A new nonlinear dispersion relation is given in this paper, which can overcome the limitation of the intermediate minimum value in the dispersion relation proposed by Kirby and Dalrymple (1986). and which has a better...A new nonlinear dispersion relation is given in this paper, which can overcome the limitation of the intermediate minimum value in the dispersion relation proposed by Kirby and Dalrymple (1986). and which has a better approximation to Hedges' empirical relation than the modified relations by Hedges (1987). Kirby and Dalrymple (1987) for shallow waters. The new dispersion relation is simple in form, thus it can be used easily in practice. Meanwhile, a general explicit approximation to the new dispersion and other and other nonlinear dispersion relations is given. By use of the explicit approximation to the new dispersion relation along with the mild slope equation taking into account weakly nonlinenr effect, a mathematical model is obtained, and it is applied to laboratory data. The results show that the model developed with the new dispersion relation predicts wave transformation over complicated topography quite well.展开更多
A nonlinear dispersion relation is presented to model the nonlinear dispersion of waves over the whole range of possible water depths. It reduces the phase speed over prediction of both Hedges′ modified relation and...A nonlinear dispersion relation is presented to model the nonlinear dispersion of waves over the whole range of possible water depths. It reduces the phase speed over prediction of both Hedges′ modified relation and Kirby and Dalrymple′s modified relation in the region of 1< kh <1 5 for small wave steepness and maintains the monotonicity in phase speed variation for large wave steepness. And it has a simple form. By use of the new nonlinear dispersion relation along with the mild slope equation taking into account weak nonlinearity, a mathematical model of wave transformation is developed and applied to laboratory data. The results show that the model with the new dispersion relation can predict wave transformation over complicated bathymetry satisfactorily.展开更多
The purpose of this paper is to extend the validity of Li's parabolic model (1994) by incorporating a combined energy factor in the mild-slope equation and by improving the traditional radiation boundary condition...The purpose of this paper is to extend the validity of Li's parabolic model (1994) by incorporating a combined energy factor in the mild-slope equation and by improving the traditional radiation boundary conditions. With wave breaking and energy dissipation expressed in a direct form in the equation, the proposed model could provide an efficient numerical scheme and accurate predictions of wave transformation across the surf zone. The radiation boundary conditions are iterated in the model without use of approximations. The numerical predictions for wave height distributions across the surf zone are compared with experimental data over typical beach profiles. In addition, tests of waves scattering around a circular pile show that the proposed model could also provide reasonable improvement on the radiation boundary conditions for large incident angles of waves.展开更多
According to a deformed mild-slope equation derived by Guang-wen Hong and an enhanced numerical method, a wave refraction-diffraction nonlinear mathematical model that takes tidal level change and the high-order bathy...According to a deformed mild-slope equation derived by Guang-wen Hong and an enhanced numerical method, a wave refraction-diffraction nonlinear mathematical model that takes tidal level change and the high-order bathymetry factor into account has been developed. The deformed mild-slope equation is used to eliminate the restriction of wave length on calculation steps. Using the hard disk to record data during the calculation process, the enhanced numerical method can save computer memory space to a certain extent, so that a large-scale sea area can be calculated with high-resolution grids. This model was applied to wave field integral calculation over a radial sand ridge field in the South Yellow Sea. The results demonstrate some features of the wave field: (1) the wave-height contour lines are arc-shaped near the shore; (2) waves break many times when they propagate toward the shore; (3) wave field characteristics on the northern and southern sides of Huangshayang are different; and (4) the characteristics of wave distribution match the terrain features. The application of this model in the region of the radial sand ridge field suggests that it is a feasible way to analyze wave refraction-diffraction effects under natural sea conditions.展开更多
Based on the principle of wave action flux conservation, the following problems are analyzed in the present study:the transformation of wave and wave spectrum in currents, the change of current velocity profile alongs...Based on the principle of wave action flux conservation, the following problems are analyzed in the present study:the transformation of wave and wave spectrum in currents, the change of current velocity profile alongside water depth due to the existence of waves, the breaking criteria of irregular waves, a new hybrid method for the analysis of wave transformation and breaking on slope, the VOF mehtod for calculating broken waves and the transformation of directional wave spectrum in currents.展开更多
