期刊文献+
共找到122,156篇文章
< 1 2 250 >
每页显示 20 50 100
WavewatchⅢ模拟和统计方法在最大波高预报方面的评测分析
1
作者 王娟娟 侯放 +1 位作者 吴淑萍 王久珂 《海洋预报》 CSCD 北大核心 2024年第1期1-9,共9页
为了研究WavewatchⅢ(WWⅢ)海浪模型对最大波高的模拟能力及其与传统统计关系方法的差异,通过对两次台风浪过程的后报模拟和半年的业务化预报,分析了WWⅢ数值模拟的准确度及其与统计关系方法的精度差异。研究结果表明:WWⅢ数值模拟的最... 为了研究WavewatchⅢ(WWⅢ)海浪模型对最大波高的模拟能力及其与传统统计关系方法的差异,通过对两次台风浪过程的后报模拟和半年的业务化预报,分析了WWⅢ数值模拟的准确度及其与统计关系方法的精度差异。研究结果表明:WWⅢ数值模拟的最大波高(Hmax)的精度略低于有效波高(Hs),但也达到了24 h预报相对误差(H_(max)≥1 m)低于18%、相关系数高于0.94的水平,模拟精度可靠,可以用于业务化预报;与两种统计关系方法(H_(max)和H_(s)分别为1.42和1.52)计算的最大波高相比,数值模拟的精度总体与其相当,但在H_(max)和H_(s)比值大于1.65这种易出现危险的海况下,数值模拟具有更高的准确性,更适合应用于海浪预警报服务。 展开更多
关键词 最大波高 wavewatchⅢ模型 数值模拟 统计关系 预报精度
下载PDF
基于D-Wave Advantage的量子退火公钥密码攻击算法研究
2
作者 王潮 王启迪 +2 位作者 洪春雷 胡巧云 裴植 《计算机学报》 EI CAS CSCD 北大核心 2024年第5期1030-1044,共15页
D-Wave专用量子计算机的原理量子退火凭借独特的量子隧穿效应可跳出传统智能算法极易陷入的局部极值,可视为一类具有全局寻优能力的人工智能算法.本文研究了两类基于量子退火的RSA公钥密码攻击算法(分解大整数N=pq):一是将密码攻击数学... D-Wave专用量子计算机的原理量子退火凭借独特的量子隧穿效应可跳出传统智能算法极易陷入的局部极值,可视为一类具有全局寻优能力的人工智能算法.本文研究了两类基于量子退火的RSA公钥密码攻击算法(分解大整数N=pq):一是将密码攻击数学方法转为组合优化问题或指数级空间搜索问题,通过Ising模型或QUBO模型求解,提出了乘法表的高位优化模型,建立新的降维公式,使用D-Wave Advantage分解了 200万整数2269753.大幅度超过普渡大学、Lockheed Martin和富士通等实验指标,且Ising模型系数h范围缩小了 84%,系数J范围缩小了 80%,极大地提高了分解成功率,这是一类完全基于D-Wave量子计算机的攻击算法;二是基于量子退火算法融合密码攻击数学方法优化密码部件的攻击,采用量子退火优化CVP问题求解,通过量子隧穿效应获得比Babai算法更近的向量,提高了 CVP问题中光滑对的搜索效率,在D-Wave Advantage上实现首次50比特RSA整数分解.实验表明,在通用量子计算机器件进展缓慢情况下,D-Wave表现出更好的现实攻击能力,且量子退火不存在NISQ量子计算机VQA算法的致命缺陷贫瘠高原问题:算法会无法收敛且无法扩展到大规模攻击. 展开更多
关键词 RSA D-wave 量子退火 CVP 量子隧穿 整数分解 量子计算
下载PDF
Absorption properties and mechanism of lightweight and broadband electromagnetic wave-absorbing porous carbon by the swelling treatment 被引量:4
3
作者 Jianghao Wen Di Lan +4 位作者 Yiqun Wang Lianggui Ren Ailing Feng Zirui Jia Guanglei Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1701-1712,共12页
Bioderived carbon materials have garnered considerable interest in the fields of microwave absorption and shielding due to their reproducibility and environmental friendliness.In this study,KOH was evenly distributed ... Bioderived carbon materials have garnered considerable interest in the fields of microwave absorption and shielding due to their reproducibility and environmental friendliness.In this study,KOH was evenly distributed on biomass Tremella using the swelling induction method,leading to the preparation of a three-dimensional network-structured hierarchical porous carbon(HPC)through carbonization.The achieved microwave absorption intensity is robust at-47.34 dB with a thin thickness of 2.1 mm.Notably,the widest effective absorption bandwidth,reaching 7.0 GHz(11–18 GHz),is attained at a matching thickness of 2.2 mm.The exceptional broadband and reflection loss performance are attributed to the 3D porous networks,interface effects,carbon network defects,and dipole relaxation.HPC has outstanding absorption characteristics due to its excellent impedance matching and high attenuation constant.The uniform pore structures considerably optimize the impedance-matching performance of the material,while the abundance of interfaces and defects enhances the dielectric loss,thereby improving the attenuation constant.Furthermore,the impact of carbonization temperature and swelling rate on microwave absorption performance was systematically investigated.This research presents a strategy for preparing absorbing materials using biomass-derived HPC,showcasing considerable potential in the field of electromagnetic wave absorption. 展开更多
关键词 BIOMASS hierarchical porous carbon dielectric loss electromagnetic wave absorption
下载PDF
Tracking Regulatory Mechanism of Trace Fe on Graphene Electromagnetic Wave Absorption 被引量:3
4
作者 Kaili Zhang Yuhao Liu +5 位作者 Yanan Liu Yuefeng Yan Guansheng Ma Bo Zhong Renchao Che Xiaoxiao Huang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期79-96,共18页
Polarization and conductance losses are the fundamental dielectric attenuation mechanisms for graphene-based absorbers, but it is not fully understood in revealing the loss mechanism of affect graphene itself. For the... Polarization and conductance losses are the fundamental dielectric attenuation mechanisms for graphene-based absorbers, but it is not fully understood in revealing the loss mechanism of affect graphene itself. For the first time, the reduced graphene oxide(RGO) based absorbers are developed with regulatory absorption properties and the absorption mechanism of RGO is mainly originated from the carrier injection behavior of trace metal Fe nanosheets on graphene. Accordingly, the minimum reflection loss(RLmin) of Fe/RGO-2composite reaches-53.38 dB(2.45 mm), and the effective absorption bandwidth achieves 7.52 GHz(2.62 mm) with lower filling loading