期刊文献+
共找到120,980篇文章
< 1 2 250 >
每页显示 20 50 100
Effect of Berm Width and Elevation on Irregular Wave Run-Up 被引量:7
1
作者 Chen Guoping , Yu Kuang-ming and Zhang Jiachang Assistant Engineer, River and Harbour Department, Nanjing Hydraulic Research Institute, NanjingProf. and Senior Engineer, River and Harbour Department, Nanjing Hydraulic Research Institute, Nanjing Senior Engineer, River and Harbour Department, Nanjing Hydraulic Research Institute, Nanjing 《China Ocean Engineering》 SCIE EI 1991年第4期441-452,共12页
This paper discusses the effect of berm width and elevation of composite slope on irregular wave run-up. Based on the data obtained from model tests, the formula and distribution of irregular wave run-up on composite ... This paper discusses the effect of berm width and elevation of composite slope on irregular wave run-up. Based on the data obtained from model tests, the formula and distribution of irregular wave run-up on composite slope are derived. The changing of wind speed, width and elevation of the berm are considered comprehensively. The wave run-up with various exceedance probability can be es-timated utilizing the distribution curves of irregular wave run-up. 展开更多
关键词 berm width berm elevation irregular wave run-up composite slope
下载PDF
Impedance Analytical Method of Wave Run-up and Reflection from A Slotted-Wall Caisson Breakwater 被引量:3
2
作者 朱大同 《China Ocean Engineering》 SCIE EI 2010年第3期453-465,共13页
An impedance analytical method (IAM) is developed to study the interaction of plane water wave with a slotted-wall caisson breakwater. The non-linear boundary condition at the slotted-wall is expressed in terms of f... An impedance analytical method (IAM) is developed to study the interaction of plane water wave with a slotted-wall caisson breakwater. The non-linear boundary condition at the slotted-wall is expressed in terms of flow resistance. A set of algebraic expressions are obtained for free surface elevation inside and outside chamber, and reflection coefficient. The prediction of the reflection coefficients shows that the relative widths of the chamber inducing the minimum reflection coefficient for a slotted-wall caisson breakwater are in a range of 0.10~0.20, which are smaller than that (0.15~0.25) for a perforated-wall caisson breakwater. The reflection coefficients and free surface elevation obtained by the present model are compared with that of laboratory experiments carried out by previous researchers. 展开更多
关键词 plane wave slotted-wall caisson wave reflection wave run-up impedance analytical method (IAM)
下载PDF
Experimental Study on 2-D Focusing Wave Run-up on A Vertical Cylinder 被引量:2
3
作者 柳淑学 孙一艳 +1 位作者 李金宣 臧军 《China Ocean Engineering》 SCIE EI 2010年第3期499-512,共14页
In this paper,the focused wave groups with different parameters and their actions on a vertical cylinder are experimentally studied. The harmonic wave characteristics of the focusing waves are analyzed by the addition... In this paper,the focused wave groups with different parameters and their actions on a vertical cylinder are experimentally studied. The harmonic wave characteristics of the focusing waves are analyzed by the addition and subtraction of the crest and trough focusing waves. The analyzed results show that higher order harmonics can be generated because of the interaction of component waves. Nonlinearity increases with the inputted wave amplitude and the frequency width increment. Further, the wave run-up around the vertical circular cylinder is experimentally studied. It increases with the wave steepness and the relative cylinder diameter increase. However, the variations of wave run-up around the circular cylinder are different. The researches provide a reference for further numerical studies. 展开更多
关键词 wave focusing NONLINEARITY vertical circular cylinder wave run-up
下载PDF
Wave Run-up on A Coaxial Perforated Circular Cylinder 被引量:2
4
作者 朱大同 《China Ocean Engineering》 SCIE EI 2011年第2期201-214,共14页