Based on theoretical analysis, numerical calculation, and experimental study. this paper discusses breaker indices of irregular waves, transformation of wave spectrum, characteristics and computation of breaking waves...Based on theoretical analysis, numerical calculation, and experimental study. this paper discusses breaker indices of irregular waves, transformation of wave spectrum, characteristics and computation of breaking waves, as well as the critical beach slope under which waves will not break. Computed results are in good agreement with laboratory physical model test data and ocean wave field measurements.展开更多
A numerical model is proposed based on the time domain solution of the Boussinesq equations using the finite element method in this paper. The typical wave diffraction through a breakwater gap is simulated to validate...A numerical model is proposed based on the time domain solution of the Boussinesq equations using the finite element method in this paper. The typical wave diffraction through a breakwater gap is simulated to validate the numerical model. Good agreements are obtained between the numerical and experimental results. Further, the effects of the wave directionality on the wave diffraction through a breakwater gap and the wave transformation on a planar bathymetry are numerically investigated. The results show that the wave directional spreading has a significant effect on the wave diffraction and refraction. However, when the directional spreading parameter s is larger than around 40, the effects of the wave directional spreading on the wave transformation can be neglected in engineering applications.展开更多
The theory of elastic wave scattering is a fundamental concept in the study of elastic dynamics and wave motion,and the wave function expansion technique has been widely used in many subjects.To supply the essential t...The theory of elastic wave scattering is a fundamental concept in the study of elastic dynamics and wave motion,and the wave function expansion technique has been widely used in many subjects.To supply the essential tools for solving wave scattering problems induced by an eccentric source or multi-sources as well as multi-scatters,a whole-space transform formula of cylindrical wave functions is presented and its applicability to some simple cases is demonstrated in this study.The transforms of wave functions in cylindrical coordinates can be classifi ed into two basic types: interior transform and exterior transform,and the existing Graf’s addition theorem is only suitable for the former.By performing a new replacement between the two coordinates,the exterior transform formula is fi rst deduced.It is then combined with Graf’s addition theorem to establish a whole-space transform formula.By using the whole-space transform formula,the scattering solutions by the sources outside and inside a cylindrical cavity are constructed as examples of its application.The effectiveness and advantages of the whole-space transform formula is illustrated by comparison with the approximate model based on a large cycle method.The whole-space transform formula presented herein can be used to perform the transform between two different cylindrical coordinates in the whole space.In addition,its concept and principle are universal and can be further extended to establish the coordinate transform formula of wave functions in other coordinate systems.展开更多
A study is made on the overshoot phenomena in wind-generated waves. The surface displacements of time-growing. waves are measured at four fetches in a wind wave channel. The evolution of high frequency waves is displa...A study is made on the overshoot phenomena in wind-generated waves. The surface displacements of time-growing. waves are measured at four fetches in a wind wave channel. The evolution of high frequency waves is displayed with wavelet transform. The results are compared with Sutherland's. It is found that high frequency wave components experience much stronger energy overshoot in the evolution. The energy of high frequency waves decreases greatly after overshoot.展开更多
Transformation method provides an efficient way to control wave propagation by materials.The transformed relations for field and material during a transformation are essential to fulfill this method.We propose a syste...Transformation method provides an efficient way to control wave propagation by materials.The transformed relations for field and material during a transformation are essential to fulfill this method.We propose a systematic method to derive the transformed relations for a general physic process,the constraint conditions are obtained by considering geometrical and physical constraint during a mapping. The proposed method is applied to Navier's equation for elastodynamics,Helmholtz's equation for acoustic wave and Maxwell's equation for electromagnetic wave,the corresponding transformed relations are derived,which can be used in the framework of transformation method for wave control.We show that contrary to electromagnetic wave,the transformed relations are not uniquely determined for elastic wave and acoustic wave,so we have a freedom to choose them differently.Using the obtained transformed relations,we also provide some examples for device design,a concentrator for elastic wave,devices for illusion acoustic and illusion optics are conceived and validated by numerical simulations.展开更多
