期刊文献+
共找到723篇文章
< 1 2 37 >
每页显示 20 50 100
Probing signals of atmospheric gravity waves excited by the July 29,2021 M_(W)8.2 Alaska earthquake
1
作者 Geng Zhang Jianqiao Xu +2 位作者 Xiaodong Chen Heping Sun Lizhuo Gong 《Geodesy and Geodynamics》 EI CSCD 2024年第3期219-229,共11页
It is commonly believed that the atmosphere is decoupled from the solid Earth.Thus,it is difficult for the seismic wave energy inside the Earth to propagate into the atmosphere,and atmospheric pressure wave signals ex... It is commonly believed that the atmosphere is decoupled from the solid Earth.Thus,it is difficult for the seismic wave energy inside the Earth to propagate into the atmosphere,and atmospheric pressure wave signals excited by earthquakes are unlikely to exist in atmospheric observations.An increasing number of studies have shown that earthquakes,volcanoes,and tsunamis can perturb the Earth's atmosphere due to various coupling effects.However,the observations mainly focus on acoustic waves with periods of less than 10 min and inertial gravity waves with periods of greater than 1 h.There are almost no clear observations of gravity waves that coincide with observations of low-frequency signals of the Earth's free oscillation frequency band within 1 h.This paper investigates atmospheric gravity wave signals within1 h of surface-atmosphere observations using the periodogram method based on seismometer and microbarometer observations from the global seismic network before and after the July 29,2021 M_(w)8.2 Alaska earthquake in the United States.The numerical results show that the atmospheric gravity wave signals with frequencies similar to those of the Earth's free oscillations _(0)S_(2) and _(0)T_(2) can be detected in the microbaro meter observations.The results con firm the existence of atmospheric gravity waves,indicating that the atmosphere and the solid Earth are not decoupled within this frequency band and that seismic wave energy excited by earthquakes can propagate from the interior of the Earth to the atmosphere and enhance the atmospheric gravity wave signals within 1 h. 展开更多
关键词 Atmospheric gravity modes Atmospheric gravity waves Alaska earthquake Normal modes Coupling of solid earth and atmosphere
下载PDF
On wave dispersion of rotating viscoelastic nanobeam based on general nonlocal elasticity in thermal environment
2
作者 A.RAHMANI S.FAROUGHI M.SARI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第9期1577-1596,共20页
The present research focuses on the analysis of wave propagation on a rotating viscoelastic nanobeam supported on the viscoelastic foundation which is subject to thermal gradient effects.A comprehensive and accurate m... The present research focuses on the analysis of wave propagation on a rotating viscoelastic nanobeam supported on the viscoelastic foundation which is subject to thermal gradient effects.A comprehensive and accurate model of a viscoelastic nanobeam is constructed by using a novel nonclassical mechanical model.Based on the general nonlocal theory(GNT),Kelvin-Voigt model,and Timoshenko beam theory,the motion equations for the nanobeam are obtained.Through the GNT,material hardening and softening behaviors are simultaneously taken into account during wave propagation.An analytical solution is utilized to generate the results for torsional(TO),longitudinal(LA),and transverse(TA)types of wave dispersion.Moreover,the effects of nonlocal parameters,Kelvin-Voigt damping,foundation damping,Winkler-Pasternak coefficients,rotating speed,and thermal gradient are illustrated and discussed in detail. 展开更多
关键词 temperature effect general nonlocal theory(GNT) Kelvin-Voigt model viscoelastic foundation wave propagation rotating viscoelastic nanobeam
下载PDF
The GECAM Real-time Burst Alert System 被引量:1
3
作者 Yue Huang Dongli Shi +13 位作者 Xiaolu Zhang Xiang Ma Peng Zhang Shijie Zheng Liming Song Xiaoyun Zhao Wei Chen Rui Qiao Xinying Song Jin Wang Ce Cai Shuo Xiao Yanqiu Zhang Shaolin Xiong 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2024年第10期36-47,共12页
Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor(GECAM),consisting of two microsatellites,is designed to detect gamma-ray bursts associated with gravitational-wave events.Here,we introduce th... Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor(GECAM),consisting of two microsatellites,is designed to detect gamma-ray bursts associated with gravitational-wave events.Here,we introduce the real-time burst alert system of GECAM,with the adoption of the BeiDou-3 short message communication service.We present the post-trigger operations,the detailed ground-based analysis,and the performance of the system.In the first year of the in-flight operation,GECAM was triggered by 42 gamma-ray bursts.The GECAM real-time burst alert system has the ability to distribute the alert within~1 minute after being triggered,which enables timely follow-up observations. 展开更多