This paper describes a plane regular wave interaction with a combined cylinder which consists of a solid inner column and a coaxial perforated outer cylinder. The outer perforated surface is a thin porous cylinder wit... This paper describes a plane regular wave interaction with a combined cylinder which consists of a solid inner column and a coaxial perforated outer cylinder. The outer perforated surface is a thin porous cylinder with an annular gap between it and the inner cylinder. The non-linear boundary condition at the perforated wall is a prime focus in the study; energy dissipation at the perforated wall occurs through the resistance to the fluid across the perforated wall. Explicit analytical formulae are presented to calculate the wave run-up on the outer and inner surfaces of the perforated cylinder and the surface of the inner column. The theoretical results of the wave run-up are compared with previous experimental data. Numerical results have also been obtained: when the ratio of the annular gap between the two cylinders to incident wavelength (b-a)/L≤0. 1, the wave run-up on the inner surface of the perforated cylinder and the surface of inner column can partially or completely exceed the incident wave height. 展开更多
关键词 plane water wave coaxial perforated cylinder wave run-up flow resistance
下载PDF
Wave Run-up on A Vertical Seawall Protected by An Offshore Submerged Barrier 被引量:1
5
作者 张景新 刘桦 《China Ocean Engineering》 SCIE EI 2009年第3期553-564,共12页
Submerged barriers are constructed in coastal zones for shoreline or harbor protection or to prevent the beach erosion. In the present study, the wave run-up on a vertical seawall protected by a submerged barrier is a... Submerged barriers are constructed in coastal zones for shoreline or harbor protection or to prevent the beach erosion. In the present study, the wave run-up on a vertical seawall protected by a submerged barrier is analyzed. The physical configurations include a rigid barrier and a long channel of finite depth. For linear water waves, by matching the velocity along the barrier and along the gap, the systems of linear equations about the velocity potentials are obtained. The wave rim-up is further analyzed for various settings of barrier height and distance between the barrier and the wall, i.e. the chamber length. For nonlinear waves and random sea waves, a numerical model is extended to investigate the effect parameters of the barrier on the wave rim-up against the seawall. Not only the numerical simulations, but also the analytical results illustrate that the wave run-up on the seawall depends very much on the distance between the barrier and the vertical seawall. 展开更多
关键词 submerged barrier standing wave wave run-up
下载PDF
Application of artificial neural network to calculation of solitary wave run-up 被引量:1
6
作者 You-xing WEI Deng-ting WANG Qing-jun LIU 《Water Science and Engineering》 EI CAS 2010年第3期304-312,共9页
The prediction of solitary wave run-up has important practical significance in coastal and ocean engineering, but the calculation precision is limited in the existing models. For improving the calculation precision, a... The prediction of solitary wave run-up has important practical significance in coastal and ocean engineering, but the calculation precision is limited in the existing models. For improving the calculation precision, a solitary wave run-up calculation model was established based on artificial neural networks in this study. A back-propagation (BP) network with one hidden layer was adopted and modified with the additional momentum method and the auto-adjusting learning factor. The model was applied to calculation of solitary wave run-up. The correlation coefficients between the neural network model results and the experimental values was 0.996 5. By comparison with the correlation coefficient of 0.963 5, between the Synolakis formula calculation results and the experimental values, it is concluded that the neural network model is an effective method for calculation and analysis of solitary wave ran-up. 展开更多
关键词 solitary wave run-up artificial neural network back-propagation (BP) network additional momentum method auto-adjusting learning factor
下载PDF
Prediction on Irregular Wave Run-up and Overtopping
7
作者 陈国平 严士常 周益人 《China Ocean Engineering》 SCIE EI 2010年第3期481-498,共18页
