180-187,共8页
Seismic velocity is important to migration of seismic data, interpretation of lithology and lithofacies as well as prediction of reservoir. The information of shear wave velocity is required to reduce the uncertainty ... Seismic velocity is important to migration of seismic data, interpretation of lithology and lithofacies as well as prediction of reservoir. The information of shear wave velocity is required to reduce the uncertainty for discriminating lithology, identifying fluid type in porous material and calculating gas saturation in reservoir prediction. Based on Zoeppritz equations, a numeral and scanning method was proposed in this paper. Shear wave velocity can be calculated with prestack converted wave data. The effects were demonstrated by inversion of theoretical and real seismic data. 展开更多
关键词 converted wave prestack inversion shear-wave velocity
下载PDF
Study of Hydrodynamic Characteristics of A Sharp Eagle Wave Energy Converter 被引量:2
20
作者 ZHANG Ya-qun 《China Ocean Engineering》 SCIE EI CSCD 2017年第3期364-369,共6页
According to Newton's Second Law and the microwave theory, mechanical analysis of multiple buoys which form Sharp Eagle wave energy converter (WEC) is carried out. The movements of every buoy in three modes couple ... According to Newton's Second Law and the microwave theory, mechanical analysis of multiple buoys which form Sharp Eagle wave energy converter (WEC) is carried out. The movements of every buoy in three modes couple each other when they are affected with incident waves. Based on the above, mechanical models of the WEC are established, which are concerned with fluid forces, damping forces, hinge forces, and so on. Hydrodynamic parameters of one buoy are obtained by taking the other moving buoy as boundary conditions. Then, by taking those hydrodynamic parameters into the mechanical models, the optimum external damping and optimal capture width ratio are calculated out. Under the condition of the optimum external damping, a plenty of data are obtained, such as the displacements amplitude of each buoy in three modes (sway, heave, pitch), damping forces, hinge forces, and speed of the hydraulic cylinder. Research results provide theoretical references and basis for Sharp Eagle WECs in the design and manufacture. 展开更多
关键词 Sharp Eagle wave energy converter (WEC) HYDRODYNAMICS capture width ratio optimal external damping optimization design
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部