This paper investigates the interaction between transient wave and non-stationary and non-conservative basic flow. An interaction equation is derived from the zonally symmetric and non-hydrostatic primitive equations ...This paper investigates the interaction between transient wave and non-stationary and non-conservative basic flow. An interaction equation is derived from the zonally symmetric and non-hydrostatic primitive equations in Cartesian coordinates by using the Momentum-Casimir method. In the derivation, it is assumed that the transient disturbances satisfy the linear perturbation equations and the basic states are non-conservative and slowly vary in time and space. The diabatic heating composed of basic-state heating and perturbation heating is also introduced. Since the theory of wave-flow interaction is constructed in non-hydrostatic and ageostrophic dynamical framework, it is applicable to diagnosing the interaction between the meso-scale convective system in front and the background flow. It follows from the local interaction equation that the local tendency of pseudomomentum wave-activity density depends on the combination of the perturbation flux divergence second-order in disturbance amplitude, the local change of basic-state pseudomomentum density, the basic-state flux divergence and the forcing effect of diabatic heating. Furthermore, the tendency of pseudomomentum wave-activity density is opposite to that of basic-state pseudomomentum density. The globally integrated basic-state pseudomomentum equation and wave-activity equation reveal that the global development of basic-state pseudomomentum is only dominated by the basic-state diabatic heating while it is the forcing effect of total diabatic heating from which the global evolution of pseudomomentum wave activity results. Therefore, the interaction between the transient wave and the non-stationary and non-conservative basic flow is realized in virtue of the basic-state diabatic heating.展开更多
This study is devoted to the interaction between water surface waves and a thin layer of viscoelastie mud on the bottom. On the assumption that the mud layer is comparable in thickness with the wave boundary layer and...This study is devoted to the interaction between water surface waves and a thin layer of viscoelastie mud on the bottom. On the assumption that the mud layer is comparable in thickness with the wave boundary layer and is much smaller than the wavelength, a two-layer Stokes boundary layer model is adopted to determine the mud motions under the waves. Analytical expressions are derived for the near-bettom water and mud velocity fields, surface wave-damping rate, and interface wave amplitude and phase lag. Examined in particular is how these kinematic quantities may depend on the viscous and elastic properties of the mud.展开更多
Sound wave propagation in rarefied monatomic gases is simulated using a newly developed unified gaskinetic scheme (UGKS). The numerical calculations are carfled out for a wide range of wave oscillating frequencies. ...Sound wave propagation in rarefied monatomic gases is simulated using a newly developed unified gaskinetic scheme (UGKS). The numerical calculations are carfled out for a wide range of wave oscillating frequencies. The corresponding rarefaction parameter is defined as the ratio of sound wave frequency to the intermolecular particle collision frequency. The simulation covers the flow regime from the continuum to free molecule one. The treatment of the os- cillating wall boundary condition and the methods for eval- uating the absorption coefficient and sound wave speed are presented in detail. The simulation results from the UGKS are compared to the Navier-Stokes solutions, the direct sim- ulation Monte Carlo (DSMC) simulation, and experimental measurements. Good agreement with the experimental data has been obtained in the whole flow regimes for the corresponding Knudsen number from 0.08 to 32. The cur- rent study clearly demonstrates the capability of the UGKS method in capturing the sound wave propagation and its usefulness for the rarefied flow study.展开更多
A Harten-Lax-van Leer-contact (HLLC) approximate Riemann solver is built with elastic waves (HLLCE) for one-dimensional elastic-plastic flows with a hypo- elastic constitutive model and the von Mises' yielding cr...A Harten-Lax-van Leer-contact (HLLC) approximate Riemann solver is built with elastic waves (HLLCE) for one-dimensional elastic-plastic flows with a hypo- elastic constitutive model and the von Mises' yielding criterion. Based on the HLLCE, a third-order cell-centered Lagrangian scheme is built for one-dimensional elastic-plastic problems. A number of numerical experiments are carried out. The numerical results show that the proposed third-order scheme achieves the desired order of accuracy. The third-order scheme is used to the numerical solution of the problems with elastic shock waves and elastic rarefaction waves. The numerical results are compared with a reference solution and the results obtained by other authors. The comparison shows that the pre- sented high-order scheme is convergent, stable, and essentially non-oscillatory. Moreover, the HLLCE is more efficient than the two-rarefaction Riemann solver with elastic waves (TRRSE)展开更多