A series of hydraulic model tests are carried out to investigate random wave run-up and overtopping on smooth, impermeable single slope and composite slope. Based on the analysis of the influences of wave steepness, s... A series of hydraulic model tests are carried out to investigate random wave run-up and overtopping on smooth, impermeable single slope and composite slope. Based on the analysis of the influences of wave steepness, structure slope, incident wave angle, width of the berm and water depth on the berm and the wave run-up, empirical formulas for wave run-up on dike are proposed. Moreover, empirical formula on estimating the wave run-up on composite slope with multiple berms is presented for practical application of complex dike cross-section. The present study shows that the influence factors for wave overtopping are almost the same as those for wave run-up and the trend of the wave overtopping variation with main influence parameters is also similar to that for wave run-up. The trend of the wave overtopping variations can be well described by two main factors, i.e. the wave run-up and the crest freeboard of the structure. A new prediction method for wave overtopping is proposed for random waves. The proposed prediction formulas are applied to case study of over forty cases and the results show that the prediction methods are good enough for practical design purposes. 展开更多
关键词 wave run-up OVERTOPPING oblique wave composite slope
下载PDF
Analysis of the pressure at a vertical barrier due to extreme wave run-up over variable bathymetry
8
作者 J.Brennan C.Clancy +2 位作者 J.Harrington R.Cox F.Dias 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2017年第5期269-275,共7页
The pressure load at a vertical barrier caused by extreme wave run-up is analysed numerically, using the conformal mapping method to solve the two-dimensional free surface Euler equations in a pseudospectral model. Pr... The pressure load at a vertical barrier caused by extreme wave run-up is analysed numerically, using the conformal mapping method to solve the two-dimensional free surface Euler equations in a pseudospectral model. Previously this problem has been examined in the case of a flat-bottomed geometry. Here,the model is extended to consider a varying bathymetry. Numerical experiments show that an increasing step-like bottom profile may enhance the extreme run-up of long waves but result in a reduced pressure load. 展开更多
关键词 wave-wall interaction wave run-up Pressure Extreme waves
下载PDF
Numerical Study of the Impact of Climate Change on Irregular Wave Run-up Over Reef-Fringed Coasts 被引量:4
9
作者 LIU Wei-jie SHAO Ke-qi +1 位作者 NING Yue ZHAO Xi-zeng 《China Ocean Engineering》 SCIE EI CSCD 2020年第2期162-171,共10页
Wave hydrodynamics over fringing reefs is largely controlled by the reef surface roughness and hydrodynamic forcing.It is believed that climate change will result in a net increase in the water depth over the reef fla... Wave hydrodynamics over fringing reefs is largely controlled by the reef surface roughness and hydrodynamic forcing.It is believed that climate change will result in a net increase in the water depth over the reef flat,a degrading of the surface roughness of coral reefs and changes in extreme incident wave heights.For an accurate assessment of how climate change affects the safety of reef-fringed coasts,a numerical study of the impact of climate change on irregular wave run-up over reef-fringed coasts was carried out based on a Boussinesq wave model,FUNWAVE-TVD.Validated with experimental data,the present model shows reasonable prediction of irregular wave evolution and run-up height over fringing reefs.Numerical experiments were then implemented based on the anticipated effects of climate change and carried out to investigate the effects of sea level rise,degrading of the reef surface roughness and increase of extreme incident wave height on the irregular wave run-up height over the backreef beach respectively.Variations of run-up components(i.e.,spectral characteristics of run-up and mean water level)were examined specifically and discussed to better understand the influencing mechanism of each climate change-related effect on the run-up. 展开更多
关键词 fringing reefs irregular waves climate change infragravity run-up height
下载PDF
RANS-VOF Solver for Solitary Wave Run-up on A Circular Cylinder 被引量:20
10
作者 曹洪建 万德成 《China Ocean Engineering》 SCIE EI CSCD 2015年第2期183-196,共14页