关键词 (stars:)gamma-ray burst:general gravitational waves methods:data analysis
下载PDF
Searching for the Nano-Hertz Stochastic Gravitational Wave Background with the Chinese Pulsar Timing Array Data ReleaseⅠ 被引量:18
4
作者 Heng Xu Siyuan Chen +24 位作者 Yanjun Guo Jinchen Jiang Bojun Wang Jiangwei Xu Zihan Xue RNicolas Caballero Jianping Yuan Yonghua Xu Jingbo Wang Longfei Hao Jingtao Luo Kejia Lee Jinlin Han Peng Jiang Zhiqiang Shen Min Wang Na Wang Renxin Xu Xiangping Wu Richard Manchester Lei Qian Xin Guan Menglin Huang Chun Sun Yan Zhu 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2023年第7期300-311,共12页
Observing and timing a group of millisecond pulsars with high rotational stability enables the direct detection of gravitational waves(GWs).The GW signals can be identified from the spatial correlations encoded in the... Observing and timing a group of millisecond pulsars with high rotational stability enables the direct detection of gravitational waves(GWs).The GW signals can be identified from the spatial correlations encoded in the times-of-arrival of widely spaced pulsar-pairs.The Chinese Pulsar Timing Array(CPTA)is a collaboration aiming at the direct GW detection with observations carried out using Chinese radio telescopes.This short article serves as a“table of contents”for a forthcoming series of papers related to the CPTA Data Release 1(CPTA DR1)which uses observations from the Five-hundred-meter Aperture Spherical radio Telescope.Here,after summarizing the time span and accuracy of CPTA DR1,we report the key results of our statistical inference finding a correlated signal with amplitude logA_(c)=-14.4_(-2.8)^(+1.0)for spectral index in the range ofα∈[-1.8,1.5]assuming a GW background(GWB)induced quadrupolar correlation.The search for the Hellings–Downs(HD)correlation curve is also presented,where some evidence for the HD correlation has been found that a 4.6σstatistical significance is achieved using the discrete frequency method around the frequency of 14 n Hz.We expect that the future International Pulsar Timing Array data analysis and the next CPTA data release will be more sensitive to the n Hz GWB,which could verify the current results. 展开更多
关键词 (stars:)pulsars:general gravitational waves methods:statistical methods:observational
下载PDF
Influence of Bottom Inclination on the Flow Structure in a Rotating Convective Layer
5
作者 Andrei Vasiliev Andrei Sukhanovskii Elena Popova 《Fluid Dynamics & Materials Processing》 EI 2024年第4期739-748,共10页
The formation of convective flows in a rotating cylindrical layer with an inclined bottom and free surface is studied.Convection is driven by localized cooling at the center of the upper free surface and by rim heatin... The formation of convective flows in a rotating cylindrical layer with an inclined bottom and free surface is studied.Convection is driven by localized cooling at the center of the upper free surface and by rim heating at the bottom near the sidewall.The horizontal temperature difference in a rotating layer leads to the formation of a convective flow with a complex structure.The mean meridional circulation,consisting of three cells,provides a strongly non-uniform differential rotation.As a result of the instability of the main cyclonic zonal flow,the train of baroclinic waves appears in the upper layer.The baroclinic waves provide most of the heat transfer in the middle radii and are responsible for strong temperature and velocity fluctuations.It is shown that the inclination of the bottom is a crucial factor for the structure of the convective cells and the dynamics of the baroclinic waves.The increase in the inclination angle leads to a significant increase in the energy of the waves.The obtained results may be important for heat and mass transfer in various geophysical and industrial systems,including transport of various additives and impurities in rotating crucibles,and crystallization processes. 展开更多
关键词 Laboratory modeling global atmospheric circulation baroclinic waves beta-effect
下载PDF
Observation of Standing Slow Magneto-acoustic Waves in a Flaring Active Region Corona Loop
6
作者 A.Abedini 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2024年第10期170-179,共10页