In order to study the propagation law of shock waves and gas flow during coal and gas outburst,we analyzed the formation process of outburst shock waves and gas flow and established the numerical simulation models of ...In order to study the propagation law of shock waves and gas flow during coal and gas outburst,we analyzed the formation process of outburst shock waves and gas flow and established the numerical simulation models of the roadways with 45°intersection and 135°intersection to simulate the propagation of outburst gas flow and the process of gas transport.Based on the analysis of the simulation results,we obtained the qualitative and quantitative conclusions on the characteristics and patterns of propagation and attenuation of outburst shock waves and gas flow.With the experimental models,we investigated the outburst shock waves and gas flow in the roadways with the similar structures to the simulated ones.According to the simulation results,when the angle between the driving roadway and the adjacent roadway increased,the sudden pressure variation range in adjacent roadway and the influencing scope of gas flow increased and the sudden pressure variation duration decreased.The intersection between the driving roadway and the adjacent roadway has no effect on airflow reversal induced by the shock waves and gas flow.展开更多
Wave induced excess flow of momentum (WIEFM) is the averaged flow of momentum over a wave period due to wave presence, which may also be called 3-D radiation stress. In this paper, the 3-D current equations with WIE...Wave induced excess flow of momentum (WIEFM) is the averaged flow of momentum over a wave period due to wave presence, which may also be called 3-D radiation stress. In this paper, the 3-D current equations with WIEFM are derived from the averaged Navier-Stokes equations over a wave period, in which the velocity is separated into the largescale backgrotmd velocity, the wave particle velocity and the turbulent fluctuation velocity. A concept of wave fluctuating layer (WFL) is put forward, which is the vertical column from the wave trough to wave ridge. The mathematical expressions of WIEFM in WFL and below WFL are given separately. The parameterized expressions of WIEFM are set up according to the linear wave theory. The integration of WIEFM in the vertical direction equals the traditional radiation stress (namely 2-D radiation stress) given by Longuet-Higgins and Stewart.展开更多
Flooding is a common natural disaster that causes enormous economic, social, and human losses. Of various flood routing methods, the dynamic wave model is one of the best approaches for the prediction of the character...Flooding is a common natural disaster that causes enormous economic, social, and human losses. Of various flood routing methods, the dynamic wave model is one of the best approaches for the prediction of the characteristics of floods during their propagations in natural rivers because all of the terms of the momentum equation are considered in the model. However, no significant research has been conducted on how the model sensitivity affects the accuracy of the downstream hydrograph. In this study, a comprehensive analysis of the input parameters 9f the dynamic wave model was performed through field applications in natural rivers and routing experiments in artificial channels using the graphical multi-parametric sensitivity analysis (GMPSA). The results indicate that the effects of input parameter errors on the output results are more significant in special situations, such as lower values of Manning's roughness coefficient and/or a steeper bed slope on the characteristics of a design hydrograph, larger values of the skewness factor and/or time to peak on the channel characteristics, larger values of Manning's roughness coefficient and/or the bed slope on the space step, and lower values of Manning's roughness coefficient and/or a steeper bed slope on the time step and weighting factor.展开更多
A modified SIMPLEC method which can solve compressible flows at low Mach number is introduced and used to study thermoacoustic waves induced by a rapid change of temperature at a solid wall and alternating- direction ...A modified SIMPLEC method which can solve compressible flows at low Mach number is introduced and used to study thermoacoustic waves induced by a rapid change of temperature at a solid wall and alternating- direction flows generated by thermoacoustic effects in a ta- pered resonator. The results indicate that the algorithm adopted in this paper can be used for calculating com- pressible flows and thermoacoustic waves. It is found that the pressure and velocity in the resonator behave as stand- ing waves, and the tapered resonator can suppress high- frequency harmonic waves as observed in a cylindrical res- onator.展开更多
A linear theory on the internal waves generated in the stratified fluid with a pycnocline is presented in this paper. The internal wave fields such as the velocity fields in the stratified fluid and velocity gradient ...A linear theory on the internal waves generated in the stratified fluid with a pycnocline is presented in this paper. The internal wave fields such as the velocity fields in the stratified fluid and velocity gradient fields at the free surface are also investigated by means of the theoretical and numerical method. From the numerical results, it is shown that the internal wave generated by horizontally moving Rankine ovoid is a sort of trapped wave which propagates in a wave guide, and its waveform is a kind of Mach front-type internal wave in the pycnocline. Influence of the internal wave on the flow fields at the free surface is represented by the velocity gradient fields resulted from the internal waves generated by motion of the Rankine ovoid. At the same time, it is also shown that under the hypothesis of inviscid fluid, the synchronism between the surface velocity gradient fields at the free surface and the internal wave fields in the fluid is retained. This theory opens a possibility to study further the modulated spectrum of the Bragg waves at the free surface.展开更多
