Fourier transform (FF) is a commonly used method in spectral analysis of ocean wave and offshore structure responses, but it is not suitable for records of short length. In this paper another method, wavelet transfo...Fourier transform (FF) is a commonly used method in spectral analysis of ocean wave and offshore structure responses, but it is not suitable for records of short length. In this paper another method, wavelet transform (WT), is applied to 'analyze the data of short length. The Morlet wavelet is employed to calculate the spectra density functions for wave records and simulated Floating Production Storage and Offloading (FPSO) vessels' responses. Computed wave data include simulated wave data based on JONSWAP spectrum and the recorded data of Storm 149 from North Alwyn. Wavelet method is validated by comparing the statistical characteristics by WF method and those by fast Fourier transform (FFT) method with those of target spectra. The spectral density fnnctions' shapes calculated by WT are less malformed and have less error of statistical characteristics compared with those by FT especially when the record lengths decrease.展开更多
Various cosmology models, brane oscillation scenarios, interaction of interstellar plasma with intense electromagnetic radiation, and even high-energy physics experiments (e.g., Large Hadron Collider (LHC)) all pr...Various cosmology models, brane oscillation scenarios, interaction of interstellar plasma with intense electromagnetic radiation, and even high-energy physics experiments (e.g., Large Hadron Collider (LHC)) all predict high frequency gravitational waves (HFGWs, i.e., high-energy gravitons) in the microwave band and higher frequency region, and some of them have large energy densities. Electromagnetic (EM) detection to such HFGWs would be suitable due to very high frequencies and large energy densities of the HFGWs. We review several typical EM detection schemes, i.e., inverse Gertsenshtein effect (G-effect), coupling of the inverse G effect with a coherent EM wave, coupling of planar superconducting open cavity with a static magnetic field, cylindrical superconducting closed cavity, and the EM sychro-resonance system, and discuss related minimal detectable amplitudes and sensitivities. Furthermore, we give some new ideas and improvement ways enhancing the possibility of measuring the HFGWs. It is shown that there is still a large room for improvement for those schemes to approach and even reach up the requirement of detection of HFGWs expected by the cosmological models and high-energy astrophysical process.展开更多
On the basis of the wave energy balance equation, the response model of mean directions of locally wind-generated waves in slowly turning wind fields has been derived. The results show that in a homogeneous field, the...On the basis of the wave energy balance equation, the response model of mean directions of locally wind-generated waves in slowly turning wind fields has been derived. The results show that in a homogeneous field, the time scale of the response is not only related to the rate of wave growth, but also to the directional energy distribution and the angle between the wind direction and the mean wave direction. Furthermore, the law of change in the mean wave direction has been derived. The numerical computations show that the response of wave directions to slowly turning wind directions can be treated as the superposition of the responses of wave directions to a series of sudden small-angle changes of wind directions and the turning rate of the mean wave direction depends on the turning rate and the total turning angles of the wind direction. The response of wave directions is in agreement with the response for a sudden change of wind directions if the change in wind directions is very fast. Based on the normalized rates of wave growth under local winds presented by Wen et al. (1989), a quantitative estimate of the time scale of the response shows that the relationships between the dimensionless time scale and both the dimensionless total wave energy and the dimensionless peak frequency agree fairly well with the observations in comparison with other models.展开更多
The wave transmission character of helical spring is applied to establish 2-DOF model of impacted vehicle on the wave impact theory. Considering the concrete structure of helical spring, corresponding responses under ...The wave transmission character of helical spring is applied to establish 2-DOF model of impacted vehicle on the wave impact theory. Considering the concrete structure of helical spring, corresponding responses under different impact frequency of the vehicle are imitated. The reason why the vehicle floor overresponds in some special frequency fields is explored based on analyzing the responses. When the impactions are in low frequency, the change of the spring has not been considered, but this does not affect the results. Because the transmission characters of velocity and acceleration are unanimous in helical spring, the responses characters of velocity and acceleration arc also unanimous, the only difference is the magnitude, which can make use of acceleration responses to analyse velocity responses.展开更多