Simulation of solitary wave run-up on a vertical circular cylinder is carried out in a viscous numerical wave tank developed based on the open source codes Open FOAM. An incompressible two-phase flow solver naoe-FOAM-... Simulation of solitary wave run-up on a vertical circular cylinder is carried out in a viscous numerical wave tank developed based on the open source codes Open FOAM. An incompressible two-phase flow solver naoe-FOAM-SJTU is used to solve the Reynolds-Averaged Navier–Stokes(RANS) equations with the SST k ?? turbulence model. The PISO algorithm is utilized for the pressure-velocity coupling. The air-water interface is captured via Volume of Fluid(VOF) technique. The present numerical model is validated by simulating the solitary wave run-up and reflected against a vertical wall, and solitary wave run-up on a vertical circular cylinder. Comparisons between numerical results and available experimental data show satisfactory agreement. Furthermore, simulations are carried out to study the solitary wave run-up on the cylinder with different incident wave height H and different cylinder radius a. The relationships of the wave run-up height with the incident wave height H, cylinder radius a are analyzed. The evolutions of the scattering free surface and vortex shedding are also presented to give a better understanding of the process of nonlinear wave-cylinder interaction. 展开更多
关键词 RANS VOF solitary wave circular cylinder numerical wave tank naoe-FOAM-SJTU solver
下载PDF
Numerical investigation of solitary wave run-up attenuation by patchy vegetation 被引量:1
11
作者 Chuyan Zhao Yan Zhang +1 位作者 Jun Tang Yongming Shen 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2020年第5期105-114,共10页
Coastal vegetation is capable of decreasing wave run-up.However,because of regrowth,decay or man-made damage,coastal vegetation is always distributed in patches,and its internal distribution is often non-uniform.This ... Coastal vegetation is capable of decreasing wave run-up.However,because of regrowth,decay or man-made damage,coastal vegetation is always distributed in patches,and its internal distribution is often non-uniform.This study investigates the effects of patchy vegetation on solitary wave run-up by using a numerical simulation.A numerical model based on fully nonlinear Boussinesq equations is established to simulate the wave propagation on a slope with patchy vegetation.By using the model,the process of solitary wave run-up attenuation due to patchy vegetation is numerically analysed.The numerical results reveal that patchy vegetation can considerably attenuate the wave run-up in an effective manner.In addition,high-density patched vegetation can attenuate the solitary wave run-up more effectively than low-density patched vegetation can.For the same density,patchy vegetation with a uniform distribution has a better attenuation effect on wave run-up compared to that of patchy vegetation with a non-uniform distribution. 展开更多
关键词 solitary wave run-up patchy vegetation Boussinesq equation
下载PDF
Effect of Wave Groups on Wave Run-up
12
作者 Zhou Jiabao and Zhang Jiachang Senior Engineer, River and Harbour Department, Nanjing Hydraulic Research Institute, Nanjing 《China Ocean Engineering》 SCIE EI 1992年第1期79-86,共8页
-The effect of wave group on wave run-up on a slope dike is mainly discussed in this paper. Two simulating methods of wave group and their applications in laboratory are introduced. Synthesizing the research results o... -The effect of wave group on wave run-up on a slope dike is mainly discussed in this paper. Two simulating methods of wave group and their applications in laboratory are introduced. Synthesizing the research results of wave run-up on a slope dike, the effect of wave group on wave run-up on a slope dike in coastal protection engineering is studied as the main point. 展开更多
关键词 wave group run-up slope dike coastal protection engineering
下载PDF
WavewatchⅢ模拟和统计方法在最大波高预报方面的评测分析
13
作者 王娟娟 侯放 +1 位作者 吴淑萍 王久珂 《海洋预报》 CSCD 北大核心 2024年第1期1-9,共9页
为了研究WavewatchⅢ(WWⅢ)海浪模型对最大波高的模拟能力及其与传统统计关系方法的差异,通过对两次台风浪过程的后报模拟和半年的业务化预报,分析了WWⅢ数值模拟的准确度及其与统计关系方法的精度差异。研究结果表明:WWⅢ数值模拟的最... 为了研究WavewatchⅢ(WWⅢ)海浪模型对最大波高的模拟能力及其与传统统计关系方法的差异,通过对两次台风浪过程的后报模拟和半年的业务化预报,分析了WWⅢ数值模拟的准确度及其与统计关系方法的精度差异。研究结果表明:WWⅢ数值模拟的最大波高(Hmax)的精度略低于有效波高(Hs),但也达到了24 h预报相对误差(H_(max)≥1 m)低于18%、相关系数高于0.94的水平,模拟精度可靠,可以用于业务化预报;与两种统计关系方法(H_(max)和H_(s)分别为1.42和1.52)计算的最大波高相比,数值模拟的精度总体与其相当,但在H_(max)和H_(s)比值大于1.65这种易出现危险的海况下,数值模拟具有更高的准确性,更适合应用于海浪预警报服务。 展开更多
关键词 最大波高 wavewatchⅢ模型 数值模拟 统计关系 预报精度
下载PDF
基于D-Wave Advantage的量子退火公钥密码攻击算法研究
14
作者 王潮 王启迪 +2 位作者 洪春雷 胡巧云 裴植 《计算机学报》 EI CAS CSCD 北大核心 2024年第5期1030-1044,共15页