An analytical model with essential parameters given by a two-phase numerical model is utilized to study the net boundary layer current and sediment transport under skewed asymmetric oscillatory sheet flows. The analyt...An analytical model with essential parameters given by a two-phase numerical model is utilized to study the net boundary layer current and sediment transport under skewed asymmetric oscillatory sheet flows. The analytical model is the first instantaneous type model that can consider phase-lag and asymmetric boundary layer development. The two-phase model supplies the essential phase-lead, instantaneous erosion depth and boundary layer development for the analytical model to enhance the understanding of velocity skewness and acceleration skewness in sediment flux and transport rate. The sediment transport difference between onshore and offshore stages caused by velocity skewness or acceleration skewness is shown to illustrate the determination of net sediment transport by the analytical model. In previous studies about sediment transport in skewed asymmetric sheet flows, the generation of net sediment transport is mainly concluded to the phase-lag effect.However, the phase-lag effect is shown important but not enough for the net sediment transport, while the skewed asymmetric boundary layer development generated net boundary layer current and mobile bed effect are key important in the transport process.展开更多
The gravity wave breaking is crucial to the large-scale circulation of middle atmosphere. In this paper, we follow Lindzen (1981) to draw out the parameterization of two-dimensional gravity wave breaking including ine...The gravity wave breaking is crucial to the large-scale circulation of middle atmosphere. In this paper, we follow Lindzen (1981) to draw out the parameterization of two-dimensional gravity wave breaking including inertial effect. Also we present some properties of critical levels and inertial critical levels.展开更多
Inertia-gravity waves play an increasingly important role in the middle atmosphere dynamics. As a result, more attention has been paid to the study of inertia-gravity waves, especially to the middle atmosphere gravity...Inertia-gravity waves play an increasingly important role in the middle atmosphere dynamics. As a result, more attention has been paid to the study of inertia-gravity waves, especially to the middle atmosphere gravity waves. This paper presents some aspects of inertia-gravity waves with emphasis on the propagation. Two methods are used here, namely, geometric optical method and physical optical method. We can see from the study that inertia-gravity waves are similar to planetary waves in some respects and they are different from planetary waves in others.展开更多
This article is devoted to the study of the propagations of the non- linear water waves on the shear flows. Assuming μ = kh is small and ε/μ~2 ~ 0 (1), and the base flow is uniformly sheared, the modified Boussine...This article is devoted to the study of the propagations of the non- linear water waves on the shear flows. Assuming μ = kh is small and ε/μ~2 ~ 0 (1), and the base flow is uniformly sheared, the modified Boussinesq equation is obtained. We calculate propagations of the single sohtary wave with vorticity Γ = 0, >0 and <0. The influences of the vorticity are manifested. At the end examples of the interactions of two solitary waves, moving in opposite and the same directions, are given. Besides the phase shift, there also occur second wavelets after head-on collision.展开更多
A series of experiments were performed in a rotating annulus of fluid to study effects of rotation rate on pianeta ry-scale baroclinic wave flows. The experiments reveal that change in rotation rate of fluid container...A series of experiments were performed in a rotating annulus of fluid to study effects of rotation rate on pianeta ry-scale baroclinic wave flows. The experiments reveal that change in rotation rate of fluid container causes variation in Rossby number and Taylor number in flows and leads to change in flow patterns and in phase and amplitude of quasi-stationary waves. For instance, with increasing rotation rate, amplitude of quasi-stationary waves increases and phase shifts upstream. On the contrary, with decreasing rotation rate, amplitude of quasi-stationary waves de creases and phase shifts downstream. In the case of the earth's atmosphere, although magnitude of variation in earth's rotation rate is very small, yet it causes a very big change in zonal velocity component of wind in the atmosphere and of currents in the ocean, and therefore causes a remarkable change in Rossby number and Taylor number determining regimes in planetary-scale geophysical flows. 1 he observation reveals that intensity and geographic location of subtropic anticyclones in both of the Northern and Southern Hemispheres change consistently with the variation in earth's rotation rate. The results of fluid experiments are consistent, qualitatively, with observed phenomena in the atmospheric circulation.展开更多
