期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Numerical Simulation of Water Wave Propagation and Transformation
1
作者 赵西增 《Journal of Marine Science and Application》 2010年第4期363-371,共9页
A numerical approach was performed to predict the propagation and transformation of nonlinear water waves. A numerical wave flume was developed based on the non-periodic high-order spectral (HOS) method. The flume was... A numerical approach was performed to predict the propagation and transformation of nonlinear water waves. A numerical wave flume was developed based on the non-periodic high-order spectral (HOS) method. The flume was applied to analyze the effect of wave steepness and wavelength on the propagation of nonlinear waves. The results show that for waves of low steepness, the wave profile and the wave energy spectrum are stable, and that the propagation can be predicted by the linear wave theory. For waves of moderate steepness and steep waves, the effects associated with the interactions between waves in a wave group become significant and a train of initially sinusoidal waves may drastically change its form within a short distance from its original position. 展开更多
关键词 nonlinear wave high-order spectral method wave maker boundary additional potential regular wave
下载PDF
Numerical Simulation of Seaplane Wave Ground Effect with Crosswind 被引量:3
2
作者 LI Yanghui FU Xiaoqin +1 位作者 CHEN Jichang TONG Mingbo 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第S01期1-9,共9页
Under the absolute coordinate system, the unsteady Reynolds averaged Navier-Stokes(URANS)equations and the k-ω SST turbulence model are solved using the finite volume method to simulate the aerodynamic characteristic... Under the absolute coordinate system, the unsteady Reynolds averaged Navier-Stokes(URANS)equations and the k-ω SST turbulence model are solved using the finite volume method to simulate the aerodynamic characteristics of large seaplane flying with the ground-effect above wavy surface. The velocity inlet wave-making method and the volume of fluid model are used to accurately simulate the linear regular waves and to precisely capture the free surface. This paper studies the influence of the sideslip angle on the aerodynamic characteristics of large seaplane when it is cruising above wavy water. The results show that the wave surface mainly affects the pressure distribution on the lower surface of the wing. When the sideslip angle varies from 0° to 8°,the varying of frequency of aerodynamic forces is consistent with the wave encounter frequency,and both periods are 0.6 s. With the increase of the sideslip angle,the lift coefficient and the pitching moment coefficient decrease. However,when the sideslip angle is smaller than 4°,the decrease amplitude is small,and the significant decrease occurs above 4° and during the whole process of the change of sideslip angle,the aerodynamic fluctuation amplitude is almost unchanged. As the drag coefficient increases with the increase of sideslip angle,significant increase also occurs when the value is greater than4°,and the fluctuation amplitude does not show any correlations. The rolling moment coefficient and yaw moment coefficient increase with the increase of the sideslip angle,and the fluctuation amplitudes of both increase linearly with the increase of the sideslip angle. 展开更多
关键词 two-phase flow wing-in-ground(WIG)effect volume of fluid(VOF)model velocity-inlet boundary wave maker
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部