期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Influence of mode conversions in the skull on transcranial focused ultrasound and temperature fields utilizing the wave field separation method: A numerical study
1
作者 王祥达 林伟军 +1 位作者 苏畅 王秀明 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第2期401-414,共14页
Transcranial focused ultrasound is a booming noninvasive therapy for brain stimuli. The Kelvin–Voigt equations are employed to calculate the sound field created by focusing a 256-element planar phased array through a... Transcranial focused ultrasound is a booming noninvasive therapy for brain stimuli. The Kelvin–Voigt equations are employed to calculate the sound field created by focusing a 256-element planar phased array through a monkey skull with the time-reversal method. Mode conversions between compressional and shear waves exist in the skull. Therefore, the wave field separation method is introduced to calculate the contributions of the two waves to the acoustic intensity and the heat source, respectively. The Pennes equation is used to depict the temperature field induced by ultrasound. Five computational models with the same incident angle of 0?and different distances from the focus for the skull and three computational models at different incident angles and the same distance from the focus for the skull are studied. Numerical results indicate that for all computational models, the acoustic intensity at the focus with mode conversions is 12.05%less than that without mode conversions on average. For the temperature rise, this percentage is 12.02%. Besides, an underestimation of both the acoustic intensity and the temperature rise in the skull tends to occur if mode conversions are ignored. However, if the incident angle exceeds 30?, the rules of the over-and under-estimation may be reversed. Moreover,shear waves contribute 20.54% of the acoustic intensity and 20.74% of the temperature rise in the skull on average for all computational models. The percentage of the temperature rise in the skull from shear waves declines with the increase of the duration of the ultrasound. 展开更多
关键词 transcranial focused ultrasound temperature rise mode conversion wave field separation
下载PDF
Separation of diffracted waves via SVD filter 被引量:2
2
作者 Hong-Yan Shen Qin Li +2 位作者 Yue-Ying Yan Xin-Xin Li Jing Zhao 《Petroleum Science》 SCIE CAS CSCD 2020年第5期1259-1271,共13页
Diffracted seismic waves may be used to help identify and track geologically heterogeneous bodies or zones.However,the energy of diffracted waves is weaker than that of reflections.Therefore,the extraction of diffract... Diffracted seismic waves may be used to help identify and track geologically heterogeneous bodies or zones.However,the energy of diffracted waves is weaker than that of reflections.Therefore,the extraction of diffracted waves is the basis for the effective utilization of diffracted waves.Based on the difference in travel times between diffracted and reflected waves,we developed a method for separating the diffracted waves via singular value decomposition filters and presented an effective processing flowchart for diffracted wave separation and imaging.The research results show that the horizontally coherent difference between the reflected and diffracted waves can be further improved using normal move-out(NMO) correction.Then,a band-rank or high-rank approximation is used to suppress the reflected waves with better transverse coherence.Following,separation of reflected and diffracted waves is achieved after the filtered data are transformed into the original data domain by inverse NMO.Synthetic and field examples show that our proposed method has the advantages of fewer constraints,fast processing speed and complete extraction of diffracted waves.And the diffracted wave imaging results can effectively improve the identification accuracy of geological heterogeneous bodies or zones. 展开更多
关键词 Geological heterogeneity Reflected waves Diffracted waves SVD filter Seismic wave field separation Migration imaging
下载PDF
Using Mirror Migration of OBS Data to Image the Deepwater Area of South China Sea
3
作者 Siyou Tong Chuanxi Sun +2 位作者 Linwei Li Dazhen Xu Jie Wang 《Journal of Earth Science》 SCIE CAS CSCD 2018年第3期662-668,共7页
Ocean bottom seismograph (OBS) is widely used in investigating deep crustal structure, which is characterized by a large amount of data information and abundant frequency components because of its multi-component ac... Ocean bottom seismograph (OBS) is widely used in investigating deep crustal structure, which is characterized by a large amount of data information and abundant frequency components because of its multi-component acquisition. OBS is seldom used in deepwater oil and gas exploration and basin research due to the high cost. The complicated seismic wave field is caused by the complex seabed topography, basin and oil and gas structure in deepwater area, which increases the difficulty of image processing. In addition to reflection imaging, we utilize the multiple of OBS data to make accurate imaging and have achieved desirable results in a deep sea area in South China Sea in this paper. Firstly, the original P and Z components of OBS data are processed by wave field separation to obtain the upgoing wave filed and downgoing wave filed. Secondly, its image velocity filed is constructed. Finally, downgoing wave data is used to image (called mirror migration). Compared with conventional migration, the mirror migration can clearly image the seabed and provide better illumination for shallow layer below the seafloor in the case of sparse nodes, which is proved by the migration results of theoretical and real data in this paper. 展开更多
关键词 deepwater OBS data mirroring migration wave field separation.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部