Shanghai is located in eastern China and is built on overburden soil layers. It can be seen from the Mexico M S=8.1 earthquake on September 19, 1985 and the Hanshin M S=7.4 earthquake on January 17,1995 that heavy cas...Shanghai is located in eastern China and is built on overburden soil layers. It can be seen from the Mexico M S=8.1 earthquake on September 19, 1985 and the Hanshin M S=7.4 earthquake on January 17,1995 that heavy casualties and property losses have a direct relationship with overburden soil layers. Ground motions caused by earthquakes are significantly amplified when passing through the soil layers. Under the influence of these amplified motions, building structures, whose nature frequency is within the frequency band of soil amplification response, will experience more severe damage than those built on bedrock. Therefore, engineering seismologists have paid considerable attention the amplification responses in the Shanghai overburden soil layers. The amplification responses of soil and sand layers in this paper are given by the M L=4.1 earthquake in Nantong, Jiangsu Province on December 25, 2001 at 31.8° N, 120.9° E. It can be seen that the responses of soil and sand layers are very different. That is important.展开更多
Bed morphology is the result of a dynamic response to a complex meandering river system. It is an important factor for the further development of river. Based on the meandering river characterized by a large depth-to-...Bed morphology is the result of a dynamic response to a complex meandering river system. It is an important factor for the further development of river. Based on the meandering river characterized by a large depth-to-width ratio, a theoretical model is established with the coupling of Navier-Stokes (N-S)~ sediment transport, and bed deformation equations. The flow characteristics and bed response of river are obtained with the perturbation method. The research results show that, under the effect of two- dimensional flow disturbance, the bars and pools present the regular response. For a given sinuousness, the amplitude of the bed response can be used as a criterion to judge the bedform stability. The effects of the Reynolds number, disturbance wavenumber, sinuousness, and bed morphology gradient on the bed response development are described.展开更多
To investigate the dynamics of submersible mussel rafts, the finite element program Aqua-FETM, developed by the University of New Hampshire(UNH), was applied to rafts moored at the surface and submerged. The submerg...To investigate the dynamics of submersible mussel rafts, the finite element program Aqua-FETM, developed by the University of New Hampshire(UNH), was applied to rafts moored at the surface and submerged. The submerged configuration is used to reduce wave forcing and to avoid contact with floating ice during winters in northern waters. Each raft consists of three pontoons connected by a grid framework. Rafts are intended to support densely spaced mussel ropes hung from the framework. When submerged, the pontoons are flooded, and the raft is held vertically by floats attached by lines. The computer models were developed in Aqua-FE? to simulate the effects of waves and current. They were validated by comparison with wave tank results by use of a 1/10 scale raft physical model. Comparisons showed good agreement for the important heave(vertical) and pitch(rotational) motions, though there was a tendency towards conservative results for wave and current drag. Full-scale simulations of surface and submerged single raft and two rafts connected in tandem were performed. Submerged raft wave response was found to be reduced relative to that at the surface for both the single and two-raft configurations. In particular, the vertical motion of mussel rope connection points was significantly reduced by submergence, resulting in reduced potential for mussel drop-off. For example, the maximum vertical velocities of mussel rope attachment points in the submerged two raft case were 7%-20% of the corresponding velocities when at the surface.展开更多
To study the characteristics of attenuation, hydrostatic towage and wave response of the vertical-axis floating tidal current energy power generation device (VAFTCEPGD), a prototype is designed and experiment is car...To study the characteristics of attenuation, hydrostatic towage and wave response of the vertical-axis floating tidal current energy power generation device (VAFTCEPGD), a prototype is designed and experiment is carried out in the towing tank. Free decay is conducted to obtain attenuation characteristics of the VAFTCEPGD, and characteristics of mooring forces and motion response, floating condition, especially the lateral displacement of the VAFTCEPGD are obtained from the towing in still water. Tension response of the #1 mooring line and vibration characteristics of the VAFTCEPGD in regular waves as well as in level 4 irregular wave sea state with the current velocity of 0.6 m/s. The results can be reference for theoretical study and engineering applications related to VAFTCEPGD.展开更多