Intensity fluctuations are frequently observed in different regions and structures of the solar corona.These fluctuations may be caused by magneto-hydrodynamic(MHD)waves in coronal plasma.MHD waves are prime candidate... Intensity fluctuations are frequently observed in different regions and structures of the solar corona.These fluctuations may be caused by magneto-hydrodynamic(MHD)waves in coronal plasma.MHD waves are prime candidates for the dynamics,energy transfer,and anomalous temperature of the solar corona.In this paper,analysis is conducted on intensity and temperature fluctuations along the active region coronal loop(NOAA AR 13599)near solar flares.The intensity and temperature as functions of time and distance along the loop are extracted using images captured by the Atmospheric Imaging Assembly(AIA)instrument onboard the Solar Dynamics Observatory(SDO)space telescope.To observe and comprehend the causes of intensity and temperature fluctuations,after conducting initial processing,and applying spatial and temporal frequency filters to data,enhanced distance-time maps of these variables are drawn.The space-time maps of intensities show standing oscillations at wavelengths of 171,193,and 211A with greater precision and clarity than earlier findings.The amplitude of these standing oscillations(waves)decreases and increases over time.The average values of the oscillation period,damping time,damping quality,projected wavelength,and projected phase speed of standing intensity oscillations are in the range of 15-18 minutes,24-31 minutes,1.46″-2″,132″-134″,and 81-100 km s^(-1),respectively.Also,the differential emission measure peak temperature values along the loop are found in the range of 0.51-3.98 MK,using six AIA passbands,including 94,131,171,193,211,and 335?.Based on the values of oscillation periods,phase speeds,damping time,and damping quality,it is inferred that the fluctuations in intensity are related to standing slow magneto-acoustic waves with weak damping. 展开更多
关键词 magnetohydrodynamics(MHD) waves Sun:corona Sun:atmosphere Sun:flares
下载PDF
Evaluation of Nonbreaking Wave-Induced Mixing Parameterization Schemes Based on a One-Dimensional Ocean Model
7
作者 TANG Ran HUANG Chuanjiang +1 位作者 DAI Dejun WANG Gang 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第3期567-576,共10页
Surface waves have a considerable effect on vertical mixing in the upper ocean.In the past two decades,the vertical mixing induced through nonbreaking surface waves has been used in ocean and climate models to improve... Surface waves have a considerable effect on vertical mixing in the upper ocean.In the past two decades,the vertical mixing induced through nonbreaking surface waves has been used in ocean and climate models to improve the simulation of the upper ocean.Thus far,several nonbreaking wave-induced mixing parameterization schemes have been proposed;however,no quantitative comparison has been performed among them.In this paper,a one-dimensional ocean model was used to compare the performances of five schemes,including those of Qiao et al.(Q),Hu and Wang(HW),Huang and Qiao(HQ),Pleskachevsky et al.(P),and Ghantous and Babanin(GB).Similar to previous studies,all of these schemes can decrease the simulated sea surface temperature(SST),increase the subsurface temperature,and deepen the mixed layer,thereby alleviating the common thermal deviation problem of the ocean model for upper ocean simulation.Among these schemes,the HQ scheme exhibited the weakest wave-induced mixing effect,and the HW scheme exhibited the strongest effect;the other three schemes exhibited roughly the same effect.In particular,the Q and P schemes exhibited nearly the same effect.In the simulation based on observations from the Ocean Weather Station Papa,the HQ scheme exhibited the best performance,followed by the Q scheme.In the experiment with the HQ scheme,the root-mean-square deviation of the simulated SST from the observations was 0.43℃,and the mixed layer depth(MLD)was 2.0 m.As a contrast,the deviations of the SST and MLD reached 1.25℃ and 8.4 m,respectively,in the experiment without wave-induced mixing. 展开更多
关键词 wave-induced mixing surface waves sea surface temperature mixed layer depth general Ocean Turbulence Model
下载PDF
Analysis of the Impact of the Blazhko Effect Both on the Van Hoof Effect and Radial Velocity Amplitude in the Star RR Lyr
8
作者 Y.El jariri F.L.Sefyani +5 位作者 A.Benhida Z.Benkhaldoun K.Kolenberg K.Chafouai A.Habib M.Sabil 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2024年第6期253-272,共20页