The effects of topography on baroclinic wave flows are studied experimentally in a thermally driven rotating annulus of fluid.Fourier analysis and complex principal component (CPC) analysis of the experimental data sh...The effects of topography on baroclinic wave flows are studied experimentally in a thermally driven rotating annulus of fluid.Fourier analysis and complex principal component (CPC) analysis of the experimental data show that, due to topographic forcing, the flow is bimodal rather than a single mode. Under suitable imposed experimental parameters, near thermal Rossby number ROT = 0.1 and Taylor number Ta = 2.2 × 107, the large-scale topography produces low-frequency oscillation in the flow and rather long-lived flow pattern resembling blocking in the atmospheric circulation. The 'blocking' phenomenon is caused by the resonance of travelling waves and the quasi-stationary waves forced by topography.The large-scale topography transforms wavenumber-homogeneous flows into wavenumber-dispersed flows, and the dispersed flows possess lower wavenumbers.展开更多
This paper presents a method for expanding horizontal flow variables in data using the free solutions to the shallow-water system as a basis set. This method for equatorial wave expansion of instantaneous flows(EWEIF...This paper presents a method for expanding horizontal flow variables in data using the free solutions to the shallow-water system as a basis set. This method for equatorial wave expansion of instantaneous flows(EWEIF) uses dynamic constraints in conjunction with projections of data onto parabolic cylinder functions to determine the amplitude of all equatorial waves.EWEIF allows us to decompose an instantaneous wave flow into individual equatorial waves with a presumed equivalent depth without using temporal or spatial filtering a priori.Three sets of EWEIF analyses are presented. The first set is to confirm that EWEIF is capable of recovering the individual waves constructed from theoretical equatorial wave solutions under various scenarios. The other two sets demonstrate the ability of the EWEIF method to derive time series of individual equatorial waves from instantaneous wave fields without knowing a priori exactly which waves exist in the data as well as their spatial and temporal scales using outputs of an equatorial β-channel shallow-water model and ERA-Interim data. The third set of demonstrations shows, for the first time, the continuous evolutions of individual equatorial waves in the stratosphere whose amplitude is synchronized with the background zonal wind as predicted by quasi-biennial oscillation theory.展开更多
In this paper, we using phase plane method have derived the stability criteria of linear and nonlinear Rossby waves under the conditions of semi-geostrophic approximation and have gotten the solutions and geostrophic ...In this paper, we using phase plane method have derived the stability criteria of linear and nonlinear Rossby waves under the conditions of semi-geostrophic approximation and have gotten the solutions and geostrophic vorticity of corresponding solitary Rossby waves. It is pointed out that the wave stability is connected with the distribution of zonal flow and when the zonal flow is different the solitary wave trough or ridge is formed.展开更多
The hydrodynamic response of a porous flexible circular-cylinder in regular waves was analytically studied. To simplify the problem, the cover and the bottom of the cylinder were ignored. Small amplitude water wave th...The hydrodynamic response of a porous flexible circular-cylinder in regular waves was analytically studied. To simplify the problem, the cover and the bottom of the cylinder were ignored. Small amplitude water wave theory and structural responses were assumed. The velocity potentials were solved using the Fourier-Bessel series expansion method and the least squares approximation method. The convergence of the series was numerically tested to determine the number of terms in the series expansion. Two types of installations were considered for deformation, hydrodynamic forces, structural flexibility, drafts, and porosity. The present study represented a preliminary step in the study of the fish cage.展开更多
Efficiency in solving the Saint-Venant equations for watershed rainfall-runoff routing is important in flood hydrology. This paper presents a high-efficiency numerical solution of one-dimensional dynamic wave equation...Efficiency in solving the Saint-Venant equations for watershed rainfall-runoff routing is important in flood hydrology. This paper presents a high-efficiency numerical solution of one-dimensional dynamic wave equations(HEDWE) for watershed rainfall-runoff routing, in which the full momentum equation is written as a quadratic equation with only one unknown variable Q, water depth is derived from the continuity equation using the two-step predictorcorrector method, and the discrete scheme is the explicit upwind scheme. The results of numerical tests showed the HEDWE approach has several major advantages. 1) It is a stable numerical method, even for an initially dry area. 2) Its computational efficiency is higher than 4.76E+05 times/s. 3) It can be used for overland flow, river flow, and combinations thereof. The primary disadvantages of the HEDWE approach are its unsuitability for rapidly varying flow, such as dam-break floods.展开更多