The pile, as an important foundation style, is being used in engineering practice. Defects of different types and damages of different degrees easily occur during the process of pile construction. So, dietecting defec...The pile, as an important foundation style, is being used in engineering practice. Defects of different types and damages of different degrees easily occur during the process of pile construction. So, dietecting defects of the pile is very important. As so far, there are some difficult problems in pile defect detection. Based on stress wave theory, some of these typical difficult problems were studied through model tests. The analyses of the test results are carried out and some significant results of the low-strain method are obtained, when a pile has a gradually-decreasing crosssection part, the amplitude of the reflective signal originating from the defect is dependent on the decreasing value of the rate of crosssection β. No apparent signal reflected from the necking appeares on the velocity response curve when the value of β is less than about 3. 5 %.展开更多
There has been a growing trend in the development of offshore deep-water ports in China. For such deep sea projects, all-vertical-piled wharves are suitable structures and generally located in open waters, greatly aff...There has been a growing trend in the development of offshore deep-water ports in China. For such deep sea projects, all-vertical-piled wharves are suitable structures and generally located in open waters, greatly affected by wave action. Currently, no systematic studies or simplified numerical methods are available for deriving the dynamic characteristics and dynamic responses of all-vertical-piled wharves under wave cyclic loads. In this article, we compare the dynamic characteristics of an all-vertical-piled wharf with those of a traditional inshore high-piled wharf through numerical analysis; our research reveals that the vibration period of an all-vertical-piled wharf under cyclic loading is longer than that of an inshore high-piled wharf and is much closer to the period of the loading wave. Therefore, dynamic calculation and analysis should be conducted when designing and calculating the characteristics of an all-vertical-piled wharf. We establish a dynamic finite element model to examine the dynamic response of an all-vertical-piled wharf under wave cyclic loads and compare the results with those under wave equivalent static load; the comparison indicates that dynamic amplification of the structure is evident when the wave dynamic load effect is taken into account. Furthermore, a simplified dynamic numerical method for calculating the dynamic response of an all-vertical-piled wharf is established based on the P-Y curve. Compared with finite element analysis, the simplified method is more convenient to use and applicable to large structural deformation while considering the soil non-linearity. We confirmed that the simplified method has acceptable accuracy and can be used in engineering applications.展开更多
It is demonstrated that when tension leg platform (TLP) moves with finite amplitude in waves, the inertia force, the drag force and the buoyancy acting on the platform are nonlinear functions of the response of TLP,...It is demonstrated that when tension leg platform (TLP) moves with finite amplitude in waves, the inertia force, the drag force and the buoyancy acting on the platform are nonlinear functions of the response of TLP, The tensions of the tethers are also nonlinear functions of the displacement of TLP. Then the displacement, the velocity and the acceleration of TLP should be taken into account when loads are calculated. In addition, equations of motions should be set up on the instantaneous position. A theo- retical model for analyzing the nonlinear behavior of a TLP with finite displacement is developed, in which multifold nonlinearities are taken into account, i.e., finite displace- ment, coupling of the six degrees of freedom, instantaneous position, instantaneous wet surface, free surface effects and viscous drag force, Based on the theoretical model, the comprehensive nonlinear differential equations are deduced. Then the nonlinear dynamic analysis of ISSC TLP in regular waves is performed in the time domain. The degenerative linear solution of the proposed nonlinear model is verified with existing published one. Furthermore, numerical results are presented, which illustrate that nonlinearities exert a significant influence on the dynamic responses of the TLP.展开更多
In 2019 a Scientific Research&Demonstration Platform was deployed near islands and reefs in South China Sea by a joint research group of 7 institutes and universities in China.It is a simplified small model of a t...In 2019 a Scientific Research&Demonstration Platform was deployed near islands and reefs in South China Sea by a joint research group of 7 institutes and universities in China.It is a simplified small model of a two-module semi-submersible-type VLFS.The test on site has continued for more than one and half years since then for long-term observations to validate the developed key technologies for design and behavior predictions of floating structures deployed near islands and reefs.An integrated information system was set up to continuously collect and inspect the data of the encountered waves,structure responses,connector forces,mooring line forces,anti-corrosion status of the platform,the performance efficiencies of a floating breakwater nearby and a wave energy converter attached on the breakwater.In this paper,the status of the on-site measurements and validations of the key technologies are briefly described.展开更多