of 2 wt%. Using off-axis electron hologram testing combined with simulation calculation and carrier transport property experiments, we demonstrate here the carrier injection behavior from Fe to graphene at the interface and the induced charge accumulation and rearrangement, resulting in the increased interfacial and dipole polarization and the conductance loss. This work has confirmed that regulating the dielectric property of graphene itself by adding trace metals can not only ensure good impedance matching, but also fully exploit the dielectric loss ability of graphene at low filler content,which opens up an efficient way for designing lightweight absorbers and may be extended to other types materials. 展开更多
关键词 Reduced graphene oxide Fe nanosheets Dielectric loss Electromagnetic wave absorption
下载PDF
Nitrogen‑Doped Magnetic‑Dielectric‑Carbon Aerogel for High‑Efficiency Electromagnetic Wave Absorption 被引量:2
5
作者 Shijie Wang Xue Zhang +5 位作者 Shuyan Hao Jing Qiao Zhou Wang Lili Wu Jiurong Liu Fenglong Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期313-327,共15页
Carbonbased aerogels derived from biomass chitosan are encountering a flourishing moment in electromagnetic protection on account of lightweight,controllable fabrication and versatility.Nevertheless,developing a facil... Carbonbased aerogels derived from biomass chitosan are encountering a flourishing moment in electromagnetic protection on account of lightweight,controllable fabrication and versatility.Nevertheless,developing a facile construction method of component design with carbon-based aerogels for high-efficiency electromagnetic wave absorption(EWA)materials with a broad effective absorption bandwidth(EAB)and strong absorption yet hits some snags.Herein,the nitrogen-doped magnetic-dielectric-carbon aerogel was obtained via ice template method followed by carbonization treatment,homogeneous and abundant nickel(Ni)and manganese oxide(MnO)particles in situ grew on the carbon aerogels.Thanks to the optimization of impedance matching of dielectric/magnetic components to carbon aerogels,the nitrogen-doped magnetic-dielectric-carbon aerogel(Ni/MnO-CA)suggests a praiseworthy EWA performance,with an ultra-wide EAB of 7.36 GHz and a minimum reflection loss(RLmin)of−64.09 dB,while achieving a specific reflection loss of−253.32 dB mm−1.Furthermore,the aerogel reveals excellent radar stealth,infrared stealth,and thermal management capabilities.Hence,the high-performance,easy fabricated and multifunctional nickel/manganese oxide/carbon aerogels have broad application aspects for electromagnetic protection,electronic devices and aerospace. 展开更多
关键词 Electromagnetic wave absorption Wide bandwidth Dielectric-magnetic synergy MULTIFUNCTION
下载PDF
Analysis of gravity wave activity during stratospheric sudden warmings in the northern hemisphere 被引量:2
6
作者 XuanYun Zeng Guang Zhong 《Earth and Planetary Physics》 EI CAS CSCD 2024年第2期415-422,共8页
Due to the significant changes they bring to high latitude stratospheric temperature and wind,stratospheric sudden warmings(SSWs)can have an impact on the propagation and energy distribution of gravity waves(GWs).The ... Due to the significant changes they bring to high latitude stratospheric temperature and wind,stratospheric sudden warmings(SSWs)can have an impact on the propagation and energy distribution of gravity waves(GWs).The variation characteristics of GWs during SSWs have always been an important issue.Using temperature data from January to March in 2014−2016,provided by the Constellation Observing System for Meteorology,Ionosphere and Climate(COSMIC)mission,we have analyzed global GW activity at 15−40 km in the Northern Hemisphere during SSW events.During the SSWs that we studied,the stratospheric temperature rose in one or two longitudinal regions in the Northern Hemisphere;the areas affected extended to the east of 90°W.During these SSWs,the potential energy density(E_(p)of GWs expanded and covered a larger range of longitude and altitude,exhibiting an eastward and downward extension.The E_(p)usually increased,while partially filtered by the eastward zonal winds.When zonal winds weakened or turned westward,E_(p)began to strengthen.After SSWs,the E_(p)usually decreased.These observations can serve as a reference for analyzing the interaction mechanism between SSWs and GWs in future work. 展开更多
关键词 stratospheric sudden warming gravity wave wind filter
下载PDF
Interface Engineering of Titanium Nitride Nanotube Composites for Excellent Microwave Absorption at Elevated Temperature 被引量:3
7
作者 Cuiping Li Dan Li +4 位作者 Shuai Zhang Long Ma Lei Zhang Jingwei Zhang Chunhong Gong 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期147-160,共14页
