The valence subband energies and wave functions of a tensile strained quantum well are calculated by the plane wave expansion method within the 6×6 Luttinger Kohn model.The effect of the number and period of pla...The valence subband energies and wave functions of a tensile strained quantum well are calculated by the plane wave expansion method within the 6×6 Luttinger Kohn model.The effect of the number and period of plane waves used for expansion on the stability of energy eigenvalues is examined.For practical calculation,it should choose the period large sufficiently to ensure the envelope functions vanish at the boundary and the number of plane waves large enough to ensure the energy eigenvalues keep unchanged within a prescribed range.展开更多
In this work, an extended Jacobian elliptic function expansion method is proposed for constructing the exact solutions of nonlinear evolution equations. The validity and reliability of the method are tested by its app...In this work, an extended Jacobian elliptic function expansion method is proposed for constructing the exact solutions of nonlinear evolution equations. The validity and reliability of the method are tested by its applications to the system of shallow water wave equations and modified Liouville equation which play an important role in mathematical physics.展开更多
Using a polynomial expansion method, the general exact solitary wave solution and singular one areconstructed for the non-linear KS equation. This approach is obviously applicable to a large variety of nonlinear evolu...Using a polynomial expansion method, the general exact solitary wave solution and singular one areconstructed for the non-linear KS equation. This approach is obviously applicable to a large variety of nonlinear evolution equation.展开更多
We formulate efficient polynomial expansion methods and obtain the exact traveling wave solutions for the generalized Camassa-Holm Equation. By the methods, we obtain three types traveling wave solutions for the gener...We formulate efficient polynomial expansion methods and obtain the exact traveling wave solutions for the generalized Camassa-Holm Equation. By the methods, we obtain three types traveling wave solutions for the generalized Camassa-Holm Equation: hyperbolic function traveling wave solutions, trigonometric function traveling wave solutions, and rational function traveling wave solutions. At the same time, we have shown graphical behavior of the traveling wave solutions.展开更多
The (G'/G, 1/G)-expansion method for finding exact travelling wave solutions of nonlinear evolution equations, which can be thought of as an extension of the (G'/G)-expansion method proposed recently, is present...The (G'/G, 1/G)-expansion method for finding exact travelling wave solutions of nonlinear evolution equations, which can be thought of as an extension of the (G'/G)-expansion method proposed recently, is presented. By using this method abundant travelling wave so- lutions with arbitrary parameters of the Zakharov equations are successfully obtained. When the parameters are replaced by special values, the well-known solitary wave solutions of the equations are rediscovered from the travelling waves.展开更多
In this article, we propose a generalized exp(-Φ(ξ))-expansion method and successfully implement it to find exact traveling wave solutions to the fifth order standard Sawada-Kotera (SK) equation. The exact traveling...In this article, we propose a generalized exp(-Φ(ξ))-expansion method and successfully implement it to find exact traveling wave solutions to the fifth order standard Sawada-Kotera (SK) equation. The exact traveling wave solutions are established in the form of trigonometric, hyperbolic, exponential and rational functions with some free parameters. It is shown that this method is standard, effective and easily applicable mathematical tool for solving nonlinear partial differential equations arises in the field of mathematical physics and engineering.展开更多
In this work, the exp(-φ (ξ )) -expansion method is used for the first time to investigate the exact traveling wave solutions involving parameters of nonlinear evolution equations. When these parameters are taken to...In this work, the exp(-φ (ξ )) -expansion method is used for the first time to investigate the exact traveling wave solutions involving parameters of nonlinear evolution equations. When these parameters are taken to be special values, the solitary wave solutions are derived from the exact traveling wave solutions. The validity and reliability of the method are tested by its applications to Nano-ionic solitons wave’s propagation along microtubules in living cells and Nano-ionic currents of MTs which play an important role in biology.展开更多
In this work, while applying a new and novel (G'/G)-expansion version technique, we identify four families of the traveling wave solutions to the (1 + 1)-dimensional compound KdVB equation. The exact solutions are...In this work, while applying a new and novel (G'/G)-expansion version technique, we identify four families of the traveling wave solutions to the (1 + 1)-dimensional compound KdVB equation. The exact solutions are derived, in terms of hyperbolic, trigonometric and rational functions, involving various parameters. When the parameters are tuned to special values, both solitary, and periodic wave models are distinguished. State of the art symbolic algebra graphical representations and dynamical interpretations of the obtained solutions physics are provided and discussed. This in turn ends up revealing salient solutions features and demonstrating the used method efficiency.展开更多