The Van Hoof effect is a phase shift existing between the radial velocity curves of hydrogen and metallic lines within the atmosphere of pulsating stars.In this article,we present a study of this phenomenon through th... The Van Hoof effect is a phase shift existing between the radial velocity curves of hydrogen and metallic lines within the atmosphere of pulsating stars.In this article,we present a study of this phenomenon through the spectra of the brightest pulsating star RR Lyr of RR Lyrae stars recorded for 22 yr.We based ourselves,on the one hand,on 1268 spectra(41 nights of observation)recorded between the years 1994 and 1997 at the Observatory of Haute Provence(OHP,France)previously observed by Chadid and Gillet,and on the other hand on 1569 spectra(46nights of observation)recorded at our Oukaimeden Observatory(Morocco)between 2015 and 2016.Through this study,we have detected information on atmospheric dynamics that had not previously been detected.Indeed,the Van Hoof effect which results in a clear correlation between the radial velocities of hydrogen and those of the metallic lines has been observed and analyzed at different Blazhko phases.A correlation between the radial velocities of different metallic lines located in the lower atmosphere has been observed as well.For the first time,we were able to show that the amplitude of the radial velocity curves deduced from the lines of hydrogen and that of FeⅡ(λ4923.921?)increases toward the minimum of the Blazhko cycle and decreases toward the maximum of the same Blazhko cycle.Furthermore,we found that the Van Hoof effect is also modulated by the Blazhko effect.Thus,toward the minimum of the Blazhko cycle the Van Hoof effect is more visible and at the maximum of the Blazhko cycle,this effect is minimal.We also observed the temporal evolution of the amplitudes of the radial velocities of the lower and upper atmosphere.When observed over a long time,we can interpret it as a function of the Blazhko phases. 展开更多
关键词 stars:atmospheres stars:variables:RR Lyrae shock waves techniques:spectroscopic techniques:radial velocities stars:individual(RR Lyr)
下载PDF
Gravitational Waves Background, as Well as Some UFO, FRB and Supernova Flares, Are Due to Compressibility of the Spacetime (CoST)
9
作者 Evgeny A. Novikov 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第1期67-70,共4页
The recently observed gravitational wave background is explained in terms of the quantum modification of the general relativity (Qmoger). Some UFO, FRB and supernova flares also can be explained in terms of Qmoger.
关键词 Gravitational wave Background Quantum Modification of the general Relativity Compressibility of the Spacetime (CoST)
下载PDF
The influence of pressure waves in tidal gravity records
10
作者 Bernard Ducarme 《Geodesy and Geodynamics》 CSCD 2023年第1期15-25,共11页
For the reduction of atmospheric effects,observed gravity has initially been corrected by using the computed barometric admittance k of the in situ measured pressure,expressed in nms-2/hPa units and estimated by least... For the reduction of atmospheric effects,observed gravity has initially been corrected by using the computed barometric admittance k of the in situ measured pressure,expressed in nms-2/hPa units and estimated by least squares method.However,the local pressure changes alone cannot account for the atmospheric mass attraction and loading when the coherent pressure field exceeds a specific size,i.e.,with increasing periodicities.To overcome this difficulty,it is necessary to compute the total atmospheric effect at each station using the global pressure field.However,the direct subtraction of the total gravity effect,provided by the models of pressure correction,is not yet satisfactory for S2 and other tidal components,such as K2 and P1,which include solar heating pressure tides.This paper identifies the origin of the problem and presents strategies to obtain a satisfactory solution.First,we set up a difference vector between the tidal factors of M2 and S2 after correction of the pressure and ocean tides effects.This vector,hereafter denoted as RES,presents the advantage of being practically insensitive to calibration errors.The minimum discrepancy between the tidal parameters of M2 and S2 corresponds to the minimum of the RES vector norm d.Secondly we adopt the hybrid pressure correction method,separating the local and the global pressure contribution of the models and replacing the local contribution by the pressure measured at the station multiplied by an admittance kATM.We tested this procedure on 8 stations from the IGETS superconducting gravimeters network(former GGP network).For stations at an altitude lower than 1000 m,the value of dopt is always smaller than0.0005.The discrepancy between the tidal parameters of the M2 and S2 waves is always lower than0.05% on the amplitude factors and 0.025° on the phases.For these stations,a correlation exists between the altitude and the value kopt.The results at the three Central European stations Conrad,Pecny and Vienna are in excellent agreement(0.05%) with the DDW99NH model for all the main tidal waves. 展开更多
