The paper presents the improved element-free Galerkin (IEFG) method for three-dimensional wave propa- gation. The improved moving least-squares (IMLS) approx- imation is employed to construct the shape function, w...The paper presents the improved element-free Galerkin (IEFG) method for three-dimensional wave propa- gation. The improved moving least-squares (IMLS) approx- imation is employed to construct the shape function, which uses an orthogonal function system with a weight function as the basis function. Compared with the conventional moving least-squares (MLS) approximation, the algebraic equation system in the IMLS approximation is not ill-conditioned, and can be solved directly without deriving the inverse matrix. Because there are fewer coefficients in the IMLS than in the MLS approximation, fewer nodes are selected in the IEFG method than in the element-free Galerkin method. Thus, the IEFG method has a higher computing speed. In the IEFG method, the Galerkin weak form is employed to obtain a dis- cretized system equation, and the penalty method is applied to impose the essential boundary condition. The traditional difference method for two-point boundary value problems is selected for the time discretization. As the wave equations and the boundary-initial conditions depend on time, the scal- ing parameter, number of nodes and the time step length are considered for the convergence study.展开更多
The article gives a semi-discrete method for solving high-dimension wave equationBy the method, high-dimension wave equation is converted by, means of diseretizationinto I-D wave equation system which is well-posed. T...The article gives a semi-discrete method for solving high-dimension wave equationBy the method, high-dimension wave equation is converted by, means of diseretizationinto I-D wave equation system which is well-posed. The convergence of the semidijcrete method is given. The numerical calculating resulis show that the speed of convergence is high.展开更多
We consider a finite difference scheme for a nonlinear wave equation, whose solutions may lose their smoothness in finite time, i.e., blow up in finite time. In order to numerically reproduce blow-up solutions, we pro...We consider a finite difference scheme for a nonlinear wave equation, whose solutions may lose their smoothness in finite time, i.e., blow up in finite time. In order to numerically reproduce blow-up solutions, we propose a rule for a time-stepping,which is a variant of what was successfully used in the case of nonlinear parabolic equations. A numerical blow-up time is defined and is proved to converge, under a certain hypothesis, to the real blow-up time as the grid size tends to zero.展开更多
The equation of wave propagation in a circular chamber with mean flow is obtained. Computational solution based on finite element method is employed to determine the transmission loss of expansive chamber. The effect ...The equation of wave propagation in a circular chamber with mean flow is obtained. Computational solution based on finite element method is employed to determine the transmission loss of expansive chamber. The effect of the mean flow and geometry (length of expansion chamber and expansion ratio)on acoustic attenuation performance is discussed, the predicted values of transmission loss of expansion chamber without and with mean flow are compared with those reported in the literature and they agree well. The accuracy of the prediction of transmission loss implies that finite element approximations are applicable to a lot of practical applications.展开更多
Under the background of the energy saving and emission reduction, more and more attention has been placed on investigating the energy efficiency of ships. The added resistance has been noted for being crucial in predi...Under the background of the energy saving and emission reduction, more and more attention has been placed on investigating the energy efficiency of ships. The added resistance has been noted for being crucial in predicting the decrease of speed on a ship operating at sea. Furthermore, it is also significant to investigate the added resistance for a ship functioning in short waves of large modern ships. The researcher presents an estimation formula for the calculation of an added resistance study in short waves derived from the reflection law. An improved method has been proposed to calculate the added resistance due to ship motions, which applies the radiated energy theory along with the strip method. This procedure is based on an extended integral equation (EIE) method, which was used for solving the hydrodynamic coefficients without effects of the irregular frequency. Next, a combined method was recommended for the estimation of added resistance for a ship in the whole wave length range. The comparison data with other experiments indicate the method presented in the paper provides satisfactory results for large blunt ship.展开更多