文摘Fourier transform (FF) is a commonly used method in spectral analysis of ocean wave and offshore structure responses, but it is not suitable for records of short length. In this paper another method, wavelet transform (WT), is applied to 'analyze the data of short length. The Morlet wavelet is employed to calculate the spectra density functions for wave records and simulated Floating Production Storage and Offloading (FPSO) vessels' responses. Computed wave data include simulated wave data based on JONSWAP spectrum and the recorded data of Storm 149 from North Alwyn. Wavelet method is validated by comparing the statistical characteristics by WF method and those by fast Fourier transform (FFT) method with those of target spectra. The spectral density fnnctions' shapes calculated by WT are less malformed and have less error of statistical characteristics compared with those by FT especially when the record lengths decrease.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11075224 and 11375279)the Foundation of China Academy of Engineering Physics(Grant Nos.2008 T0401 and T0402)
文摘Various cosmology models, brane oscillation scenarios, interaction of interstellar plasma with intense electromagnetic radiation, and even high-energy physics experiments (e.g., Large Hadron Collider (LHC)) all predict high frequency gravitational waves (HFGWs, i.e., high-energy gravitons) in the microwave band and higher frequency region, and some of them have large energy densities. Electromagnetic (EM) detection to such HFGWs would be suitable due to very high frequencies and large energy densities of the HFGWs. We review several typical EM detection schemes, i.e., inverse Gertsenshtein effect (G-effect), coupling of the inverse G effect with a coherent EM wave, coupling of planar superconducting open cavity with a static magnetic field, cylindrical superconducting closed cavity, and the EM sychro-resonance system, and discuss related minimal detectable amplitudes and sensitivities. Furthermore, we give some new ideas and improvement ways enhancing the possibility of measuring the HFGWs. It is shown that there is still a large room for improvement for those schemes to approach and even reach up the requirement of detection of HFGWs expected by the cosmological models and high-energy astrophysical process.
文摘On the basis of the wave energy balance equation, the response model of mean directions of locally wind-generated waves in slowly turning wind fields has been derived. The results show that in a homogeneous field, the time scale of the response is not only related to the rate of wave growth, but also to the directional energy distribution and the angle between the wind direction and the mean wave direction. Furthermore, the law of change in the mean wave direction has been derived. The numerical computations show that the response of wave directions to slowly turning wind directions can be treated as the superposition of the responses of wave directions to a series of sudden small-angle changes of wind directions and the turning rate of the mean wave direction depends on the turning rate and the total turning angles of the wind direction. The response of wave directions is in agreement with the response for a sudden change of wind directions if the change in wind directions is very fast. Based on the normalized rates of wave growth under local winds presented by Wen et al. (1989), a quantitative estimate of the time scale of the response shows that the relationships between the dimensionless time scale and both the dimensionless total wave energy and the dimensionless peak frequency agree fairly well with the observations in comparison with other models.
文摘The wave transmission character of helical spring is applied to establish 2-DOF model of impacted vehicle on the wave impact theory. Considering the concrete structure of helical spring, corresponding responses under different impact frequency of the vehicle are imitated. The reason why the vehicle floor overresponds in some special frequency fields is explored based on analyzing the responses. When the impactions are in low frequency, the change of the spring has not been considered, but this does not affect the results. Because the transmission characters of velocity and acceleration are unanimous in helical spring, the responses characters of velocity and acceleration arc also unanimous, the only difference is the magnitude, which can make use of acceleration responses to analyse velocity responses.
文摘Shanghai is located in eastern China and is built on overburden soil layers. It can be seen from the Mexico M S=8.1 earthquake on September 19, 1985 and the Hanshin M S=7.4 earthquake on January 17,1995 that heavy casualties and property losses have a direct relationship with overburden soil layers. Ground motions caused by earthquakes are significantly amplified when passing through the soil layers. Under the influence of these amplified motions, building structures, whose nature frequency is within the frequency band of soil amplification response, will experience more severe damage than those built on bedrock. Therefore, engineering seismologists have paid considerable attention the amplification responses in the Shanghai overburden soil layers. The amplification responses of soil and sand layers in this paper are given by the M L=4.1 earthquake in Nantong, Jiangsu Province on December 25, 2001 at 31.8° N, 120.9° E. It can be seen that the responses of soil and sand layers are very different. That is important.