Recently the (G′/G)-expansion method was proposed to find the traveling wave solutions of nonlinear evolution equations. This paper shows that the (G′/G)-expansion method is a special form of the truncated Pain...Recently the (G′/G)-expansion method was proposed to find the traveling wave solutions of nonlinear evolution equations. This paper shows that the (G′/G)-expansion method is a special form of the truncated Painlev'e expansion method by introducing an intermediate expansion method. Then the generalized (G′/G)-(G/G′) expansion method is naturally derived from the standpoint of the nonstandard truncated Painlev'e expansion. The application of the generalized method to the mKdV equation shows that it extends the range of exact solutions obtained by using the ( G′/ G)-expansion method.展开更多
By using Jacobi elliptic function expansion method, several kinds of travelling wave solutions of Nonlinear Vakhnenko equation are obtained in this paper. As a result, some new forms of traveling wave solutions of the...By using Jacobi elliptic function expansion method, several kinds of travelling wave solutions of Nonlinear Vakhnenko equation are obtained in this paper. As a result, some new forms of traveling wave solutions of the equation are shown, and the numerical simulation with different parameters for the new forms solutions are given.展开更多
This paper presents a new function expansion method for finding travelling wave solutions of a nonlinear evolution equation and calls it the (w/g)-expansion method, which can be thought of as the generalization of ...This paper presents a new function expansion method for finding travelling wave solutions of a nonlinear evolution equation and calls it the (w/g)-expansion method, which can be thought of as the generalization of (G'/G)-expansion given by Wang et al recently. As an application of this new method, we study the well-known Vakhnenko equation which describes the propagation of high-frequency waves in a relaxing medium. With two new expansions, general types of soliton solutions and periodic solutions for Vakhnenko equation are obtained.展开更多
In this article, a novel (G'/G)-expansion method is proposed to search for the traveling wave solutions of nonlinear evolution equations. We construct abundant traveling wave solutions involving parameters to the B...In this article, a novel (G'/G)-expansion method is proposed to search for the traveling wave solutions of nonlinear evolution equations. We construct abundant traveling wave solutions involving parameters to the Boussinesq equation by means of the suggested method. The performance of the method is reliable and useful, and gives more general exact solutions than the existing methods. The new (G'/G)-expansion method provides not only more general forms of solutions but also cuspon, peakon, soliton, and periodic waves.展开更多
An extended F-expansion method for finding periodic wave solutions of nonlinear evolution equations in mathematical physics is presented, which can be thought of as a concentration of extended Jacobi elliptic function...An extended F-expansion method for finding periodic wave solutions of nonlinear evolution equations in mathematical physics is presented, which can be thought of as a concentration of extended Jacobi elliptic function expansion method proposed more recently. By using the homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by Jacobi elliptic functions for the coupled KdV equations are derived. In the limit cases, the solitary wave solutions and the other type of travelling wave solutions for the system are also obtained.展开更多
In this paper, the generalized (G'/G)-expansion method is used for construct an innovative explicit traveling wave solutions involving parameter of the generalized FitzHugh-Nagumo equation , for some special param...In this paper, the generalized (G'/G)-expansion method is used for construct an innovative explicit traveling wave solutions involving parameter of the generalized FitzHugh-Nagumo equation , for some special parameter where satisfies a second order linear differential equation , , where and are functions of .展开更多
In this work, an extended Jacobian elliptic function expansion method is proposed for constructing the exact solutions of nonlinear evolution equations. The validity and reliability of the method are tested by its app...In this work, an extended Jacobian elliptic function expansion method is proposed for constructing the exact solutions of nonlinear evolution equations. The validity and reliability of the method are tested by its applications to Dynamical system in a new Double-Chain Model of DNA and a diffusive predator-prey system which play an important role in biology.展开更多