It is difficult to compute far-field waves in a relative large area by using one wave generation model when a large calculation domain is needed because of large dimensions of the waterway and long distance of the req...It is difficult to compute far-field waves in a relative large area by using one wave generation model when a large calculation domain is needed because of large dimensions of the waterway and long distance of the required computing points. Variation of waterway bathymetry and nonlinearity in the far field cannot be included in a ship fixed process either. A coupled method combining a wave generation model and wave propagation model is then used in this paper to simulate the wash waves generated by the passing ship. A NURBS-based higher order panel method is adopted as the stationary wave generation model; a wave spectrum method and Boussinesq-type equation wave model are used as the wave propagation model for the constant water depth condition and variable water depth condition, respectively. The waves calculated by the NURBS-based higher order panel method in the near field are used as the input for the wave spectrum method and the Boussinesq-type equation wave model to obtain the far-field waves. With this approach it is possible to simulate the ship wash waves including the effects of water depth and waterway bathymetry. Parts of the calculated results are validated experimentally, and the agreement is demonstrated. The effects of ship wash waves on the moored ship are discussed by using a diffraction theory method. The results indicate that the prediction of the ship induced waves by coupling models is feasible.展开更多
An efficient and accurate exponential wave integrator Fourier pseudospectral (EWI-FP) method is proposed and analyzed for solving the symmetric regularized-long-wave (SRLW) equation, which is used for modeling the...An efficient and accurate exponential wave integrator Fourier pseudospectral (EWI-FP) method is proposed and analyzed for solving the symmetric regularized-long-wave (SRLW) equation, which is used for modeling the weakly nonlinear ion acoustic and space-charge waves. The numerical method here is based on a Gautschi-type exponential wave integrator for temporal approximation and the Fourier pseudospectral method for spatial discretization. The scheme is fully explicit and efficient due to the fast Fourier transform. Numerical analysis of the proposed EWI-FP method is carried out and rigorous error estimates are established without CFL-type condition by means of the mathematical induction. The error bound shows that EWI-FP has second order accuracy in time and spectral accuracy in space. Numerical results are reported to confirm the theoretical studies and indicate that the error bound here is optimal.展开更多
By using the method of dynamical system, the exact travelling wave solutions of the coupled nonlinear Schrdinger-KdV equations are studied. Based on this method, all phase portraits of the system in the parametric spa...By using the method of dynamical system, the exact travelling wave solutions of the coupled nonlinear Schrdinger-KdV equations are studied. Based on this method, all phase portraits of the system in the parametric space are given. All possible bounded travelling wave solutions such as solitary wave solutions and periodic travelling wave solutions are obtained. With the aid of Maple software, the numerical simulations are conducted for solitary wave solutions and periodic travelling wave solutions to the coupled nonlinear Schrdinger-KdV equations. The results show that the presented findings improve the related previous conclusions.展开更多
In this paper,several new constant-amplitude and variable-amplitude wave solutions(namely,traveling wave solutions) of a generalized nonlinear Schrdinger equation are investigated by using the extended homogeneous b...In this paper,several new constant-amplitude and variable-amplitude wave solutions(namely,traveling wave solutions) of a generalized nonlinear Schrdinger equation are investigated by using the extended homogeneous balance method,where the balance method is applied to solve the Riccati equation and the reduced nonlinear ordinary differential equation,respectively.In addition,stability analysis of those solutions are also conducted by regular phase plane technique.展开更多
In this paper, the higher order NLS equation with cubic-quintic nonlinear terms is studied, new abundant solitary solutions with traveling-wave envelope of this equation are obtained with the aid of a generalized auxi...In this paper, the higher order NLS equation with cubic-quintic nonlinear terms is studied, new abundant solitary solutions with traveling-wave envelope of this equation are obtained with the aid of a generalized auxiliary equation method and complex envelope non-traveling transform approach.展开更多
Wave breaking plays an important role in wave-structure interaction. A novel control volume finite element method with adaptive unstructured meshes is employed here to study 3-D breaking waves. The numerical framework...Wave breaking plays an important role in wave-structure interaction. A novel control volume finite element method with adaptive unstructured meshes is employed here to study 3-D breaking waves. The numerical framework consists of a "volume of fluid" type method for the interface capturing and adaptive unstructured meshes to improve computational efficiency. The numerical model is validated against experimental measurements of breaking wave over a sloping beach and is then used to study the breaking wave impact on a vertical circular cylinder on a slope. Detailed complex interfacial structures during wave impact, such as plunging jet formation and splash-up are captured in the simulation, demonstrating the capability of the present method.展开更多
基金supported by the National Natural Science Foundation of China (11171208)Shanghai Leading Academic Discipline Project (S30106)