Pulse wave contains human physiological and pathological information. Different people will exhibit different characteristics, and hence determining the characteristic points of the pulse wave of human physiological h...Pulse wave contains human physiological and pathological information. Different people will exhibit different characteristics, and hence determining the characteristic points of the pulse wave of human physiological health makes sense. It is common that we extract the characteristic value of pulse wave signal with the method based on wavelet transform on a small scale, and then determine the locations of the characteristic points by modulus maxima and modulus minima. Before determining characteristic value by detecting modulus maxima and modulus minima, we need to determine every period of the pulse wave. This paper presents a new kind of adaptive threshold determination method which is more effective. It can accurately determine every period of the pulse wave, and then extract characteristic values by modulus maxima and modulus minima in every period of the pulse wave. The method presented in this paper promotes the research utilizing pulse wave on health life.展开更多
In this study, we investigated wave transformation and wave set-up between a submerged permeable breakwater and a seawall. Modified time-dependent mild-slope equations, which involve parameters of the porous medium, w...In this study, we investigated wave transformation and wave set-up between a submerged permeable breakwater and a seawall. Modified time-dependent mild-slope equations, which involve parameters of the porous medium, were used to calculate the wave height transformation and the mean water level change around a submerged breakwater. The numerical solution is verified with experimental data. The simulated results show that modulations of the wave profile and wave set-up are clearly observed between the submerged breakwater and the seawall. In contrast to cases without a seawall, the node or pseudo-node of wave height evolution can be found between the submerged breakwater and the seawall. Higher wave set-up occurs if the nodal or pseudo-nodal point appears near the submerged breakwater. We also examined the influence of the porosity and friction factor of the submerged permeable breakwater on wave transformation and set-up.展开更多
The probability distributions of wave characteristics from three groups of sampled ocean data with different significant wave heights have been analyzed using two transformation functions estimated by non-parametric a...The probability distributions of wave characteristics from three groups of sampled ocean data with different significant wave heights have been analyzed using two transformation functions estimated by non-parametric and parametric methods. The marginal wave characteristic distribution and the joint density of wave properties have been calculated using the two transformations, with the results and accuracy of both transformations presented here. The two transformations deviate slightly between each other for the calculation of the crest and trough height marginal wave distributions, as well as the joint densities of wave amplitude with other wave properties. The transformation methods for the calculation of the wave crest and trough height distributions are shown to provide good agreement with real ocean data. Our work will help in the determination of the most appropriate transformation procedure for the prediction of extreme values.展开更多
The dispersion and multiple modes characteristics which exist in the propagation of Lamb waves (LW) in metal plates make it extremely hard to analyze and recognize the detection echo signals of defects. As a newly dev...The dispersion and multiple modes characteristics which exist in the propagation of Lamb waves (LW) in metal plates make it extremely hard to analyze and recognize the detection echo signals of defects. As a newly developed time-frequency analysis method in recent years, Hilbert-Huang transform (HHT) is one of the powerful tools to analyze non-stationary signals. The experimental LW detecting system for single aluminum plate is setup in this work, and the LW detecting signals are analyzed by HHT. The overlapped LW detecting signals of different modes are recognized by the means of extracting flight time of intrinsic mode functions (IMFs) after Hilbert transform (HT). The experiment results, agreeing well with the theoretical analysis, indicate that the HHT method can clearly recognize overlapped LW detecting signals of different modes in metal plates, but could hardly recognize that of the same mode. HHT can be an effective method to recognize LW detecting signals of different modes in metal plates.展开更多