Currently,the microwave absorbers usually suffer dreadful electromagnetic wave absorption(EMWA)performance damping at elevated temperature due to impedance mismatching induced by increased conduction loss.Consequently... Currently,the microwave absorbers usually suffer dreadful electromagnetic wave absorption(EMWA)performance damping at elevated temperature due to impedance mismatching induced by increased conduction loss.Consequently,the development of high-performance EMWA materials with good impedance matching and strong loss ability in wide temperature spectrum has emerged as a top priority.Herein,due to the high melting point,good electrical conductivity,excellent environmental stability,EM coupling effect,and abundant interfaces of titanium nitride(TiN)nanotubes,they were designed based on the controlling kinetic diffusion procedure and Ostwald ripening process.Benefiting from boosted heterogeneous interfaces between TiN nanotubes and polydimethylsiloxane(PDMS),enhanced polarization loss relaxations were created,which could not only improve the depletion efficiency of EMWA,but also contribute to the optimized impedance matching at elevated temperature.Therefore,the TiN nanotubes/PDMS composite showed excellent EMWA performances at varied temperature(298-573 K),while achieved an effective absorption bandwidth(EAB)value of 3.23 GHz and a minimum reflection loss(RLmin)value of−44.15 dB at 423 K.This study not only clarifies the relationship between dielectric loss capacity(conduction loss and polarization loss)and temperature,but also breaks new ground for EM absorbers in wide temperature spectrum based on interface engineering. 展开更多
关键词 TiN nanotubes Interface engineering Polarization loss Impedance matching Electromagnetic wave absorption performance
下载PDF
Ultra-wide band gap and wave attenuation mechanism of a novel star-shaped chiral metamaterial 被引量:1
8
作者 Shuo WANG Anshuai WANG +7 位作者 Yansen WU Xiaofeng LI Yongtao SUN Zhaozhan ZHANG Qian DING G.D.AYALEW Yunxiang MA Qingyu LIN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第7期1261-1278,共18页
A novel hollow star-shaped chiral metamaterial(SCM)is proposed by incorporating chiral structural properties into the standard hollow star-shaped metamaterial,exhibiting a wide band gap over 1500 Hz.To broaden the ban... A novel hollow star-shaped chiral metamaterial(SCM)is proposed by incorporating chiral structural properties into the standard hollow star-shaped metamaterial,exhibiting a wide band gap over 1500 Hz.To broaden the band gap,solid single-phase and two-phase SCMs are designed and simulated,which produce two ultra-wide band gaps(approximately 5116 Hz and 6027 Hz,respectively).The main reason for the formation of the ultra-wide band gap is that the rotational vibration of the concave star of two novel SCMs drains the energy of an elastic wave.The impacts of the concave angle of a single-phase SCM and the resonator radius of a two-phase SCM on the band gaps are studied.Decreasing the concave angle leads to an increase in the width of the widest band gap,and the width of the widest band gap increases as the resonator radius of the two-phase SCM increases.Additionally,the study on elastic wave propagation characteristics involves analyzing frequency dispersion surfaces,wave propagation directions,group velocities,and phase velocities.Ultimately,the analysis focuses on the transmission properties of finite periodic structures.The solid single-phase SCM achieves a maximum vibration attenuation over 800,while the width of the band gap is smaller than that of the two-phase SCM.Both metamaterials exhibit high vibration attenuation capabilities,which can be used in wideband vibration reduction to satisfy the requirement of ultra-wide frequencies. 展开更多
关键词 METAMATERIAL ultra-wide band gap wave propagation vibration suppression
下载PDF
Pipeline thickness estimation using the dispersion of higher-order SH guided waves 被引量:1
9
作者 代政辰 刘金霞 +3 位作者 龙云飞 张建海 Tribikram Kundu 崔志文 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期389-396,共8页