关键词 Atmospheric pressure waves Atmospheric pressure correction in tidal RECORDS Atmospheric pressure models ERA5 and MERRA-2
下载PDF
Global static stability and its relation to gravity waves in the middle atmosphere 被引量:4
11
作者 Xiao Liu JiYao Xu Jia Yue 《Earth and Planetary Physics》 CSCD 2020年第5期504-512,共9页
The global atmospheric static stability(N2)in the middle atmosphere and its relation to gravity waves(GWs)were investigated by using the temperature profiles measured by the Sounding of the Atmosphere using Broadband ... The global atmospheric static stability(N2)in the middle atmosphere and its relation to gravity waves(GWs)were investigated by using the temperature profiles measured by the Sounding of the Atmosphere using Broadband Emission Radiometry(SABER)instrument from 2002 to 2018.At low latitudes,a layer with enhanced N2 occurs at an altitude of^20 km and exhibits annual oscillations caused by tropopause inversion layers.Above an altitude of^70 km,enhanced N2 exhibits semiannual oscillations at low latitudes caused by the mesosphere inversion layers and annual oscillations at high latitudes resulting from the downward shift of the summer mesopause.The correlation coefficients between N2 and GW amplitudes can be larger than 0.8 at latitudes poleward of^40°N/S.This observation provides factual evidence that a large N2 supports large-amplitude GWs and indicates that N2 plays a dominant role in maintaining GWs at least at high latitudes of the middle atmosphere.This evidence also partially explains the previous results regarding the phase changes of annual oscillations of GWs at high latitudes. 展开更多
关键词 atmospheric static stability gravity waves annual oscillation semiannual oscillation MESOPAUSE
下载PDF
A parameterization scheme of vertical mixing due to inertial internal wave breaking in the ocean general circulation model 被引量:4
12
作者 FAN Zhisong SHANG Zhenqi +2 位作者 ZHANG Shanwu HU Ruijin LIU Hailong 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2015年第1期11-22,共12页
Based on the theoretical spectral model of inertial internal wave breaking (fine structure) proposed previ- ously, in which the effects of the horizontal Coriolis frequency component f-tilde on a potential isopycnal... Based on the theoretical spectral model of inertial internal wave breaking (fine structure) proposed previ- ously, in which the effects of the horizontal Coriolis frequency component f-tilde on a potential isopycnal are taken into account, a parameterization scheme of vertical mixing in the stably stratified interior be- low the surface mixed layer in the ocean general circulation model (OGCM) is put forward preliminarily in this paper. Besides turbulence, the impact of sub-mesoscale oceanic processes (including inertial internal wave breaking product) on oceanic interior mixing is emphasized. We suggest that adding the inertial inter- hal wave breaking mixing scheme (F-scheme for short) put forward in this paper to the turbulence mixing scheme of Canuto et al. (T-scheme for short) in the OGCM, except the region from 15°S to 15°N. The numeri- cal results ofF-scheme by usingWOA09 data and an OGCM (LICOM, LASG/IAP climate system ocean model) over the global ocean are given. A notable improvement in the simulation of salinity and temperature over the global ocean is attained by using T-scheme adding F-scheme, especially in the mid- and high-latitude regions in the simulation of the intermediate water and deep water. We conjecture that the inertial internal wave breaking mixing and inertial forcing of wind might be one of important mechanisms maintaining the ventilation process. The modeling strength of the Atlantic meridional overturning circulation (AMOC) by using T-scheme adding F-scheme may be more reasonable than that by using T-scheme alone, though the physical processes need to be further studied, and the overflow parameterization needs to be incorporated. A shortcoming in F-scheme is that in this paper the error of simulated salinity and temperature by using T-scheme adding F-scheme is larger than that by using T-scheme alone in the subsurface layer. 展开更多
关键词 vertical mixing inertial internal wave fine structure horizontal Coriolis frequency component ocean general circulation model
下载PDF
THE SCATTERING OF GENERAL SH PLANE WAVE BY INTERFACE CRACK BETWEEN TWO DISSIMILAR VISCOELASTIC BODIES 被引量:1
13
作者 魏培君 张双寅 +1 位作者 吴永礼 Robert K.Y.Li 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1999年第3期245-254,共10页