The objective of this paper is to develop an efficient P wave detection method in electrocardiogram (ECG) using the local entropy criterion (EC) and wavelet transform (WT) modulus maxima. The detection of P wave relat...The objective of this paper is to develop an efficient P wave detection method in electrocardiogram (ECG) using the local entropy criterion (EC) and wavelet transform (WT) modulus maxima. The detection of P wave relates to the diagnosis of many heart diseases and it is also a difficult point during the ECG signal detection. Determining the position of a P-wave is complicated due to the low amplitude, the ambiguous and changing form of the complex. In a first step, QRS complexes are detected using the pan-Tompkins method. Then, we look for the best position of the analysis window and the value of the most appropriate width to the P wave. Finally, the determination of P wave peaks, as well as their onsets and offsets. The method has been validated using ECG-recordings with a wide variety of P-wave morphologies from MIT-BIH Arrhythmia and QT database. The P-wave method obtains a sensitivity of 99.87% and a positive predictivity of 98.04% over the MIT-BIH Arrhythmia, while for the QT, sensitivity and predictivity over 99.8% are attained.展开更多
This work considers the problems of numerical simulation of non-linear surface gravity waves transformation under shallow bay conditions. The discrete model is built from non-linear shallow-water equations. Are result...This work considers the problems of numerical simulation of non-linear surface gravity waves transformation under shallow bay conditions. The discrete model is built from non-linear shallow-water equations. Are resulted boundary and initial conditions. The method of splitting into physical processes receives system from three equations. Then we define the approximation order and investigate stability conditions of the discrete model. The sweep method was used to calculate the system of equations. This work presents surface gravity wave profiles for different propagation phases.展开更多
This paper first proposes a new approach for predicting the nonlinear wave trough distributions by utilizing a transformed linear simulation method. The linear simulation method is transformed based on a Hermite trans...This paper first proposes a new approach for predicting the nonlinear wave trough distributions by utilizing a transformed linear simulation method. The linear simulation method is transformed based on a Hermite transformation model where the transformation is chosen to be a monotonic cubic polynomial and calibrated such that the first four moments of the transformed model match the moments of the true process. The proposed new approach is applied for calculating the wave trough distributions of a nonlinear sea state with the surface elevation data measured at the coast of Yura in the Japan Sea, and its accuracy and efficiency are convincingly validated by comparisons with the results from two theoretical distribution models, from a linear simulation model and a secondorder nonlinear simulation model. Finally, it is further demonstrated in this paper that the new approach can be applied to all the situations characterized by similar nondimensional spectrum.展开更多
This paper. details experiments undertaken in the UK Coastal Research Facility (CRF)at Hy draulies Research (HR), Wallingford, on transformation and run-up of wave trains. The purpose of these experiments is to provid...This paper. details experiments undertaken in the UK Coastal Research Facility (CRF)at Hy draulies Research (HR), Wallingford, on transformation and run-up of wave trains. The purpose of these experiments is to provide verification data for numerical models of wave transformation in shoaling. surf and swash zones. This is the kind of data ih:lt flume experiments are unable to provide, and is collected in the highly controlled environment of CRF where extrinsic factors present in the field are not an issue. The experiments concerning wave trains are undertaken by use of existing wave generation software, and the run-up measurements are made with large experimental run-up gauges.展开更多
文摘A new nonlinear dispersion relation is given in this paper, which can overcome the limitation of the intermediate minimum value in the dispersion relation proposed by Kirby and Dalrymple (1986). and which has a better approximation to Hedges' empirical relation than the modified relations by Hedges (1987). Kirby and Dalrymple (1987) for shallow waters. The new dispersion relation is simple in form, thus it can be used easily in practice. Meanwhile, a general explicit approximation to the new dispersion and other and other nonlinear dispersion relations is given. By use of the explicit approximation to the new dispersion relation along with the mild slope equation taking into account weakly nonlinenr effect, a mathematical model is obtained, and it is applied to laboratory data. The results show that the model developed with the new dispersion relation predicts wave transformation over complicated topography quite well.
文摘A nonlinear dispersion relation is presented to model the nonlinear dispersion of waves over the whole range of possible water depths. It reduces the phase speed over prediction of both Hedges′ modified relation and Kirby and Dalrymple′s modified relation in the region of 1< kh <1 5 for small wave steepness and maintains the monotonicity in phase speed variation for large wave steepness. And it has a simple form. By use of the new nonlinear dispersion relation along with the mild slope equation taking into account weak nonlinearity, a mathematical model of wave transformation is developed and applied to laboratory data. The results show that the model with the new dispersion relation can predict wave transformation over complicated bathymetry satisfactorily.