This article outlines the development of downhole monitoring and data transmission technology for separated zone water injection in China.According to the development stages,the principles,operation processes,adaptabi...This article outlines the development of downhole monitoring and data transmission technology for separated zone water injection in China.According to the development stages,the principles,operation processes,adaptability and application status of traditional downhole data acquisition method,cable communications and testing technology,cable-controlled downhole parameter real-time monitoring communication method and downhole wireless communication technology are introduced in detail.Problems and challenges of existing technologies in downhole monitoring and data transmission technology are pointed out.According to the production requirement,the future development direction of the downhole monitoring and data transmission technology for separated zone water injection is proposed.For the large number of wells adopting cable measuring and adjustment technology,the key is to realize the digitalization of downhole plug.For the key monitoring wells,cable-controlled communication technology needs to be improved,and downhole monitoring and data transmission technology based on composite coiled tubing needs to be developed to make the operation more convenient and reliable.For large-scale application in oil fields,downhole wireless communication technology should be developed to realize automation of measurement and adjustment.In line with ground mobile communication network,a digital communication network covering the control center,water distribution station and oil reservoir should be built quickly to provide technical support for the digitization of reservoir development.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos40405011,40575025 and 40475006)
文摘This paper investigates the interaction between transient wave and non-stationary and non-conservative basic flow. An interaction equation is derived from the zonally symmetric and non-hydrostatic primitive equations in Cartesian coordinates by using the Momentum-Casimir method. In the derivation, it is assumed that the transient disturbances satisfy the linear perturbation equations and the basic states are non-conservative and slowly vary in time and space. The diabatic heating composed of basic-state heating and perturbation heating is also introduced. Since the theory of wave-flow interaction is constructed in non-hydrostatic and ageostrophic dynamical framework, it is applicable to diagnosing the interaction between the meso-scale convective system in front and the background flow. It follows from the local interaction equation that the local tendency of pseudomomentum wave-activity density depends on the combination of the perturbation flux divergence second-order in disturbance amplitude, the local change of basic-state pseudomomentum density, the basic-state flux divergence and the forcing effect of diabatic heating. Furthermore, the tendency of pseudomomentum wave-activity density is opposite to that of basic-state pseudomomentum density. The globally integrated basic-state pseudomomentum equation and wave-activity equation reveal that the global development of basic-state pseudomomentum is only dominated by the basic-state diabatic heating while it is the forcing effect of total diabatic heating from which the global evolution of pseudomomentum wave activity results. Therefore, the interaction between the transient wave and the non-stationary and non-conservative basic flow is realized in virtue of the basic-state diabatic heating.
基金The work was supported by the Research Grants Council of the Hong Kong Special Administrative Region, China ,through Project Nos . HKU7081/02Eand HKU7199/03E.
文摘This study is devoted to the interaction between water surface waves and a thin layer of viscoelastie mud on the bottom. On the assumption that the mud layer is comparable in thickness with the wave boundary layer and is much smaller than the wavelength, a two-layer Stokes boundary layer model is adopted to determine the mud motions under the waves. Analytical expressions are derived for the near-bettom water and mud velocity fields, surface wave-damping rate, and interface wave amplitude and phase lag. Examined in particular is how these kinematic quantities may depend on the viscous and elastic properties of the mud.
基金supported by Hong Kong Research Grant Council(621709,621011)HKUST grants SRFI11SC05 and RPC10SC11the Nanoscience and Nanotechnology Program at HKUST
文摘Sound wave propagation in rarefied monatomic gases is simulated using a newly developed unified gaskinetic scheme (UGKS). The numerical calculations are carfled out for a wide range of wave oscillating frequencies. The corresponding rarefaction parameter is defined as the ratio of sound wave frequency to the intermolecular particle collision frequency. The simulation covers the flow regime from the continuum to free molecule one. The treatment of the os- cillating wall boundary condition and the methods for eval- uating the absorption coefficient and sound wave speed are presented in detail. The simulation results from the UGKS are compared to the Navier-Stokes solutions, the direct sim- ulation Monte Carlo (DSMC) simulation, and experimental measurements. Good agreement with the experimental data has been obtained in the whole flow regimes for the corresponding Knudsen number from 0.08 to 32. The cur- rent study clearly demonstrates the capability of the UGKS method in capturing the sound wave propagation and its usefulness for the rarefied flow study.