文摘Bed morphology is the result of a dynamic response to a complex meandering river system. It is an important factor for the further development of river. Based on the meandering river characterized by a large depth-to-width ratio, a theoretical model is established with the coupling of Navier-Stokes (N-S)~ sediment transport, and bed deformation equations. The flow characteristics and bed response of river are obtained with the perturbation method. The research results show that, under the effect of two- dimensional flow disturbance, the bars and pools present the regular response. For a given sinuousness, the amplitude of the bed response can be used as a criterion to judge the bedform stability. The effects of the Reynolds number, disturbance wavenumber, sinuousness, and bed morphology gradient on the bed response development are described.
基金financially supported by the Small Business Innovation Research(SBIR)program of the USDA National Institute for Food and Agriculture(NIFA)(Grant No.2013-33610-21190)to Pemaquid Mussel FarmsDuring her time at the University of New Hampshire where this study was completedsupported by a graduate student fellowship funded by the People’s Republic of China
文摘To investigate the dynamics of submersible mussel rafts, the finite element program Aqua-FETM, developed by the University of New Hampshire(UNH), was applied to rafts moored at the surface and submerged. The submerged configuration is used to reduce wave forcing and to avoid contact with floating ice during winters in northern waters. Each raft consists of three pontoons connected by a grid framework. Rafts are intended to support densely spaced mussel ropes hung from the framework. When submerged, the pontoons are flooded, and the raft is held vertically by floats attached by lines. The computer models were developed in Aqua-FE? to simulate the effects of waves and current. They were validated by comparison with wave tank results by use of a 1/10 scale raft physical model. Comparisons showed good agreement for the important heave(vertical) and pitch(rotational) motions, though there was a tendency towards conservative results for wave and current drag. Full-scale simulations of surface and submerged single raft and two rafts connected in tandem were performed. Submerged raft wave response was found to be reduced relative to that at the surface for both the single and two-raft configurations. In particular, the vertical motion of mussel rope connection points was significantly reduced by submergence, resulting in reduced potential for mussel drop-off. For example, the maximum vertical velocities of mussel rope attachment points in the submerged two raft case were 7%-20% of the corresponding velocities when at the surface.
基金supported by the National Natural Science Foundation of China(Grant Nos.51309068,51309069,51579055 and 11572094)the Special Funded of Innovational Talents of Science and Technology in Harbin(Grant No.RC2014QN001008)+1 种基金the China Postdoctoral Science Foundation(Grant Nos.2014M561334 and 2015T80330)the Heilongjiang Postdoctoral Science Foundation(Grant No.LBH-Z14060)
文摘To study the characteristics of attenuation, hydrostatic towage and wave response of the vertical-axis floating tidal current energy power generation device (VAFTCEPGD), a prototype is designed and experiment is carried out in the towing tank. Free decay is conducted to obtain attenuation characteristics of the VAFTCEPGD, and characteristics of mooring forces and motion response, floating condition, especially the lateral displacement of the VAFTCEPGD are obtained from the towing in still water. Tension response of the #1 mooring line and vibration characteristics of the VAFTCEPGD in regular waves as well as in level 4 irregular wave sea state with the current velocity of 0.6 m/s. The results can be reference for theoretical study and engineering applications related to VAFTCEPGD.
文摘The pile, as an important foundation style, is being used in engineering practice. Defects of different types and damages of different degrees easily occur during the process of pile construction. So, dietecting defects of the pile is very important. As so far, there are some difficult problems in pile defect detection. Based on stress wave theory, some of these typical difficult problems were studied through model tests. The analyses of the test results are carried out and some significant results of the low-strain method are obtained, when a pile has a gradually-decreasing crosssection part, the amplitude of the reflective signal originating from the defect is dependent on the decreasing value of the rate of crosssection β. No apparent signal reflected from the necking appeares on the velocity response curve when the value of β is less than about 3. 5 %.