基金This research is supported by the National Science Council of Taiwan under the grant of NSC 86-2611-E-006-019.
文摘The purpose of this paper is to extend the validity of Li's parabolic model (1994) by incorporating a combined energy factor in the mild-slope equation and by improving the traditional radiation boundary conditions. With wave breaking and energy dissipation expressed in a direct form in the equation, the proposed model could provide an efficient numerical scheme and accurate predictions of wave transformation across the surf zone. The radiation boundary conditions are iterated in the model without use of approximations. The numerical predictions for wave height distributions across the surf zone are compared with experimental data over typical beach profiles. In addition, tests of waves scattering around a circular pile show that the proposed model could also provide reasonable improvement on the radiation boundary conditions for large incident angles of waves.
基金supported by the Ph.D. Programs Foundation of the Ministry of Education of China (Grant No.20070294026)
文摘According to a deformed mild-slope equation derived by Guang-wen Hong and an enhanced numerical method, a wave refraction-diffraction nonlinear mathematical model that takes tidal level change and the high-order bathymetry factor into account has been developed. The deformed mild-slope equation is used to eliminate the restriction of wave length on calculation steps. Using the hard disk to record data during the calculation process, the enhanced numerical method can save computer memory space to a certain extent, so that a large-scale sea area can be calculated with high-resolution grids. This model was applied to wave field integral calculation over a radial sand ridge field in the South Yellow Sea. The results demonstrate some features of the wave field: (1) the wave-height contour lines are arc-shaped near the shore; (2) waves break many times when they propagate toward the shore; (3) wave field characteristics on the northern and southern sides of Huangshayang are different; and (4) the characteristics of wave distribution match the terrain features. The application of this model in the region of the radial sand ridge field suggests that it is a feasible way to analyze wave refraction-diffraction effects under natural sea conditions.
文摘Based on the principle of wave action flux conservation, the following problems are analyzed in the present study:the transformation of wave and wave spectrum in currents, the change of current velocity profile alongside water depth due to the existence of waves, the breaking criteria of irregular waves, a new hybrid method for the analysis of wave transformation and breaking on slope, the VOF mehtod for calculating broken waves and the transformation of directional wave spectrum in currents.
基金This project was supported financially by National Natural Science Foundation of China(No.49876026)Research Foundation for the Development of Engineering Technical Code of the Ministry of Communications
文摘Based on theoretical analysis, numerical calculation, and experimental study. this paper discusses breaker indices of irregular waves, transformation of wave spectrum, characteristics and computation of breaking waves, as well as the critical beach slope under which waves will not break. Computed results are in good agreement with laboratory physical model test data and ocean wave field measurements.
基金Project supported by the National Natural Science Foun-dation of China(Grant Nos.51079023,51221961 and 51309050)the National Basic Research Development Program of China(973 Program,Grant Nos.2013CB036101,2011CB013703)
文摘A numerical model is proposed based on the time domain solution of the Boussinesq equations using the finite element method in this paper. The typical wave diffraction through a breakwater gap is simulated to validate the numerical model. Good agreements are obtained between the numerical and experimental results. Further, the effects of the wave directionality on the wave diffraction through a breakwater gap and the wave transformation on a planar bathymetry are numerically investigated. The results show that the wave directional spreading has a significant effect on the wave diffraction and refraction. However, when the directional spreading parameter s is larger than around 40, the effects of the wave directional spreading on the wave transformation can be neglected in engineering applications.