D-Wave专用量子计算机的原理量子退火凭借独特的量子隧穿效应可跳出传统智能算法极易陷入的局部极值,可视为一类具有全局寻优能力的人工智能算法.本文研究了两类基于量子退火的RSA公钥密码攻击算法(分解大整数N=pq):一是将密码攻击数学... D-Wave专用量子计算机的原理量子退火凭借独特的量子隧穿效应可跳出传统智能算法极易陷入的局部极值,可视为一类具有全局寻优能力的人工智能算法.本文研究了两类基于量子退火的RSA公钥密码攻击算法(分解大整数N=pq):一是将密码攻击数学方法转为组合优化问题或指数级空间搜索问题,通过Ising模型或QUBO模型求解,提出了乘法表的高位优化模型,建立新的降维公式,使用D-Wave Advantage分解了 200万整数2269753.大幅度超过普渡大学、Lockheed Martin和富士通等实验指标,且Ising模型系数h范围缩小了 84%,系数J范围缩小了 80%,极大地提高了分解成功率,这是一类完全基于D-Wave量子计算机的攻击算法;二是基于量子退火算法融合密码攻击数学方法优化密码部件的攻击,采用量子退火优化CVP问题求解,通过量子隧穿效应获得比Babai算法更近的向量,提高了 CVP问题中光滑对的搜索效率,在D-Wave Advantage上实现首次50比特RSA整数分解.实验表明,在通用量子计算机器件进展缓慢情况下,D-Wave表现出更好的现实攻击能力,且量子退火不存在NISQ量子计算机VQA算法的致命缺陷贫瘠高原问题:算法会无法收敛且无法扩展到大规模攻击. 展开更多
关键词 RSA D-wave 量子退火 CVP 量子隧穿 整数分解 量子计算
下载PDF
A novel method for simulating nuclear explosion with chemical explosion to form an approximate plane wave: Field test and numerical simulation 被引量:1
15
作者 Wei Ming Xiaojie Yang +3 位作者 Yadong Mao Xiang Wang Manchao He Zhigang Tao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2137-2153,共17页
A nuclear explosion in the rock mass medium can produce strong shock waves,seismic shocks,and other destructive effects,which can cause extreme damage to the underground protection infrastructures.With the increase in... A nuclear explosion in the rock mass medium can produce strong shock waves,seismic shocks,and other destructive effects,which can cause extreme damage to the underground protection infrastructures.With the increase in nuclear explosion power,underground protection engineering enabled by explosion-proof impact theory and technology ushered in a new challenge.This paper proposes to simulate nuclear explosion tests with on-site chemical explosion tests in the form of multi-hole explosions.First,the mechanism of using multi-hole simultaneous blasting to simulate a nuclear explosion to generate approximate plane waves was analyzed.The plane pressure curve at the vault of the underground protective tunnel under the action of the multi-hole simultaneous blasting was then obtained using the impact test in the rock mass at the site.According to the peak pressure at the vault plane,it was divided into three regions:the stress superposition region,the superposition region after surface reflection,and the approximate plane stress wave zone.A numerical simulation approach was developed using PFC and FLAC to study the peak particle velocity in the surrounding rock of the underground protective cave under the action of multi-hole blasting.The time-history curves of pressure and peak pressure partition obtained by the on-site multi-hole simultaneous blasting test and numerical simulation were compared and analyzed,to verify the correctness and rationality of the formation of an approximate plane wave in the simulated nuclear explosion.This comparison and analysis also provided a theoretical foundation and some research ideas for the ensuing study on the impact of a nuclear explosion. 展开更多
关键词 Approximate plane wave Multi-hole simultaneous blasting Chemical explosion Nuclear explosion Pressure sensor inclusion
下载PDF
Long-Term Extreme Wave Characteristics in the Water Adjacent to China Based on ERA5 Reanalysis Data
16
作者 DU Wenyan ZHANG Xuri +4 位作者 SHI Hongyuan LI Guanyu ZHOU Zhengqiao YOU Zaijin ZHANG Kuncheng 《Journal of Ocean University of China》 CAS CSCD 2024年第1期1-10,共10页
Extreme waves have a profound impact on coastal infrastructure;thus,understanding the variation law of risky analysis and disaster prevention in coastal zones is necessary.This paper analyzed the spatiotemporal charac... Extreme waves have a profound impact on coastal infrastructure;thus,understanding the variation law of risky analysis and disaster prevention in coastal zones is necessary.This paper analyzed the spatiotemporal characteristics of extreme wave heights adjacent to China from 1979 to 2018 based on the ERA5 datasets.Nonstationary extreme value analysis is undertaken in eight repre-sentative points to investigate the trends in the values of 50-and 100-year wave heights.Results show that the mean value of extreme waves is the largest in the eastern part of Taiwan Island and the smallest in the Bohai Sea from 1979 to 2018.Only the extreme wave height in the northeastern part of Taiwan Island shows a significant increase trend in the study area.Nonstationary analysis shows remarkable variations in the values of 50-and 100-year significant wave heights in eight points.Considering the annual mean change,E1,E2,S1,and S2 present an increasing trend,while S3 shows a decreasing trend.Most points for the seasonal mean change demon-strate an increasing trend in spring and winter,while other points show a decreasing trend in summer and autumn.Notably,the E1 point growth rate is large in autumn,which is related to the change in typhoon intensity and the northward movement of the typhoon path. 展开更多