基金Project supported by the National Natural Science Foundation of China(Nos.11172050 and11672047)the Science and Technology Foundation of China Academy of Engineering Physics(No.2013A0202011)
文摘A Harten-Lax-van Leer-contact (HLLC) approximate Riemann solver is built with elastic waves (HLLCE) for one-dimensional elastic-plastic flows with a hypo- elastic constitutive model and the von Mises' yielding criterion. Based on the HLLCE, a third-order cell-centered Lagrangian scheme is built for one-dimensional elastic-plastic problems. A number of numerical experiments are carried out. The numerical results show that the proposed third-order scheme achieves the desired order of accuracy. The third-order scheme is used to the numerical solution of the problems with elastic shock waves and elastic rarefaction waves. The numerical results are compared with a reference solution and the results obtained by other authors. The comparison shows that the pre- sented high-order scheme is convergent, stable, and essentially non-oscillatory. Moreover, the HLLCE is more efficient than the two-rarefaction Riemann solver with elastic waves (TRRSE)
基金financially supported by the National Natural Science Foundation of China (No.51304213)the Open Funds of State Key Laboratory Cultivation Base for Gas Geology and Gas Control-Henan Polytechnic University of China (No.WS2013A03)the Fundamental Research Funds for Central Universities of China (No.2013QZ01)
文摘In order to study the propagation law of shock waves and gas flow during coal and gas outburst,we analyzed the formation process of outburst shock waves and gas flow and established the numerical simulation models of the roadways with 45°intersection and 135°intersection to simulate the propagation of outburst gas flow and the process of gas transport.Based on the analysis of the simulation results,we obtained the qualitative and quantitative conclusions on the characteristics and patterns of propagation and attenuation of outburst shock waves and gas flow.With the experimental models,we investigated the outburst shock waves and gas flow in the roadways with the similar structures to the simulated ones.According to the simulation results,when the angle between the driving roadway and the adjacent roadway increased,the sudden pressure variation range in adjacent roadway and the influencing scope of gas flow increased and the sudden pressure variation duration decreased.The intersection between the driving roadway and the adjacent roadway has no effect on airflow reversal induced by the shock waves and gas flow.
基金This project was supported bythe Major State Basic Research Program(Grant No.2002412403)the NationalNatural Science Foundation of China(Grant No.40306014)
文摘Wave induced excess flow of momentum (WIEFM) is the averaged flow of momentum over a wave period due to wave presence, which may also be called 3-D radiation stress. In this paper, the 3-D current equations with WIEFM are derived from the averaged Navier-Stokes equations over a wave period, in which the velocity is separated into the largescale backgrotmd velocity, the wave particle velocity and the turbulent fluctuation velocity. A concept of wave fluctuating layer (WFL) is put forward, which is the vertical column from the wave trough to wave ridge. The mathematical expressions of WIEFM in WFL and below WFL are given separately. The parameterized expressions of WIEFM are set up according to the linear wave theory. The integration of WIEFM in the vertical direction equals the traditional radiation stress (namely 2-D radiation stress) given by Longuet-Higgins and Stewart.
文摘Flooding is a common natural disaster that causes enormous economic, social, and human losses. Of various flood routing methods, the dynamic wave model is one of the best approaches for the prediction of the characteristics of floods during their propagations in natural rivers because all of the terms of the momentum equation are considered in the model. However, no significant research has been conducted on how the model sensitivity affects the accuracy of the downstream hydrograph. In this study, a comprehensive analysis of the input parameters 9f the dynamic wave model was performed through field applications in natural rivers and routing experiments in artificial channels using the graphical multi-parametric sensitivity analysis (GMPSA). The results indicate that the effects of input parameter errors on the output results are more significant in special situations, such as lower values of Manning's roughness coefficient and/or a steeper bed slope on the characteristics of a design hydrograph, larger values of the skewness factor and/or time to peak on the channel characteristics, larger values of Manning's roughness coefficient and/or the bed slope on the space step, and lower values of Manning's roughness coefficient and/or a steeper bed slope on the time step and weighting factor.
基金supported by the National Natural Science Foundation of China (50890182,10972226)
文摘A modified SIMPLEC method which can solve compressible flows at low Mach number is introduced and used to study thermoacoustic waves induced by a rapid change of temperature at a solid wall and alternating- direction flows generated by thermoacoustic effects in a ta- pered resonator. The results indicate that the algorithm adopted in this paper can be used for calculating com- pressible flows and thermoacoustic waves. It is found that the pressure and velocity in the resonator behave as stand- ing waves, and the tapered resonator can suppress high- frequency harmonic waves as observed in a cylindrical res- onator.