The novel (G'/G)-expansion method is a powerful and simple technique for finding exact traveling wave solutions to nonlinear evolution equations (NLEEs). In this article, we study explicit exact traveling wave sol...The novel (G'/G)-expansion method is a powerful and simple technique for finding exact traveling wave solutions to nonlinear evolution equations (NLEEs). In this article, we study explicit exact traveling wave solutions for the (1 + 1)-dimensional combined KdV-mKdV equation by using the novel (G'/G)-expansion method. Consequently, various traveling wave solutions patterns including solitary wave solutions, periodic solutions, and kinks are detected and exhibited.展开更多
In this paper, an extended Jacobi elliptic function rational expansion method is proposed for constructing new forms of exact Jacobi elliptic function solutions to nonlinear partial differential equations by means of ...In this paper, an extended Jacobi elliptic function rational expansion method is proposed for constructing new forms of exact Jacobi elliptic function solutions to nonlinear partial differential equations by means of making a more general transformation. For illustration, we apply the method to the (2+1)-dimensional dispersive long wave equation and successfully obtain many new doubly periodic solutions, which degenerate as soliton solutions when the modulus m approximates 1. The method can also be applied to other nonlinear partial differential equations.展开更多
We investigated exact traveling soliton solutions for the nonlinear electrical transmission line. By applying a concise and straightforward method, the variable-coefficient discrete(G /G)-expansion method, we solve ...We investigated exact traveling soliton solutions for the nonlinear electrical transmission line. By applying a concise and straightforward method, the variable-coefficient discrete(G /G)-expansion method, we solve the nonlinear differential–difference equations associated with the network. We obtain some exact traveling wave solutions which include hyperbolic function solution, trigonometric function solution, rational solutions with arbitrary function, bright as well as dark solutions.展开更多
The (G'/G)-expansion method is simple and powerful mathematical tool for constructing traveling wave solutions of nonlinear evolution equations which arise in engineering sciences, mathematical physics and real ti...The (G'/G)-expansion method is simple and powerful mathematical tool for constructing traveling wave solutions of nonlinear evolution equations which arise in engineering sciences, mathematical physics and real time application fields. In this article, we have obtained exact traveling wave solutions of the nonlinear partial differential equation, namely, the fourth order Boussinesq equation involving parameters via the (G'/G)-expansion method. In this method, the general solution of the second order linear ordinary differential equation with constant coefficients is implemented. Further, the solitons and periodic solutions are described through three different families. In addition, some of obtained solutions are described in the figures with the aid of commercial software Maple.展开更多
In this paper, we consider the generalized Korteweg-de-Vries (KdV) equations which are remarkable models of the water waves mechanics, the shallow water waves, the quantum mechanics, the ion acoustic waves in plasma, ...In this paper, we consider the generalized Korteweg-de-Vries (KdV) equations which are remarkable models of the water waves mechanics, the shallow water waves, the quantum mechanics, the ion acoustic waves in plasma, the electro-hydro-dynamical model for local electric field, signal processing waves through optical fibers, etc. We determine the useful and further general exact traveling wave solutions of the above mentioned NLDEs by applying the exp(−τ(ξ))-expansion method by aid of traveling wave transformations. Furthermore, we explain the physical significance of the obtained solutions of its definite values of the involved parameters with graphic representations in order to know the physical phenomena. Finally, we show that the exp(−τ(ξ))-expansion method is convenient, powerful, straightforward and provide more general solutions and can be helping to examine vast amount of travelling wave solutions to the other different kinds of NLDEs.展开更多
文摘The valence subband energies and wave functions of a tensile strained quantum well are calculated by the plane wave expansion method within the 6×6 Luttinger Kohn model.The effect of the number and period of plane waves used for expansion on the stability of energy eigenvalues is examined.For practical calculation,it should choose the period large sufficiently to ensure the envelope functions vanish at the boundary and the number of plane waves large enough to ensure the energy eigenvalues keep unchanged within a prescribed range.
文摘In this work, an extended Jacobian elliptic function expansion method is proposed for constructing the exact solutions of nonlinear evolution equations. The validity and reliability of the method are tested by its applications to the system of shallow water wave equations and modified Liouville equation which play an important role in mathematical physics.