Thickness measurement plays an important role in the monitoring of pipeline corrosion damage. However, the requirement for prior knowledge of the shear wave velocity in the pipeline material for popular ultrasonic thi... Thickness measurement plays an important role in the monitoring of pipeline corrosion damage. However, the requirement for prior knowledge of the shear wave velocity in the pipeline material for popular ultrasonic thickness measurement limits its widespread application. This paper proposes a method that utilizes cylindrical shear horizontal(SH) guided waves to estimate pipeline thickness without prior knowledge of shear wave velocity. The inversion formulas are derived from the dispersion of higher-order modes with the high-frequency approximation. The waveform of the example problems is simulated using the real-axis integral method. The data points on the dispersion curves are processed in the frequency domain using the wave-number method. These extracted data are then substituted into the derived formulas. The results verify that employing higher-order SH guided waves for the evaluation of thickness and shear wave velocity yields less than1% error. This method can be applied to both metallic and non-metallic pipelines, thus opening new possibilities for health monitoring of pipeline structures. 展开更多
关键词 pipeline wall thickness higher-order modes SH guided waves DISPERSION
下载PDF
Structural Engineering of Hierarchical Magnetic/Carbon Nanocomposites via In Situ Growth for High-Efficient Electromagnetic Wave Absorption 被引量:1
10
作者 Xianyuan Liu Jinman Zhou +1 位作者 Ying Xue Xianyong Lu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期262-278,共17页
Materials exhibiting high-performance electromagnetic wave absorption have garnered considerable scientific and technological attention,yet encounter significant challenges.Developing new materials and innovative stru... Materials exhibiting high-performance electromagnetic wave absorption have garnered considerable scientific and technological attention,yet encounter significant challenges.Developing new materials and innovative structural design concepts is crucial for expanding the application field of electromagnetic wave absorption.Particularly,hierarchical structure engineering has emerged as a promising approach to enhance the physical and chemical properties of materials,providing immense potential for creating versatile electromagnetic wave absorption materials.Herein,an exceptional multi-dimensional hierarchical structure was meticulously devised,unleashing the full microwave attenuation capabilities through in situ growth,selfreduction,and multi-heterogeneous interface integration.The hierarchical structure features a three-dimensional carbon framework,where magnetic nanoparticles grow in situ on the carbon skeleton,creating a necklace-like structure.Furthermore,magnetic nanosheets assemble within this framework.Enhanced impedance matching was achieved by precisely adjusting component proportions,and intelligent integration of diverse interfaces bolstered dielectric polarization.The obtain Fe_(3)O_(4)-Fe nanoparticles/carbon nanofibers/Al-Fe_(3)O_(4)-Fe nanosheets composites demonstrated outstanding performance with a minimum reflection loss(RLmin)value of−59.3 dB and an effective absorption bandwidth(RL≤−10 dB)extending up to 5.6 GHz at 2.2 mm.These notable accomplishments offer fresh insights into the precision design of high-efficient electromagnetic wave absorption materials. 展开更多
关键词 Electromagnetic wave absorption Hierarchical structure In situ growth Self-reduction
下载PDF
Linear and Non-Linear Dynamics of Inertial Waves in a Rotating Cylinder with Antiparallel Inclined Ends 被引量:1
11
作者 Mariya Shiryaeva Mariya Subbotina Stanislav Subbotin 《Fluid Dynamics & Materials Processing》 EI 2024年第4期787-802,共16页
This work is devoted to the experimental study of inertial wave regimes in a non-uniform rotating cylinder with antiparallel inclined ends.In this setting,the cross-section of the cylinder is divided into two regions ... This work is devoted to the experimental study of inertial wave regimes in a non-uniform rotating cylinder with antiparallel inclined ends.In this setting,the cross-section of the cylinder is divided into two regions where the fluid depth increases or decreases with radius.Three different regimes are found:inertial wave attractor,global oscillations(the cavity’s resonant modes)and regime of symmetric reflection of wave beams.In linear wave regimes,a steady single vortex elongated along the rotation axis is generated.The location of the wave’s interaction with the sloping ends determines the vortex position and the vorticity sign.In non-linear regimes several pairs of the triadic resonance subharmonics are detected simultaneously.The instability of triadic resonance is accompanied by the periodic generation of mean vortices drifting in the azimuthal direction.Moreover,the appearance frequency of the vortices is consistent with the low-frequency subharmonic of the triadic resonance.The experimental results shed light on the mechanisms of the inertial wave interaction with zonal flow and may be useful for the development of new methods of mixing. 展开更多