The scattering of general SH plane wave by an interface crack between two dissimilar viscoelastic bodies is studied and the dynamic stress intensity factor at the crack-tip is computed. The scattering problem can be d... The scattering of general SH plane wave by an interface crack between two dissimilar viscoelastic bodies is studied and the dynamic stress intensity factor at the crack-tip is computed. The scattering problem can be decomposed into two problems: one is the reflection and refraction problem of general SH plane waves at perfect interface (with no crack); another is the scattering problem due to the existence of crack. For the first problem, the viscoelastic wave equation, displacement and stress continuity conditions across the interface are used to obtain the shear stress distribution at the interface. For the second problem, the integral transformation method is used to reduce the scattering problem into dual integral equations. Then, the dual integral equations are transformed into the Cauchy singular integral equation of first kind by introduction of the crack dislocation density function. Finally, the singular integral equation is solved by Kurtz's piecewise continuous function method. As a consequence, the crack opening displacement and dynamic stress intensity factor are obtained. At the end of the paper, a numerical example is given. The effects of incident angle, incident frequency and viscoelastic material parameters are analyzed. It is found that there is a frequency region for viscoelastic material within which the viscoelastic effects cannot be ignored. 展开更多
关键词 VISCOELASTICITY interface crack general plane wave integral transformation singular integral equations
下载PDF
Development of a fine-resolution atmosphere-wave-ocean coupled forecasting model for the South China Sea and its adjacent seas 被引量:3
14
作者 Junchuan Sun Zexun Wei +9 位作者 Tengfei Xu Meng Sun Kun Liu Yongzeng Yang Li Chen Hong Zhao Xunqiang Yin Weizhong Feng Zhiyuan Zhang Yonggang Wang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2019年第4期154-166,共13页
A 72-h fine-resolution atmosphere-wave-ocean coupled forecasting system was developed for the South China Sea and its adjacent seas. The forecasting model domain covers from from 15°S to 45°N in latitude and... A 72-h fine-resolution atmosphere-wave-ocean coupled forecasting system was developed for the South China Sea and its adjacent seas. The forecasting model domain covers from from 15°S to 45°N in latitude and 99°E to135°E in longitude including the Bohai Sea, the Yellow Sea, the East China Sea, the South China Sea and the Indonesian seas. To get precise initial conditions for the coupled forecasting model, the forecasting system conducts a 24-h hindcast simulation with data assimilation before forecasting. The Ensemble Adjustment Kalman Filter(EAKF) data assimilation method was adopted for the wave model MASNUM with assimilating Jason-2 significant wave height(SWH) data. The EAKF data assimilation method was also introduced to the ROMS model with assimilating sea surface temperature(SST), mean absolute dynamic topography(MADT) and Argo profiles data. To improve simulation of the structure of temperature and salinity, the vertical mixing scheme of the ocean model was improved by considering the surface wave induced vertical mixing and internal wave induced vertical mixing. The wave and current models were integrated from January 2014 to October 2015 driven by the ECMWF reanalysis 6 hourly mean dataset with data assimilation. Then the coupled atmosphere-wave-ocean forecasting system was carried out 14 months operational running since November 2015. The forecasting outputs include atmospheric forecast products, wave forecast products and ocean forecast products. A series of observation data are used to evaluate the coupled forecasting results, including the wind, SHW, ocean temperature and velocity.The forecasting results are in good agreement with observation data. The prediction practice for more than one year indicates that the coupled forecasting system performs stably and predict relatively accurate, which can support the shipping safety, the fisheries and the oil exploitation. 展开更多
关键词 South China Sea COAWST MODEL MASNUM MODEL atmosphere-wave-ocean forecasting system data ASSIMILATION
下载PDF
Propagation of General Wave Packets in Some Classical and Quantum Systems
15
作者 LIN Qiong-Gui 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第5期919-928,共10页