文摘Using a polynomial expansion method, the general exact solitary wave solution and singular one areconstructed for the non-linear KS equation. This approach is obviously applicable to a large variety of nonlinear evolution equation.
文摘We formulate efficient polynomial expansion methods and obtain the exact traveling wave solutions for the generalized Camassa-Holm Equation. By the methods, we obtain three types traveling wave solutions for the generalized Camassa-Holm Equation: hyperbolic function traveling wave solutions, trigonometric function traveling wave solutions, and rational function traveling wave solutions. At the same time, we have shown graphical behavior of the traveling wave solutions.
基金Supported by the International Cooperation and Exchanges Foundation of Henan Province (084300510060)the Youth Science Foundation of Henan University of Science and Technology of China (2008QN026)
文摘The (G'/G, 1/G)-expansion method for finding exact travelling wave solutions of nonlinear evolution equations, which can be thought of as an extension of the (G'/G)-expansion method proposed recently, is presented. By using this method abundant travelling wave so- lutions with arbitrary parameters of the Zakharov equations are successfully obtained. When the parameters are replaced by special values, the well-known solitary wave solutions of the equations are rediscovered from the travelling waves.
文摘In this article, we propose a generalized exp(-Φ(ξ))-expansion method and successfully implement it to find exact traveling wave solutions to the fifth order standard Sawada-Kotera (SK) equation. The exact traveling wave solutions are established in the form of trigonometric, hyperbolic, exponential and rational functions with some free parameters. It is shown that this method is standard, effective and easily applicable mathematical tool for solving nonlinear partial differential equations arises in the field of mathematical physics and engineering.
文摘In this work, the exp(-φ (ξ )) -expansion method is used for the first time to investigate the exact traveling wave solutions involving parameters of nonlinear evolution equations. When these parameters are taken to be special values, the solitary wave solutions are derived from the exact traveling wave solutions. The validity and reliability of the method are tested by its applications to Nano-ionic solitons wave’s propagation along microtubules in living cells and Nano-ionic currents of MTs which play an important role in biology.
文摘In this work, while applying a new and novel (G'/G)-expansion version technique, we identify four families of the traveling wave solutions to the (1 + 1)-dimensional compound KdVB equation. The exact solutions are derived, in terms of hyperbolic, trigonometric and rational functions, involving various parameters. When the parameters are tuned to special values, both solitary, and periodic wave models are distinguished. State of the art symbolic algebra graphical representations and dynamical interpretations of the obtained solutions physics are provided and discussed. This in turn ends up revealing salient solutions features and demonstrating the used method efficiency.
基金Project supported by the National Key Basic Research Project of China (Grant No. 2004CB318000)the National Natural Science Foundation of China (Grant No. 10771072)
文摘Recently the (G′/G)-expansion method was proposed to find the traveling wave solutions of nonlinear evolution equations. This paper shows that the (G′/G)-expansion method is a special form of the truncated Painlev'e expansion method by introducing an intermediate expansion method. Then the generalized (G′/G)-(G/G′) expansion method is naturally derived from the standpoint of the nonstandard truncated Painlev'e expansion. The application of the generalized method to the mKdV equation shows that it extends the range of exact solutions obtained by using the ( G′/ G)-expansion method.
文摘By using Jacobi elliptic function expansion method, several kinds of travelling wave solutions of Nonlinear Vakhnenko equation are obtained in this paper. As a result, some new forms of traveling wave solutions of the equation are shown, and the numerical simulation with different parameters for the new forms solutions are given.
文摘This paper presents a new function expansion method for finding travelling wave solutions of a nonlinear evolution equation and calls it the (w/g)-expansion method, which can be thought of as the generalization of (G'/G)-expansion given by Wang et al recently. As an application of this new method, we study the well-known Vakhnenko equation which describes the propagation of high-frequency waves in a relaxing medium. With two new expansions, general types of soliton solutions and periodic solutions for Vakhnenko equation are obtained.