关键词 ROTATION inertial wave attractor triadic resonance zonal flow instability
下载PDF
Efficient Electromagnetic Wave Absorption and Thermal Infrared Stealth in PVTMS@MWCNT Nano‑Aerogel via Abundant Nano‑Sized Cavities and Attenuation Interfaces 被引量:1
12
作者 Haoyu Ma Maryam Fashandi +5 位作者 Zeineb Ben Rejeb Xin Ming Yingjun Liu Pengjian Gong Guangxian Li Chul B.Park 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期370-383,共14页
Pre-polymerized vinyl trimethoxy silane(PVTMS)@MWCNT nano-aerogel system was constructed via radical polymerization,sol-gel transition and supercritical CO_(2)drying.The fabricated organic-inorganic hybrid PVTMS@MWCNT... Pre-polymerized vinyl trimethoxy silane(PVTMS)@MWCNT nano-aerogel system was constructed via radical polymerization,sol-gel transition and supercritical CO_(2)drying.The fabricated organic-inorganic hybrid PVTMS@MWCNT aerogel structure shows nano-pore size(30-40 nm),high specific surface area(559 m^(2)g^(−1)),high void fraction(91.7%)and enhanced mechanical property:(1)the nano-pore size is beneficial for efficiently blocking thermal conduction and thermal convection via Knudsen effect(beneficial for infrared(IR)stealth);(2)the heterogeneous interface was beneficial for IR reflection(beneficial for IR stealth)and MWCNT polarization loss(beneficial for electromagnetic wave(EMW)attenuation);(3)the high void fraction was beneficial for enhancing thermal insulation(beneficial for IR stealth)and EMW impedance match(beneficial for EMW attenuation).Guided by the above theoretical design strategy,PVTMS@MWCNT nano-aerogel shows superior EMW absorption property(cover all Ku-band)and thermal IR stealth property(ΔT reached 60.7℃).Followed by a facial combination of the above nano-aerogel with graphene film of high electrical conductivity,an extremely high electromagnetic interference shielding material(66.5 dB,2.06 mm thickness)with superior absorption performance of an average absorption-to-reflection(A/R)coefficient ratio of 25.4 and a low reflection bandwidth of 4.1 GHz(A/R ratio more than 10)was experimentally obtained in this work. 展开更多
关键词 Nano-pore size Heterogeneous interface Electromagnetic wave absorption Thermal infrared stealth Nano-aerogel
下载PDF
Multiple Tin Compounds Modified Carbon Fibers to Construct Heterogeneous Interfaces for Corrosion Prevention and Electromagnetic Wave Absorption 被引量:1
13
作者 Zhiqiang Guo Di Lan +6 位作者 Zirui Jia Zhenguo Gao Xuetao Shi Mukun He Hua Guo Guanglei Wu Pengfei Yin 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期507-527,共21页
Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is con... Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is considered an effective means to achieve high-efficiency EMW absorption.However,interface modulation engineering has not been fully discussed and has great potential in the field of EMW absorption.In this study,multi-component tin compound fiber composites based on carbon fiber(CF)substrate were prepared by electrospinning,hydrothermal synthesis,and high-temperature thermal reduction.By utilizing the different properties of different substances,rich heterogeneous interfaces are constructed.This effectively promotes charge transfer and enhances interfacial polarization and conduction loss.The prepared SnS/SnS_(2)/SnO_(2)/CF composites with abundant heterogeneous interfaces have and exhibit excellent EMW absorption properties at a loading of 50 wt%in epoxy resin.The minimum reflection loss(RL)is−46.74 dB and the maximum effective absorption bandwidth is 5.28 GHz.Moreover,SnS/SnS_(2)/SnO_(2)/CF epoxy composite coatings exhibited long-term corrosion resistance on Q235 steel surfaces.Therefore,this study provides an effective strategy for the design of high-efficiency EMW absorbing materials in complex and harsh environments. 展开更多
关键词 Electrostatic spinning Component regulation Heterogeneous interfaces Electromagnetic wave absorption Corrosion protection
下载PDF
From VIB‑to VB‑Group Transition Metal Disulfides:Structure Engineering Modulation for Superior Electromagnetic Wave Absorption 被引量:1
14
作者 Junye Cheng Yongheng Jin +10 位作者 Jinghan Zhao Qi Jing Bailong Gu Jialiang Wei Shenghui Yi Mingming Li Wanli Nie Qinghua Qin Deqing Zhang Guangping Zheng Renchao Che 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期218-257,共40页
