One method for determining the characteristic parameters of a hadron production source is to measure the Bose-Einstein correlation functions.In this study,we present fundamental concepts and formulas related to the Bo...One method for determining the characteristic parameters of a hadron production source is to measure the Bose-Einstein correlation functions.In this study,we present fundamental concepts and formulas related to the Bose-Einstein correlations,focusing on the measurement principles and the Lund model from an experimental perspective.We perform Monte Carlo simulations using the Lund model generator in the 2-3 GeV energy range.Through these feasibility studies,we identify key features of the Bose-Einstein correlations that offer valuable insights for experimental measurements.Utilizing data samples collected at BESIII,we perform measurements of the Bose-Einstein correlation functions,with an expected experimental precision of a few percent for the hadron source radius and incoherence parameter.展开更多
A generalized Kadomtsev–Petviashvili equation is studied by nonlocal symmetry method and consistent Riccati expansion(CRE) method in this paper. Applying the truncated Painlevé analysis to the generalized Kadomt...A generalized Kadomtsev–Petviashvili equation is studied by nonlocal symmetry method and consistent Riccati expansion(CRE) method in this paper. Applying the truncated Painlevé analysis to the generalized Kadomtsev–Petviashvili equation, some B¨acklund transformations(BTs) including auto-BT and non-auto-BT are obtained. The auto-BT leads to a nonlocal symmetry which corresponds to the residual of the truncated Painlevé expansion. Then the nonlocal symmetry is localized to the corresponding nonlocal group by introducing two new variables. Further,by applying the Lie point symmetry method to the prolonged system, a new type of finite symmetry transformation is derived. In addition, the generalized Kadomtsev–Petviashvili equation is proved consistent Riccati expansion(CRE)solvable. As a result, the soliton-cnoidal wave interaction solutions of the equation are explicitly given, which are difficult to be found by other traditional methods. Moreover, figures are given out to show the properties of the explicit analytic interaction solutions.展开更多
This paper is concerned with the (2+1)-dimensional Benney types of equations. By the complete Lie group classification method, all of the point symmetries of the Benney types of equations are obtained, and the integra...This paper is concerned with the (2+1)-dimensional Benney types of equations. By the complete Lie group classification method, all of the point symmetries of the Benney types of equations are obtained, and the integrable condition of the equation is given. Then, the symmetry reductions and exact solutions to the (2+1)-dimensional nonlinear wave equations are presented. Especially, the shock wave solutions of the Benney equations are investigated by the symmetry reduction and trial function method.展开更多
基金supported by the National Key R&D Program of China (2020YFA0406403)and the National Natural Science Foundation of China (11275211,11335008,12035013)。
文摘One method for determining the characteristic parameters of a hadron production source is to measure the Bose-Einstein correlation functions.In this study,we present fundamental concepts and formulas related to the Bose-Einstein correlations,focusing on the measurement principles and the Lund model from an experimental perspective.We perform Monte Carlo simulations using the Lund model generator in the 2-3 GeV energy range.Through these feasibility studies,we identify key features of the Bose-Einstein correlations that offer valuable insights for experimental measurements.Utilizing data samples collected at BESIII,we perform measurements of the Bose-Einstein correlation functions,with an expected experimental precision of a few percent for the hadron source radius and incoherence parameter.
基金Supported by the Global Change Research Program of China under Grant No.2015CB953904National Natural Science Foundation of under Grant Nos.11275072 and 11435005+3 种基金Doctoral Program of Higher Education of China under Grant No.20120076110024the Network Information Physics Calculation of Basic Research Innovation Research Group of China under Grant No.61321064Shanghai Collaborative Innovation Center of Trustworthy Software for Internet of Things under Grant No.ZF1213Zhejiang Provincial Natural Science Foundation of China under Grant No.LY14A010005
文摘A generalized Kadomtsev–Petviashvili equation is studied by nonlocal symmetry method and consistent Riccati expansion(CRE) method in this paper. Applying the truncated Painlevé analysis to the generalized Kadomtsev–Petviashvili equation, some B¨acklund transformations(BTs) including auto-BT and non-auto-BT are obtained. The auto-BT leads to a nonlocal symmetry which corresponds to the residual of the truncated Painlevé expansion. Then the nonlocal symmetry is localized to the corresponding nonlocal group by introducing two new variables. Further,by applying the Lie point symmetry method to the prolonged system, a new type of finite symmetry transformation is derived. In addition, the generalized Kadomtsev–Petviashvili equation is proved consistent Riccati expansion(CRE)solvable. As a result, the soliton-cnoidal wave interaction solutions of the equation are explicitly given, which are difficult to be found by other traditional methods. Moreover, figures are given out to show the properties of the explicit analytic interaction solutions.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11171041 and 11505090Research Award Foundation for Outstanding Young Scientists of Shandong Province under Grant No.BS2015SF009the doctorial foundation of Liaocheng University under Grant No.31805
文摘This paper is concerned with the (2+1)-dimensional Benney types of equations. By the complete Lie group classification method, all of the point symmetries of the Benney types of equations are obtained, and the integrable condition of the equation is given. Then, the symmetry reductions and exact solutions to the (2+1)-dimensional nonlinear wave equations are presented. Especially, the shock wave solutions of the Benney equations are investigated by the symmetry reduction and trial function method.