基金The project supported by the National Natural Science Foundation of China (40576010). The English text was polished by Keren Wang
文摘A linear theory on the internal waves generated in the stratified fluid with a pycnocline is presented in this paper. The internal wave fields such as the velocity fields in the stratified fluid and velocity gradient fields at the free surface are also investigated by means of the theoretical and numerical method. From the numerical results, it is shown that the internal wave generated by horizontally moving Rankine ovoid is a sort of trapped wave which propagates in a wave guide, and its waveform is a kind of Mach front-type internal wave in the pycnocline. Influence of the internal wave on the flow fields at the free surface is represented by the velocity gradient fields resulted from the internal waves generated by motion of the Rankine ovoid. At the same time, it is also shown that under the hypothesis of inviscid fluid, the synchronism between the surface velocity gradient fields at the free surface and the internal wave fields in the fluid is retained. This theory opens a possibility to study further the modulated spectrum of the Bragg waves at the free surface.
基金The National Natural Science Foundation of China under contract Nos 51609244 and 51779258
文摘An analytical model with essential parameters given by a two-phase numerical model is utilized to study the net boundary layer current and sediment transport under skewed asymmetric oscillatory sheet flows. The analytical model is the first instantaneous type model that can consider phase-lag and asymmetric boundary layer development. The two-phase model supplies the essential phase-lead, instantaneous erosion depth and boundary layer development for the analytical model to enhance the understanding of velocity skewness and acceleration skewness in sediment flux and transport rate. The sediment transport difference between onshore and offshore stages caused by velocity skewness or acceleration skewness is shown to illustrate the determination of net sediment transport by the analytical model. In previous studies about sediment transport in skewed asymmetric sheet flows, the generation of net sediment transport is mainly concluded to the phase-lag effect.However, the phase-lag effect is shown important but not enough for the net sediment transport, while the skewed asymmetric boundary layer development generated net boundary layer current and mobile bed effect are key important in the transport process.
文摘The gravity wave breaking is crucial to the large-scale circulation of middle atmosphere. In this paper, we follow Lindzen (1981) to draw out the parameterization of two-dimensional gravity wave breaking including inertial effect. Also we present some properties of critical levels and inertial critical levels.
文摘Inertia-gravity waves play an increasingly important role in the middle atmosphere dynamics. As a result, more attention has been paid to the study of inertia-gravity waves, especially to the middle atmosphere gravity waves. This paper presents some aspects of inertia-gravity waves with emphasis on the propagation. Two methods are used here, namely, geometric optical method and physical optical method. We can see from the study that inertia-gravity waves are similar to planetary waves in some respects and they are different from planetary waves in others.
基金The project supported by the National Natural Science Foundation of China
文摘This article is devoted to the study of the propagations of the non- linear water waves on the shear flows. Assuming μ = kh is small and ε/μ~2 ~ 0 (1), and the base flow is uniformly sheared, the modified Boussinesq equation is obtained. We calculate propagations of the single sohtary wave with vorticity Γ = 0, >0 and <0. The influences of the vorticity are manifested. At the end examples of the interactions of two solitary waves, moving in opposite and the same directions, are given. Besides the phase shift, there also occur second wavelets after head-on collision.
文摘A series of experiments were performed in a rotating annulus of fluid to study effects of rotation rate on pianeta ry-scale baroclinic wave flows. The experiments reveal that change in rotation rate of fluid container causes variation in Rossby number and Taylor number in flows and leads to change in flow patterns and in phase and amplitude of quasi-stationary waves. For instance, with increasing rotation rate, amplitude of quasi-stationary waves increases and phase shifts upstream. On the contrary, with decreasing rotation rate, amplitude of quasi-stationary waves de creases and phase shifts downstream. In the case of the earth's atmosphere, although magnitude of variation in earth's rotation rate is very small, yet it causes a very big change in zonal velocity component of wind in the atmosphere and of currents in the ocean, and therefore causes a remarkable change in Rossby number and Taylor number determining regimes in planetary-scale geophysical flows. 1 he observation reveals that intensity and geographic location of subtropic anticyclones in both of the Northern and Southern Hemispheres change consistently with the variation in earth's rotation rate. The results of fluid experiments are consistent, qualitatively, with observed phenomena in the atmospheric circulation.
基金This research was supported by the U.S. National Science Foundation Grants ATM-8709410 and ATM-8714674.
文摘The effects of topography on baroclinic wave flows are studied experimentally in a thermally driven rotating annulus of fluid.Fourier analysis and complex principal component (CPC) analysis of the experimental data show that, due to topographic forcing, the flow is bimodal rather than a single mode. Under suitable imposed experimental parameters, near thermal Rossby number ROT = 0.1 and Taylor number Ta = 2.2 × 107, the large-scale topography produces low-frequency oscillation in the flow and rather long-lived flow pattern resembling blocking in the atmospheric circulation. The 'blocking' phenomenon is caused by the resonance of travelling waves and the quasi-stationary waves forced by topography.The large-scale topography transforms wavenumber-homogeneous flows into wavenumber-dispersed flows, and the dispersed flows possess lower wavenumbers.