关键词 extreme wave height NEVA wave climate ERA5 reanalysis
下载PDF
Probability Distribution Characteristics of Strong Nonlinear Waves Under Typhoon Conditions in the Northern South China Sea
17
作者 GONG Yijie XIE Botao +2 位作者 FU Dianfu WANG Zhifeng PANG Liang 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第3期583-593,共11页
The generation and propagation mechanism of strong nonlinear waves in the South China Sea is an essential research area. In this study, the third-generation wave model WAVEWATCH Ⅲ is employed to simulate wave fields ... The generation and propagation mechanism of strong nonlinear waves in the South China Sea is an essential research area. In this study, the third-generation wave model WAVEWATCH Ⅲ is employed to simulate wave fields under extreme sea states. The model, integrating the ST6 source term, is validated against observed data, demonstrating its credibility. The spatial distribution of the occurrence probability of strong nonlinear waves during typhoons is shown, and the waves in the straits and the northeastern part of the South China Sea show strong nonlinear characteristics. The high-order spectral model HOS-ocean is employed to simulate the random wave surface series beneath five different platform areas. The waves during the typhoon exhibit strong nonlinear characteristics, and freak waves exist. The space-varying probability model is established to describe the short-term probability distribution of nonlinear wave series. The exceedance probability distributions of the wave surface beneath different platform areas are compared and analyzed. The results show that with an increase in the platform area, the probability of a strong nonlinear wave beneath the platform increases. 展开更多
关键词 strong nonlinear wave TYPHOON wave series probability distribution model exceedance probability
下载PDF
Analysis of explosion wave interactions and rock breaking effects during dual initiation
18
作者 Renshu Yang Jinjing Zuo +3 位作者 Liwei Ma Yong Zhao Zhen Liu Quanmin Xie 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第8期1788-1798,共11页
In blasting engineering, the location and number of detonation points, to a certain degree, regulate the propagation direction ofthe explosion stress wave and blasting effect. Herein, we examine the explosion wave fie... In blasting engineering, the location and number of detonation points, to a certain degree, regulate the propagation direction ofthe explosion stress wave and blasting effect. Herein, we examine the explosion wave field and rock breaking effect in terms of shockwave collision, stress change of the blast hole wall in the collision zone, and crack propagation in the collision zone. The produced shockwave on the collision surface has an intensity surpassing the sum of the intensities of the two colliding explosion shock waves. At the collisionlocation, the kinetic energy is transformed into potential energy with a reduction in particle velocity at the wave front and the wavefront pressure increases. The expansion form of the superposed shock wave is dumbbell-shaped, the shock wave velocity in the collisionarea is greater than the radial shock wave velocity, and the average propagation angle of the explosion shock waves is approximately 60°.Accordingly, a fitted relationship between blast hole wall stress and explosion wave propagation angle in the superposition area is plotted.Under the experimental conditions, the superimposed explosion wave stress of the blast hole wall is approximately 1.73 times the singleexplosionwave incident stress. The results of the model test and numerical simulations reveal that large-scale radial fracture cracks weregenerated on the blast hole wall in the superimposed area, and the width of the crack increased. The width of the large-scale radial fracturecracks formed by a strong impact is approximately 5% of the blast hole length. According to the characteristics of blast hole wallcompression, the mean peak pressures of the strongly superimposed area are approximately 1.48 and 1.84 times those of the weakly superimposedand nonsuperimposed areas, respectively. 展开更多