文摘In this article, a novel (G'/G)-expansion method is proposed to search for the traveling wave solutions of nonlinear evolution equations. We construct abundant traveling wave solutions involving parameters to the Boussinesq equation by means of the suggested method. The performance of the method is reliable and useful, and gives more general exact solutions than the existing methods. The new (G'/G)-expansion method provides not only more general forms of solutions but also cuspon, peakon, soliton, and periodic waves.
基金Project supported by the Natural Science Foundation of Henan Province of China (Grant No 0111050200) and the Science Foundation of Henan University of Science and Technology (Grant Nos 2004ZY040 and 2004ZD002).
文摘An extended F-expansion method for finding periodic wave solutions of nonlinear evolution equations in mathematical physics is presented, which can be thought of as a concentration of extended Jacobi elliptic function expansion method proposed more recently. By using the homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by Jacobi elliptic functions for the coupled KdV equations are derived. In the limit cases, the solitary wave solutions and the other type of travelling wave solutions for the system are also obtained.
文摘In this paper, the generalized (G'/G)-expansion method is used for construct an innovative explicit traveling wave solutions involving parameter of the generalized FitzHugh-Nagumo equation , for some special parameter where satisfies a second order linear differential equation , , where and are functions of .
文摘In this work, an extended Jacobian elliptic function expansion method is proposed for constructing the exact solutions of nonlinear evolution equations. The validity and reliability of the method are tested by its applications to Dynamical system in a new Double-Chain Model of DNA and a diffusive predator-prey system which play an important role in biology.
文摘The novel (G'/G)-expansion method is a powerful and simple technique for finding exact traveling wave solutions to nonlinear evolution equations (NLEEs). In this article, we study explicit exact traveling wave solutions for the (1 + 1)-dimensional combined KdV-mKdV equation by using the novel (G'/G)-expansion method. Consequently, various traveling wave solutions patterns including solitary wave solutions, periodic solutions, and kinks are detected and exhibited.
文摘In this paper, an extended Jacobi elliptic function rational expansion method is proposed for constructing new forms of exact Jacobi elliptic function solutions to nonlinear partial differential equations by means of making a more general transformation. For illustration, we apply the method to the (2+1)-dimensional dispersive long wave equation and successfully obtain many new doubly periodic solutions, which degenerate as soliton solutions when the modulus m approximates 1. The method can also be applied to other nonlinear partial differential equations.
基金supported by the Scientific Commission/ENS/University of Maroua 2013AM is grateful to the Abdus Salam International Center for Theoretical Physics(ICTP),Trieste,Italy through the Associate Program for financial support
文摘We investigated exact traveling soliton solutions for the nonlinear electrical transmission line. By applying a concise and straightforward method, the variable-coefficient discrete(G /G)-expansion method, we solve the nonlinear differential–difference equations associated with the network. We obtain some exact traveling wave solutions which include hyperbolic function solution, trigonometric function solution, rational solutions with arbitrary function, bright as well as dark solutions.
文摘The (G'/G)-expansion method is simple and powerful mathematical tool for constructing traveling wave solutions of nonlinear evolution equations which arise in engineering sciences, mathematical physics and real time application fields. In this article, we have obtained exact traveling wave solutions of the nonlinear partial differential equation, namely, the fourth order Boussinesq equation involving parameters via the (G'/G)-expansion method. In this method, the general solution of the second order linear ordinary differential equation with constant coefficients is implemented. Further, the solitons and periodic solutions are described through three different families. In addition, some of obtained solutions are described in the figures with the aid of commercial software Maple.
文摘In this paper, we consider the generalized Korteweg-de-Vries (KdV) equations which are remarkable models of the water waves mechanics, the shallow water waves, the quantum mechanics, the ion acoustic waves in plasma, the electro-hydro-dynamical model for local electric field, signal processing waves through optical fibers, etc. We determine the useful and further general exact traveling wave solutions of the above mentioned NLDEs by applying the exp(−τ(ξ))-expansion method by aid of traveling wave transformations. Furthermore, we explain the physical significance of the obtained solutions of its definite values of the involved parameters with graphic representations in order to know the physical phenomena. Finally, we show that the exp(−τ(ξ))-expansion method is convenient, powerful, straightforward and provide more general solutions and can be helping to examine vast amount of travelling wave solutions to the other different kinds of NLDEs.