In quantum mechanics the center of a wave packet is precisely defined as the center of probability. The center-of-probability velocity describes the entire motion of the wave packet. In classical physics there is no p... In quantum mechanics the center of a wave packet is precisely defined as the center of probability. The center-of-probability velocity describes the entire motion of the wave packet. In classical physics there is no precise counterpart to the center-of-probability velocity of quantum mechanics, in spite of the fact that there exist in the literature at least eight different velocities for the electromagnetic wave. We propose a center-of-energy velocity to describe the entire motion of general wave packets in classical physical systems. It is a measurable quantity, and is well defined for both continuous and discrete systems. For electromagnetic wave packets it is a generalization of the velocity of energy transport. General wave packets in several classical systems are studied and the center-of-energy velocity is calculated and expressed in terms of the dispersion relation and the Fourier coefficients. These systems include string subject to an external force, monatomic chain and diatomic chain in one dimension, and classical Heisenberg model in one dimension. In most cases the center-of-energy velocity reduces to the group Velocity for quasi-monochromatic wave packets. Thus it also appears to be the generalization of the group velocity. Wave packets of the relativistic Dirac equation are discussed briefly. 展开更多
关键词 general wave packet center-of-energy velocity group velocity classical physics quantum mechanics
下载PDF
Simulating Tropical Instability Waves in the Equatorial Eastern Pacific with a Coupled General Circulation Model
16
作者 陈鲜艳 Masahide KIMOTO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2009年第5期1015-1026,共12页
Satellite observations of SSTs have revealed the existence of unstable waves in the equatorial eastern Pacific and Atlantic oceans. These waves have a 20-40-day periodicity with westward phase speeds of 0.4-0.6 m s^-1... Satellite observations of SSTs have revealed the existence of unstable waves in the equatorial eastern Pacific and Atlantic oceans. These waves have a 20-40-day periodicity with westward phase speeds of 0.4-0.6 m s^-1 and wavelengths of 1000-2000 km during boreal summer and fall. They are generally called tropical instability waves (TIWs). This study investigates TIWs simulated by a high-resolution coupled atmosphere-ocean general circulation model (AOGCM). The horizontal resolution of the model is 120 km in the atmosphere, and 30 km longitude by 20 km latitude in the ocean. Model simulations show good agreement with the observed main features associated with TIWs. The results of energetics analysis reveal that barotropic energy conversion is responsible for providing the main energy source for TIWs by extracting energy from the meridional shear of the climatological-mean equatorial currents in the mixed layer. This deeper and northward-extended wave activity appears to gain its energy through baroclinic conversion via buoyancy work, which further contributes to the asymmetric distribution of TIWs. It is estimated that the strong cooling effect induced by equatorial upwelling is partially (-30%-40%) offset by the equatorward heat flux due to TIWs in the eastern tropical Pacific during the seasons when TIWs are active. The atmospheric mixed layer just above the sea surface responds to the waves with enhanced or reduced vertical mixing. Furthermore, the changes in turbulent mixing feed back to sea surface evaporation, favoring the westward propagation of TIWs. The atmosphere to the south of the Equator also responds to TIWs in a similar way, although TIWs are much weaker south of the Equator. 展开更多
关键词 tropical instability waves equatorial eastern Pacific coupled general circulation model heatflux air-sea interaction
下载PDF
Identification and Interpretation of Earth’s Atmosphere Dynamics’ and Thermodynamics’ Similarities between Rogue Waves and Oceans’ Surface Geostrophic Wind
17
作者 César Mbane Biouele 《Open Journal of Marine Science》 2016年第2期238-246,共9页