The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various field... The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various fields,such as catalysis,energy storage,sensing,etc.In recent years,a lot of research work on TMDs based functional materials in the fields of electromagnetic wave absorption(EMA)has been carried out.Therefore,it is of great significance to elaborate the influence of TMDs on EMA in time to speed up the application.In this review,recent advances in the development of electromagnetic wave(EMW)absorbers based on TMDs,ranging from the VIB group to the VB group are summarized.Their compositions,microstructures,electronic properties,and synthesis methods are presented in detail.Particularly,the modulation of structure engineering from the aspects of heterostructures,defects,morphologies and phases are systematically summarized,focusing on optimizing impedance matching and increasing dielectric and magnetic losses in the EMA materials with tunable EMW absorption performance.Milestones as well as the challenges are also identified to guide the design of new TMDs based dielectric EMA materials with high performance. 展开更多
关键词 Transition metal disulfides Electromagnetic wave absorption Impedance matching Structure engineering modulation
下载PDF
Accurate simulations of pure-viscoacoustic wave propagation in tilted transversely isotropic media 被引量:1
15
作者 Qiang Mao Jian-Ping Huang +2 位作者 Xin-Ru Mu Ji-Dong Yang Yu-Jian Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期866-884,共19页
Forward modeling of seismic wave propagation is crucial for the realization of reverse time migration(RTM) and full waveform inversion(FWI) in attenuating transversely isotropic media. To describe the attenuation and ... Forward modeling of seismic wave propagation is crucial for the realization of reverse time migration(RTM) and full waveform inversion(FWI) in attenuating transversely isotropic media. To describe the attenuation and anisotropy properties of subsurface media, the pure-viscoacoustic anisotropic wave equations are established for wavefield simulations, because they can provide clear and stable wavefields. However, due to the use of several approximations in deriving the wave equation and the introduction of a fractional Laplacian approximation in solving the derived equation, the wavefields simulated by the previous pure-viscoacoustic tilted transversely isotropic(TTI) wave equations has low accuracy. To accurately simulate wavefields in media with velocity anisotropy and attenuation anisotropy, we first derive a new pure-viscoacoustic TTI wave equation from the exact complex-valued dispersion formula in viscoelastic vertical transversely isotropic(VTI) media. Then, we present the hybrid finite-difference and low-rank decomposition(HFDLRD) method to accurately solve our proposed pure-viscoacoustic TTI wave equation. Theoretical analysis and numerical examples suggest that our pure-viscoacoustic TTI wave equation has higher accuracy than previous pure-viscoacoustic TTI wave equations in describing q P-wave kinematic and attenuation characteristics. Additionally, the numerical experiment in a simple two-layer model shows that the HFDLRD technique outperforms the hybrid finite-difference and pseudo-spectral(HFDPS) method in terms of accuracy of wavefield modeling. 展开更多
关键词 Pure-viscoacoustic TTI wave equation Attenuation anisotropy Seismic modeling Low-rank decomposition method
下载PDF
A novel method for simulating nuclear explosion with chemical explosion to form an approximate plane wave: Field test and numerical simulation 被引量:1
16
作者 Wei Ming Xiaojie Yang +3 位作者 Yadong Mao Xiang Wang Manchao He Zhigang Tao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2137-2153,共17页
A nuclear explosion in the rock mass medium can produce strong shock waves,seismic shocks,and other destructive effects,which can cause extreme damage to the underground protection infrastructures.With the increase in... A nuclear explosion in the rock mass medium can produce strong shock waves,seismic shocks,and other destructive effects,which can cause extreme damage to the underground protection infrastructures.With the increase in nuclear explosion power,underground protection engineering enabled by explosion-proof impact theory and technology ushered in a new challenge.This paper proposes to simulate nuclear explosion tests with on-site chemical explosion tests in the form of multi-hole explosions.First,the mechanism of using multi-hole simultaneous blasting to simulate a nuclear explosion to generate approximate plane waves was analyzed.The plane pressure curve at the vault of the underground protective tunnel under the action of the multi-hole simultaneous blasting was then obtained using the impact test in the rock mass at the site.According to the peak pressure at the vault plane,it was divided into three regions:the stress