基金the National Natural Science Foundation of China under Grand No.549974011
文摘The theory of elastic wave scattering is a fundamental concept in the study of elastic dynamics and wave motion,and the wave function expansion technique has been widely used in many subjects.To supply the essential tools for solving wave scattering problems induced by an eccentric source or multi-sources as well as multi-scatters,a whole-space transform formula of cylindrical wave functions is presented and its applicability to some simple cases is demonstrated in this study.The transforms of wave functions in cylindrical coordinates can be classifi ed into two basic types: interior transform and exterior transform,and the existing Graf’s addition theorem is only suitable for the former.By performing a new replacement between the two coordinates,the exterior transform formula is fi rst deduced.It is then combined with Graf’s addition theorem to establish a whole-space transform formula.By using the whole-space transform formula,the scattering solutions by the sources outside and inside a cylindrical cavity are constructed as examples of its application.The effectiveness and advantages of the whole-space transform formula is illustrated by comparison with the approximate model based on a large cycle method.The whole-space transform formula presented herein can be used to perform the transform between two different cylindrical coordinates in the whole space.In addition,its concept and principle are universal and can be further extended to establish the coordinate transform formula of wave functions in other coordinate systems.
文摘A study is made on the overshoot phenomena in wind-generated waves. The surface displacements of time-growing. waves are measured at four fetches in a wind wave channel. The evolution of high frequency waves is displayed with wavelet transform. The results are compared with Sutherland's. It is found that high frequency wave components experience much stronger energy overshoot in the evolution. The energy of high frequency waves decreases greatly after overshoot.
基金supported by the National Natural Science Foundation of China(10832002)the National Basic Research Program of China(2006CB601204).
文摘Transformation method provides an efficient way to control wave propagation by materials.The transformed relations for field and material during a transformation are essential to fulfill this method.We propose a systematic method to derive the transformed relations for a general physic process,the constraint conditions are obtained by considering geometrical and physical constraint during a mapping. The proposed method is applied to Navier's equation for elastodynamics,Helmholtz's equation for acoustic wave and Maxwell's equation for electromagnetic wave,the corresponding transformed relations are derived,which can be used in the framework of transformation method for wave control.We show that contrary to electromagnetic wave,the transformed relations are not uniquely determined for elastic wave and acoustic wave,so we have a freedom to choose them differently.Using the obtained transformed relations,we also provide some examples for device design,a concentrator for elastic wave,devices for illusion acoustic and illusion optics are conceived and validated by numerical simulations.
文摘Pulse wave contains human physiological and pathological information. Different people will exhibit different characteristics, and hence determining the characteristic points of the pulse wave of human physiological health makes sense. It is common that we extract the characteristic value of pulse wave signal with the method based on wavelet transform on a small scale, and then determine the locations of the characteristic points by modulus maxima and modulus minima. Before determining characteristic value by detecting modulus maxima and modulus minima, we need to determine every period of the pulse wave. This paper presents a new kind of adaptive threshold determination method which is more effective. It can accurately determine every period of the pulse wave, and then extract characteristic values by modulus maxima and modulus minima in every period of the pulse wave. The method presented in this paper promotes the research utilizing pulse wave on health life.
基金supported by The Science Council of Taiwan under Grant No. 95-2221-E-005-154
文摘In this study, we investigated wave transformation and wave set-up between a submerged permeable breakwater and a seawall. Modified time-dependent mild-slope equations, which involve parameters of the porous medium, were used to calculate the wave height transformation and the mean water level change around a submerged breakwater. The numerical solution is verified with experimental data. The simulated results show that modulations of the wave profile and wave set-up are clearly observed between the submerged breakwater and the seawall. In contrast to cases without a seawall, the node or pseudo-node of wave height evolution can be found between the submerged breakwater and the seawall. Higher wave set-up occurs if the nodal or pseudo-nodal point appears near the submerged breakwater. We also examined the influence of the porosity and friction factor of the submerged permeable breakwater on wave transformation and set-up.
基金Supported by the Marine Engineering Equipment Scientific Research Project of Ministry of Industry and Information Technology of PRCthe National Science and Technology Major Project of China(Grant No.2016ZX05057020)National Natural Science Foundation of China(Grant No.51809067)
文摘The probability distributions of wave characteristics from three groups of sampled ocean data with different significant wave heights have been analyzed using two transformation functions estimated by non-parametric and parametric methods. The marginal wave characteristic distribution and the joint density of wave properties have been calculated using the two transformations, with the results and accuracy of both transformations presented here. The two transformations deviate slightly between each other for the calculation of the crest and trough height marginal wave distributions, as well as the joint densities of wave amplitude with other wave properties. The transformation methods for the calculation of the wave crest and trough height distributions are shown to provide good agreement with real ocean data. Our work will help in the determination of the most appropriate transformation procedure for the prediction of extreme values.