In their daily practices, meteorologists make extensive use of the geostrophic wind properties to explain many weather phenomena such as the meaning and direction of the horizontal winds that take place around the low... In their daily practices, meteorologists make extensive use of the geostrophic wind properties to explain many weather phenomena such as the meaning and direction of the horizontal winds that take place around the low atmospheric pressures. The biggest challenge that faces the public who is interested in information disseminated by meteorologists is to know exactly what means the geostrophic wind. Besides the literal definitions scattered in very little scientific work, there is unfortunately no book which gives importance to the algebraic definition of the geostrophic wind. Our work shows that to better understand the behavior of natural phenomena, it is essential to combine the theories with based observations. Obviously, observations cannot be relevant without a theory that guides the observers. Conversely, no theory can be validated without experimental verification. Synoptic observations show that in the “free atmosphere!” the wind vectors are very nearly parallel to isobars, and the flow is perpendicular to the horizontal pressure gradient force, at least at any given instant. This kind of information recommends great caution when making geostrophic approximations. Our work also shows that for tornadoes, there is no need to move away from the surface of the oceans to observe the geostrophic balance. Undoubtedly, identification and interpretation of earth’s atmosphere dynamics’ and thermodynamics’ similarities between rogue waves and oceans’ surface geostrophic wind will be an easy exercise to researchers who will give importance to result provided by this paper. 展开更多
关键词 Earth’s atmosphere Dynamics’ and thermodynamics’ Similarities Rogue waves Ocean’s Surface Geostrophic Wind
下载PDF
Radiation of Ultra Low Frequency Electromagnetic Waves from Atmosphere under the Influence of Strong Shock Waves
18
作者 A. R. Aramyan S. A. Aramyan +2 位作者 S. G. Bilen L. Sh. Grigoryan H. F. Khachatryan 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第3期39-41,共3页
We present preliminary results from the experimental investigation of the response of the atmosphere due to the impact of powerful shock waves. The response is evidenced as ultra low frequency electromagnetic wave rad... We present preliminary results from the experimental investigation of the response of the atmosphere due to the impact of powerful shock waves. The response is evidenced as ultra low frequency electromagnetic wave radiation at frequency of 2-5 kHz and in duration of 3 7s. We hypothesize that this radiation appears due to the following process: the shock wave ionizes the neutral particles in the air and these charged and neutral particles continue their vertical motion, which forms in the trail of the shock wave. Such motion can cause the cyclotron-like radiation measured. 展开更多
关键词 Radiation of Ultra Low Frequency Electromagnetic waves from atmosphere under the influence of Strong Shock waves
下载PDF
Nolinear waves and their barotropic stability in the tropical ocean and atmosphere
19
作者 Liu Qinyu and Qin Zenghao Ocean University of Qingdao, Qingdao, China Shanghai Typhoon Institute, Shanghai, China 《Acta Oceanologica Sinica》 SCIE CAS CSCD 1990年第3期363-371,共9页
In this paper, the nonlinear waves and their barotropic stability in the tropical ocean and atmosphere are studied with the qualitative theory of the ordinary differential equation. The relationship is derived between... In this paper, the nonlinear waves and their barotropic stability in the tropical ocean and atmosphere are studied with the qualitative theory of the ordinary differential equation. The relationship is derived between the stability of nonlinear waves with different frequencies and the basic currents and their horizontal shear in the tropical ocean and atmosphere. 展开更多
关键词 Nolinear waves and their barotropic stability in the tropical ocean and atmosphere
下载PDF
Mutual Influence of the Atmosphere and the Ocean under Wave Processes
20
作者 Vladimir G. Kirtskhalia Konstantin R. Ninidze 《Journal of Modern Physics》 2021年第9期1346-1365,共20页
The article solves the problem of surface gravitational waves using the theory of tangential discontinuity between media: air-water. Using the improved equation of mass continuity and taking into account the atmospher... The article solves the problem of surface gravitational waves using the theory of tangential discontinuity between media: air-water. Using the improved equation of mass continuity and taking into account the atmosphere inhomogeneity in the gravitational field of the Earth, it is shown that during wave processes, these two media mutually influence each other, which explains the reason for the formation of a stormy condition over the ocean and the drop in atmospheric pressure before the storm. The mechanism of the formation of the “killer wave” has been established and thus the “greatest mystery of nature” has been solved. The scale of wind and tsunami wavelengths has been established. 展开更多
关键词 atmosphere OCEAN Gravitational waves waves of Wind Tsunami waves Killer wave
下载PDF
上一页 1 2 37 下一页 到第
使用帮助 返回顶部