superposition region,the superposition region after surface reflection,and the approximate plane stress wave zone.A numerical simulation approach was developed using PFC and FLAC to study the peak particle velocity in the surrounding rock of the underground protective cave under the action of multi-hole blasting.The time-history curves of pressure and peak pressure partition obtained by the on-site multi-hole simultaneous blasting test and numerical simulation were compared and analyzed,to verify the correctness and rationality of the formation of an approximate plane wave in the simulated nuclear explosion.This comparison and analysis also provided a theoretical foundation and some research ideas for the ensuing study on the impact of a nuclear explosion. 展开更多
关键词 Approximate plane wave Multi-hole simultaneous blasting Chemical explosion Nuclear explosion Pressure sensor inclusion
下载PDF
Customization of FeNi alloy nanosheet arrays inserted with biomass-derived carbon templates for boosted electromagnetic wave absorption 被引量:1
17
作者 Xuanqi Yang Honghan Wang +5 位作者 Jing Chen Qingda An Zuoyi Xiao Jingai Hao Shangru Zhai Junye Sheng 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期812-824,共13页
Electromagnetic wave(EMW)-absorbing materials have considerable capacity in the military field and the prevention of EMW radiation from harming human health.However,obtaining lightweight,high-performance,and broadband... Electromagnetic wave(EMW)-absorbing materials have considerable capacity in the military field and the prevention of EMW radiation from harming human health.However,obtaining lightweight,high-performance,and broadband EMW-absorbing material remains an overwhelming challenge.Creating dielectric/magnetic composites with customized structures is a strategy with great promise for the development of high-performance EMW-absorbing materials.Using layered double hydroxides as the precursors of bimetallic alloys and combining them with porous biomass-derived carbon materials is a potential way for constructing multi-interface heterostructures as efficient EMW-absorbing materials because they have synergistic losses,low costs,abundant resources,and light weights.Here,FeNi alloy nanosheet array/Lycopodium spore-derived carbon(FeNi/LSC)was prepared through a simple hydrothermal and carbonization method.FeNi/LSC presents ideal EMW-absorbing performance by benefiting from the FeNi alloy nanosheet array,sponge-like structure,capability for impedance matching,and improved dielectric/magnetic losses.As expected,FeNi/LSC exhibited the minimum reflection loss of-58.3 dB at 1.5 mm with 20wt%filler content and a widely effective absorption bandwidth of 4.92 GHz.FeNi/LSC composites with effective EMW-absorbing performance provide new insights into the customization of biomass-derived composites as high-performance and lightweight broadband EMW-absorbing materials. 展开更多
关键词 spore-derived carbon FeNi alloy nanosheet array multi-interface heterostructures synergistic effect efficient electromagnet-ic wave absorption
下载PDF
Mixed‑Dimensional Assembly Strategy to Construct Reduced Graphene Oxide/Carbon Foams Heterostructures for Microwave Absorption,Anti‑Corrosion and Thermal Insulation 被引量:2
18
作者 Beibei Zhan Yunpeng Qu +8 位作者 Xiaosi Qi Junfei Ding Jiao‑jing Shao Xiu Gong Jing‑Liang Yang Yanli Chen Qiong Peng Wei Zhong Hualiang Lv 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期1-18,共18页
Considering the serious electromagnetic wave(EMW)pollution problems and complex application condition,there is a pressing need to amalgamate multiple functionalities within a single substance.However,the effective int... Considering the serious electromagnetic wave(EMW)pollution problems and complex application condition,there is a pressing need to amalgamate multiple functionalities within a single substance.However,the effective integration of diverse functions into designed EMW absorption materials still faces the huge challenges.Herein,reduced graphene oxide/carbon foams(RGO/CFs)with two-dimensional/three-dimensional(2D/3D)van der Waals(vdWs)heterostructures were meticulously engineered and synthesized utilizing an efficient methodology involving freeze-drying,immersing absorption,secondary freeze-drying,followed by carbonization treatment.Thanks to their excellent linkage effect of amplified dielectric loss and optimized impedance matching,the designed 2D/3D RGO/CFs vdWs heterostructures demonstrated commendable EMW absorption performances,achieving a broad absorption bandwidth of 6.2 GHz and a reflection loss of-50.58 dB with the low matching thicknesses.Furthermore,the obtained 2D/3D RGO/CFs vdWs heterostructures also displayed the significant radar stealth properties,good corrosion resistance performances as well as outstanding thermal insulation capabilities,displaying the great potential in complex and variable environments.Accordingly,this work not only demonstrated a straightforward method for fabricating 2D/3D vdWs heterostructures,but also outlined a powerful mixeddimensional assembly strategy for engineering multifunctional foams for electromagnetic protection,aerospace and other complex conditions. 展开更多