文摘The paper presents the improved element-free Galerkin (IEFG) method for three-dimensional wave propa- gation. The improved moving least-squares (IMLS) approx- imation is employed to construct the shape function, which uses an orthogonal function system with a weight function as the basis function. Compared with the conventional moving least-squares (MLS) approximation, the algebraic equation system in the IMLS approximation is not ill-conditioned, and can be solved directly without deriving the inverse matrix. Because there are fewer coefficients in the IMLS than in the MLS approximation, fewer nodes are selected in the IEFG method than in the element-free Galerkin method. Thus, the IEFG method has a higher computing speed. In the IEFG method, the Galerkin weak form is employed to obtain a dis- cretized system equation, and the penalty method is applied to impose the essential boundary condition. The traditional difference method for two-point boundary value problems is selected for the time discretization. As the wave equations and the boundary-initial conditions depend on time, the scal- ing parameter, number of nodes and the time step length are considered for the convergence study.
文摘The article gives a semi-discrete method for solving high-dimension wave equationBy the method, high-dimension wave equation is converted by, means of diseretizationinto I-D wave equation system which is well-posed. The convergence of the semidijcrete method is given. The numerical calculating resulis show that the speed of convergence is high.
基金supported by the grant NSC 98-2115-M-194-010-MY2
文摘We consider a finite difference scheme for a nonlinear wave equation, whose solutions may lose their smoothness in finite time, i.e., blow up in finite time. In order to numerically reproduce blow-up solutions, we propose a rule for a time-stepping,which is a variant of what was successfully used in the case of nonlinear parabolic equations. A numerical blow-up time is defined and is proved to converge, under a certain hypothesis, to the real blow-up time as the grid size tends to zero.
文摘The equation of wave propagation in a circular chamber with mean flow is obtained. Computational solution based on finite element method is employed to determine the transmission loss of expansive chamber. The effect of the mean flow and geometry (length of expansion chamber and expansion ratio)on acoustic attenuation performance is discussed, the predicted values of transmission loss of expansion chamber without and with mean flow are compared with those reported in the literature and they agree well. The accuracy of the prediction of transmission loss implies that finite element approximations are applicable to a lot of practical applications.
基金Supported by the National Natural Science Foundation of China under Grant No.51079032 the Outstanding Youth Science Foundation of Heilongjiang Province,No.200908
文摘Under the background of the energy saving and emission reduction, more and more attention has been placed on investigating the energy efficiency of ships. The added resistance has been noted for being crucial in predicting the decrease of speed on a ship operating at sea. Furthermore, it is also significant to investigate the added resistance for a ship functioning in short waves of large modern ships. The researcher presents an estimation formula for the calculation of an added resistance study in short waves derived from the reflection law. An improved method has been proposed to calculate the added resistance due to ship motions, which applies the radiated energy theory along with the strip method. This procedure is based on an extended integral equation (EIE) method, which was used for solving the hydrodynamic coefficients without effects of the irregular frequency. Next, a combined method was recommended for the estimation of added resistance for a ship in the whole wave length range. The comparison data with other experiments indicate the method presented in the paper provides satisfactory results for large blunt ship.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.50879066 and 51409201)the Research Fund for the Doctoral Program of Higher Education of China(Grant No.200804970009)
文摘It is difficult to compute far-field waves in a relative large area by using one wave generation model when a large calculation domain is needed because of large dimensions of the waterway and long distance of the required computing points. Variation of waterway bathymetry and nonlinearity in the far field cannot be included in a ship fixed process either. A coupled method combining a wave generation model and wave propagation model is then used in this paper to simulate the wash waves generated by the passing ship. A NURBS-based higher order panel method is adopted as the stationary wave generation model; a wave spectrum method and Boussinesq-type equation wave model are used as the wave propagation model for the constant water depth condition and variable water depth condition, respectively. The waves calculated by the NURBS-based higher order panel method in the near field are used as the input for the wave spectrum method and the Boussinesq-type equation wave model to obtain the far-field waves. With this approach it is possible to simulate the ship wash waves including the effects of water depth and waterway bathymetry. Parts of the calculated results are validated experimentally, and the agreement is demonstrated. The effects of ship wash waves on the moored ship are discussed by using a diffraction theory method. The results indicate that the prediction of the ship induced waves by coupling models is feasible.