关键词 BLASTING shock wave collision high-speed schlieren system crack fracture characteristic explosion wave
下载PDF
A Novel Method for Forecasting Freak Wave Occurrence in A Short Crested Coastal Sea
19
作者 WANG Ying-guang 《China Ocean Engineering》 SCIE EI CSCD 2024年第1期104-116,共13页
In order to forecast the distribution of crest amplitudes and the occurrence of freak waves in a short crested coastal sea,a novel transformed linear simulation method is initially proposed in this paper.A Hermite tra... In order to forecast the distribution of crest amplitudes and the occurrence of freak waves in a short crested coastal sea,a novel transformed linear simulation method is initially proposed in this paper.A Hermite transformation model expressed as a monotonic cubic polynomial serves as the foundation for the novel simulation technique.The wave crest amplitude exceedance probabilities of two sea states-one with a directional wave spectrum based on the measured wave elevation data at the Yura coast and the other with a typical directional JONSWAP wave spectrum-have been predicted using the novel simulation method that has been proposed.The likelihood that a particular critical wave crest amplitude will be exceeded is directly correlated with the probability that freak waves will occur.It is shown that the novel simulation approach suggested can provide predictions that are more precise than those obtained from the Rayleigh crest amplitude distribution model,the Jahns and Wheeler crest amplitude distribution model,or the conventional linear simulation method.This study also demonstrated that the nonlinear simulation method is less effective than the novel simulation method in terms of efficiency. 展开更多
关键词 wave crest amplitude freak waves short crested sea transformed linear simulation
下载PDF
Contrasts of bimodal tropical instability waves(TIWs)-induced wind stress perturbations in the Pacific Ocean among observations,ocean models,and coupled climate models
20
作者 Kai MA Chuanyu LIU +1 位作者 Junli XU Fan WANG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第1期1-23,共23页
The coupling between wind stress perturbations and sea surface temperature(SST)perturbations induced by tropical instability waves(TIWs)in the Pacific Ocean has been revealed previously and proven crucial to both the ... The coupling between wind stress perturbations and sea surface temperature(SST)perturbations induced by tropical instability waves(TIWs)in the Pacific Ocean has been revealed previously and proven crucial to both the atmosphere and ocean.However,an overlooked fact by previous studies is that the loosely defined“TIWs”actually consist of two modes,including the Yanai wave-based TIW on the equator(hereafter eTIW)and the Rossby wave-based TIW off the equator(hereafter vTIW).Hence,the individual feedbacks of the wind stress to the bimodal TIWs remain unexplored.In this study,individual coupling relationships are established for both eTIW and v TIW,including the relationship between the TIW-induced SST perturbations and two components of wind stress perturbations,and the relationship between the TIW-induced wind stress perturbation divergence(curl)and the downwind(crosswind)TIW-induced SST gradients.Results show that,due to different distributions of eTIW and vTIW,the coupling strength induced by the eTIW is stronger on the equator,and that by the vTIW is stronger off the equator.The results of any of eTIW and vTIW are higher than those of the loosely defined TIWs.We further investigated how well the coupling relationships remained in several widely recognized oceanic general circulation models and fully coupled climate models.However,the coupling relationships cannot be well represented in most numerical models.Finally,we confirmed that higher resolution usually corresponds to more accurate simulation.Therefore,the coupling models established in this study are complementary to previous research and can be used to refine the oceanic and coupled climate models. 展开更多
关键词 bimodal tropical instability waves mesoscale air-sea interaction coupled models Yanai wave
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部