关键词 Multifunctionality Reduced graphene oxide/carbon foams 2D/3D van der Waals heterostructures Electromagnetic wave absorption Thermal insulation
下载PDF
Enhancing electromagnetic wave absorption with core‐shell structured SiO_(2)@MXene@MoS_(2) nanospheres 被引量:1
19
作者 Xuewen Jiang Qian Wang +7 位作者 Limeng Song Hongxia Lu Hongliang Xu Gang Shao Hailong Wang Rui Zhang Changan Wang Bingbing Fan 《Carbon Energy》 SCIE EI CAS CSCD 2024年第8期90-104,共15页
Material composition and structural design are important factors influencing the electromagnetic wave(EMW)absorption performance of materials.To alleviate the impedance mismatch attributed to the high dielectric const... Material composition and structural design are important factors influencing the electromagnetic wave(EMW)absorption performance of materials.To alleviate the impedance mismatch attributed to the high dielectric constant of Ti_(3)C_(2)T_(x)MXene,we have successfully synthesized core‐shell structured SiO_(2)@MXene@MoS_(2)nanospheres.This architecture,comprising SiO_(2) as the core,MXene as the intermediate layer,and MoS_(2) as the outer shell,is achieved through an electrostatic self‐assembly method combined with a hydrothermal process.This complex core‐shell structure not only provides a variety of loss mechanisms that effectively dissipate electromagnetic energy but also prevents self‐aggregation of MXene and MoS_(2) nanosheets.Notably,the synergistic combination of SiO_(2) and MoS_(2) with highly conductive MXene enables the suitable dielectric constant of the composites,ensuring optimal impedance matching.Therefore,the core‐shell structured SiO_(2)@MXene@MoS_(2) nanospheres exhibit excellent EMW absorption performance,featuring a remarkable minimum reflection loss(RL_(min))of−52.11 dB(2.4 mm).It is noteworthy that these nanospheres achieve an ultra‐wide effective absorption bandwidth(EAB)of 6.72 GHz.This work provides a novel approach for designing and synthesizing high‐performance EMW absorbers characterized by“wide bandwidth and strong reflection loss.” 展开更多
关键词 core‐shell structure electromagnetic wave absorption multiloss mechanism SiO_(2)@MXene@MoS_(2)
下载PDF
The Magnetic Longitudinal (P-) Wave’s Propagation and Energy Models Underlying the Mechanisms of Its Capacity to Absorb Free Energy 被引量:1
20
作者 Jianzhong Jiang Yufeng Wang 《Journal of Power and Energy Engineering》 2024年第7期39-62,共24页
The longitudinal wave term within Faraday’s law of electromagnetic induction (Faraday’s law) underwent recovery to ensure its suitability for theoretical derivation of the equation governing longitudinal electromagn... The longitudinal wave term within Faraday’s law of electromagnetic induction (Faraday’s law) underwent recovery to ensure its suitability for theoretical derivation of the equation governing longitudinal electromagnetic (LEM) waves. The revised Maxwell’s equations include the crucial parameters being the attenuation time constants of magnetic vortex potential and electric vortex potential generated by external electromagnetic field within the propagation medium. Specific expressions for them are obtained through theoretical analysis. Subsequently, a model for propagating magnetic P-wave generated by the superposition of a left-handed photo and a right-handed photon in a vacuum is formulated based on reevaluated total current law and revised Faraday’s law, covering wave equations, energy equation, as well as propagation mode involving mutual induction and conversion between scalar magnetic field and vortex electric field. Furthermore, through theoretical derivations centered around magnetic P-wave, evidence was presented regarding its ability to absorb huge free energy through the entangled interaction between zero-point vacuum energy field and the torsion field produced by the vortex electric field. 展开更多
关键词 QED (Quantum Electrodynamics) Energy wave and TEM (Transverse Electromagnetic) wave Magnetic P-wave Modified Faraday’s Law of Electromagnetic Induction Electric/Magnetic Vortex Potential Zero-Point Vacuum Energy
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部