文摘An efficient and accurate exponential wave integrator Fourier pseudospectral (EWI-FP) method is proposed and analyzed for solving the symmetric regularized-long-wave (SRLW) equation, which is used for modeling the weakly nonlinear ion acoustic and space-charge waves. The numerical method here is based on a Gautschi-type exponential wave integrator for temporal approximation and the Fourier pseudospectral method for spatial discretization. The scheme is fully explicit and efficient due to the fast Fourier transform. Numerical analysis of the proposed EWI-FP method is carried out and rigorous error estimates are established without CFL-type condition by means of the mathematical induction. The error bound shows that EWI-FP has second order accuracy in time and spectral accuracy in space. Numerical results are reported to confirm the theoretical studies and indicate that the error bound here is optimal.
文摘By using the method of dynamical system, the exact travelling wave solutions of the coupled nonlinear Schrdinger-KdV equations are studied. Based on this method, all phase portraits of the system in the parametric space are given. All possible bounded travelling wave solutions such as solitary wave solutions and periodic travelling wave solutions are obtained. With the aid of Maple software, the numerical simulations are conducted for solitary wave solutions and periodic travelling wave solutions to the coupled nonlinear Schrdinger-KdV equations. The results show that the presented findings improve the related previous conclusions.
基金supported by the National NSF of China(11571088)NSF of Zhejiang Province(LY13A010020)Program(HNUEYT2013)
文摘In this paper,several new constant-amplitude and variable-amplitude wave solutions(namely,traveling wave solutions) of a generalized nonlinear Schrdinger equation are investigated by using the extended homogeneous balance method,where the balance method is applied to solve the Riccati equation and the reduced nonlinear ordinary differential equation,respectively.In addition,stability analysis of those solutions are also conducted by regular phase plane technique.
基金Supported by the National Natural Science Foundation of China(No.11361048)
文摘In this paper, the higher order NLS equation with cubic-quintic nonlinear terms is studied, new abundant solitary solutions with traveling-wave envelope of this equation are obtained with the aid of a generalized auxiliary equation method and complex envelope non-traveling transform approach.
基金the financial support by the National Natural Science Foundation of China (Grant No. 51490673)the Open Awards of the State Key Laboratory of Coastal and Offshore Engineering+1 种基金funded by the EPSRC MEMPHIS multiphase Programme (Grant No. EP/K003976/1)funding from the European Union Seventh Framework Programme (FP7/20072013) under grant agreement No. 603663 for the research project PEARL (Preparing for Extreme and Rare events in coasta L regions)
文摘Wave breaking plays an important role in wave-structure interaction. A novel control volume finite element method with adaptive unstructured meshes is employed here to study 3-D breaking waves. The numerical framework consists of a "volume of fluid" type method for the interface capturing and adaptive unstructured meshes to improve computational efficiency. The numerical model is validated against experimental measurements of breaking wave over a sloping beach and is then used to study the breaking wave impact on a vertical circular cylinder on a slope. Detailed complex interfacial structures during wave impact, such as plunging jet formation and splash-up are captured in the simulation, demonstrating the capability of the present method.