基金financially supported by the Major Science and Technology Project of MOT,China(Grant Nos.2013 328 224 070 and 2014 328 224 040)the National Natural Science Foundation of China(Grant No.51409134)
文摘There has been a growing trend in the development of offshore deep-water ports in China. For such deep sea projects, all-vertical-piled wharves are suitable structures and generally located in open waters, greatly affected by wave action. Currently, no systematic studies or simplified numerical methods are available for deriving the dynamic characteristics and dynamic responses of all-vertical-piled wharves under wave cyclic loads. In this article, we compare the dynamic characteristics of an all-vertical-piled wharf with those of a traditional inshore high-piled wharf through numerical analysis; our research reveals that the vibration period of an all-vertical-piled wharf under cyclic loading is longer than that of an inshore high-piled wharf and is much closer to the period of the loading wave. Therefore, dynamic calculation and analysis should be conducted when designing and calculating the characteristics of an all-vertical-piled wharf. We establish a dynamic finite element model to examine the dynamic response of an all-vertical-piled wharf under wave cyclic loads and compare the results with those under wave equivalent static load; the comparison indicates that dynamic amplification of the structure is evident when the wave dynamic load effect is taken into account. Furthermore, a simplified dynamic numerical method for calculating the dynamic response of an all-vertical-piled wharf is established based on the P-Y curve. Compared with finite element analysis, the simplified method is more convenient to use and applicable to large structural deformation while considering the soil non-linearity. We confirmed that the simplified method has acceptable accuracy and can be used in engineering applications.
基金Project supported by "Creativeness Project of the Tenth Five-Year Plan" of Chinese Academy of Sciences (No.KJCX2-SW-L03)the National High-Tech Research and Development Program of China (863 Program) (No.2004AA617010)
文摘It is demonstrated that when tension leg platform (TLP) moves with finite amplitude in waves, the inertia force, the drag force and the buoyancy acting on the platform are nonlinear functions of the response of TLP, The tensions of the tethers are also nonlinear functions of the displacement of TLP. Then the displacement, the velocity and the acceleration of TLP should be taken into account when loads are calculated. In addition, equations of motions should be set up on the instantaneous position. A theo- retical model for analyzing the nonlinear behavior of a TLP with finite displacement is developed, in which multifold nonlinearities are taken into account, i.e., finite displace- ment, coupling of the six degrees of freedom, instantaneous position, instantaneous wet surface, free surface effects and viscous drag force, Based on the theoretical model, the comprehensive nonlinear differential equations are deduced. Then the nonlinear dynamic analysis of ISSC TLP in regular waves is performed in the time domain. The degenerative linear solution of the proposed nonlinear model is verified with existing published one. Furthermore, numerical results are presented, which illustrate that nonlinearities exert a significant influence on the dynamic responses of the TLP.
基金supported by the Ministry of Industry and Information Technology(Grant No.[2016]22)the Ministry of Science and Technology(Grant No.2013CB36100)+2 种基金supports of the High-tech Ships Research Program([2016]22 and[2019]357)of the Ministry of Industry and Information Technologythe State Key Fundamental Research Program(2013CB036100)and the National Key Research and Development Program(No.2017YFBO202701)of the Ministry of Scienceand Technologythe Jiangsu Province Science Foundation for Youths(BK20190151).
文摘In 2019 a Scientific Research&Demonstration Platform was deployed near islands and reefs in South China Sea by a joint research group of 7 institutes and universities in China.It is a simplified small model of a two-module semi-submersible-type VLFS.The test on site has continued for more than one and half years since then for long-term observations to validate the developed key technologies for design and behavior predictions of floating structures deployed near islands and reefs.An integrated information system was set up to continuously collect and inspect the data of the encountered waves,structure responses,connector forces,mooring line forces,anti-corrosion status of the platform,the performance efficiencies of a floating breakwater nearby and a wave energy converter attached on the breakwater.In this paper,the status of the on-site measurements and validations of the key technologies are briefly described.