基金supported by grants from the National Science Foundation(Grant No.AGS-1354834)the NASA Interdisciplinary Studies Program(Grant No.NNH12ZDA001NIDS)
文摘This paper presents a method for expanding horizontal flow variables in data using the free solutions to the shallow-water system as a basis set. This method for equatorial wave expansion of instantaneous flows(EWEIF) uses dynamic constraints in conjunction with projections of data onto parabolic cylinder functions to determine the amplitude of all equatorial waves.EWEIF allows us to decompose an instantaneous wave flow into individual equatorial waves with a presumed equivalent depth without using temporal or spatial filtering a priori.Three sets of EWEIF analyses are presented. The first set is to confirm that EWEIF is capable of recovering the individual waves constructed from theoretical equatorial wave solutions under various scenarios. The other two sets demonstrate the ability of the EWEIF method to derive time series of individual equatorial waves from instantaneous wave fields without knowing a priori exactly which waves exist in the data as well as their spatial and temporal scales using outputs of an equatorial β-channel shallow-water model and ERA-Interim data. The third set of demonstrations shows, for the first time, the continuous evolutions of individual equatorial waves in the stratosphere whose amplitude is synchronized with the background zonal wind as predicted by quasi-biennial oscillation theory.
文摘In this paper, we using phase plane method have derived the stability criteria of linear and nonlinear Rossby waves under the conditions of semi-geostrophic approximation and have gotten the solutions and geostrophic vorticity of corresponding solitary Rossby waves. It is pointed out that the wave stability is connected with the distribution of zonal flow and when the zonal flow is different the solitary wave trough or ridge is formed.
基金financially supported by the National Marine Public Welfare Research Projects of China(Project No.201005002)
文摘The hydrodynamic response of a porous flexible circular-cylinder in regular waves was analytically studied. To simplify the problem, the cover and the bottom of the cylinder were ignored. Small amplitude water wave theory and structural responses were assumed. The velocity potentials were solved using the Fourier-Bessel series expansion method and the least squares approximation method. The convergence of the series was numerically tested to determine the number of terms in the series expansion. Two types of installations were considered for deformation, hydrodynamic forces, structural flexibility, drafts, and porosity. The present study represented a preliminary step in the study of the fish cage.
基金funded by the National Natural Science Foundation of China (Grant No. 41501046)the Innovation Program of Guangdong Province, China (Grant No. 2016-14)
文摘Efficiency in solving the Saint-Venant equations for watershed rainfall-runoff routing is important in flood hydrology. This paper presents a high-efficiency numerical solution of one-dimensional dynamic wave equations(HEDWE) for watershed rainfall-runoff routing, in which the full momentum equation is written as a quadratic equation with only one unknown variable Q, water depth is derived from the continuity equation using the two-step predictorcorrector method, and the discrete scheme is the explicit upwind scheme. The results of numerical tests showed the HEDWE approach has several major advantages. 1) It is a stable numerical method, even for an initially dry area. 2) Its computational efficiency is higher than 4.76E+05 times/s. 3) It can be used for overland flow, river flow, and combinations thereof. The primary disadvantages of the HEDWE approach are its unsuitability for rapidly varying flow, such as dam-break floods.
基金Supported by the National Natural Science Foundation Science Center Project/Basic Science Center Project(72088101)PetroChina Scientific Research and Technology Development Project(2020B-4119,2021ZG12).
文摘This article outlines the development of downhole monitoring and data transmission technology for separated zone water injection in China.According to the development stages,the principles,operation processes,adaptability and application status of traditional downhole data acquisition method,cable communications and testing technology,cable-controlled downhole parameter real-time monitoring communication method and downhole wireless communication technology are introduced in detail.Problems and challenges of existing technologies in downhole monitoring and data transmission technology are pointed out.According to the production requirement,the future development direction of the downhole monitoring and data transmission technology for separated zone water injection is proposed.For the large number of wells adopting cable measuring and adjustment technology,the key is to realize the digitalization of downhole plug.For the key monitoring wells,cable-controlled communication technology needs to be improved,and downhole monitoring and data transmission technology based on composite coiled tubing needs to be developed to make the operation more convenient and reliable.For large-scale application in oil fields,downhole wireless communication technology should be developed to realize automation of measurement and adjustment.In line with ground mobile communication network,a digital communication network covering the control center,water distribution station and oil reservoir should be built quickly to provide technical support for the digitization of reservoir development.