文摘The dispersion and multiple modes characteristics which exist in the propagation of Lamb waves (LW) in metal plates make it extremely hard to analyze and recognize the detection echo signals of defects. As a newly developed time-frequency analysis method in recent years, Hilbert-Huang transform (HHT) is one of the powerful tools to analyze non-stationary signals. The experimental LW detecting system for single aluminum plate is setup in this work, and the LW detecting signals are analyzed by HHT. The overlapped LW detecting signals of different modes are recognized by the means of extracting flight time of intrinsic mode functions (IMFs) after Hilbert transform (HT). The experiment results, agreeing well with the theoretical analysis, indicate that the HHT method can clearly recognize overlapped LW detecting signals of different modes in metal plates, but could hardly recognize that of the same mode. HHT can be an effective method to recognize LW detecting signals of different modes in metal plates.
文摘The objective of this paper is to develop an efficient P wave detection method in electrocardiogram (ECG) using the local entropy criterion (EC) and wavelet transform (WT) modulus maxima. The detection of P wave relates to the diagnosis of many heart diseases and it is also a difficult point during the ECG signal detection. Determining the position of a P-wave is complicated due to the low amplitude, the ambiguous and changing form of the complex. In a first step, QRS complexes are detected using the pan-Tompkins method. Then, we look for the best position of the analysis window and the value of the most appropriate width to the P wave. Finally, the determination of P wave peaks, as well as their onsets and offsets. The method has been validated using ECG-recordings with a wide variety of P-wave morphologies from MIT-BIH Arrhythmia and QT database. The P-wave method obtains a sensitivity of 99.87% and a positive predictivity of 98.04% over the MIT-BIH Arrhythmia, while for the QT, sensitivity and predictivity over 99.8% are attained.
文摘This work considers the problems of numerical simulation of non-linear surface gravity waves transformation under shallow bay conditions. The discrete model is built from non-linear shallow-water equations. Are resulted boundary and initial conditions. The method of splitting into physical processes receives system from three equations. Then we define the approximation order and investigate stability conditions of the discrete model. The sweep method was used to calculate the system of equations. This work presents surface gravity wave profiles for different propagation phases.
基金financially supported by the Major Project of the Ministry of Education and the Ministry of Finance of China(Grant No.GKZY010004)
文摘This paper first proposes a new approach for predicting the nonlinear wave trough distributions by utilizing a transformed linear simulation method. The linear simulation method is transformed based on a Hermite transformation model where the transformation is chosen to be a monotonic cubic polynomial and calibrated such that the first four moments of the transformed model match the moments of the true process. The proposed new approach is applied for calculating the wave trough distributions of a nonlinear sea state with the surface elevation data measured at the coast of Yura in the Japan Sea, and its accuracy and efficiency are convincingly validated by comparisons with the results from two theoretical distribution models, from a linear simulation model and a secondorder nonlinear simulation model. Finally, it is further demonstrated in this paper that the new approach can be applied to all the situations characterized by similar nondimensional spectrum.
基金This project was supported by the Flood and Coastal Defense Commission of UK(FD0204)the National Natural Science Foundation of China(59809001)
文摘This paper. details experiments undertaken in the UK Coastal Research Facility (CRF)at Hy draulies Research (HR), Wallingford, on transformation and run-up of wave trains. The purpose of these experiments is to provide verification data for numerical models of wave transformation in shoaling. surf and swash zones. This is the kind of data ih:lt flume experiments are unable to provide, and is collected in the highly controlled environment of CRF where extrinsic factors present in the field are not an issue. The experiments concerning wave trains are undertaken by use of existing wave generation software, and the run-up measurements are made with large experimental run-up gauges.