In this paper,layered periodic foundations(LPFs)are numerically examined for their responses to longitudinal and transverse modes in the time and frequency domains.Three different unit-cells,i.e.,2-layer,4-layer,and 6...In this paper,layered periodic foundations(LPFs)are numerically examined for their responses to longitudinal and transverse modes in the time and frequency domains.Three different unit-cells,i.e.,2-layer,4-layer,and 6-layer unit-cells,comprising concrete/rubber,concrete/rubber/steel/rubber,and concrete/rubber/steel/rubber/lead/rubber materials,respectively,are taken into account.Also,the viscoelasticity behavior of the rubber is modeled with two factors,i.e.,a frequency-independent(FI)loss factor and a linear frequency-dependent(FD)loss factor.Following the extraction of the complex dispersion curves and the identification of the band gaps(BGs),the simulations of wave transmission in the time and frequency domains are performed using the COMSOL software.Subsequent parametric studies evaluate the effects of the rubber viscoelasticity models on the dispersion curves and the wave transmission for the longitudinal and transverse modes.The results show that considering the rubber viscoelasticity enhances the wave attenuation performance.Moreover,the transverse-mode damping is more sensitive to the viscoelasticity model than its longitudinal counterpart.The 6-layer unit-cell LPF exhibits the lowest BG,ranging from 4.8 Hz to 6.5 Hz.展开更多
Non-injurious local stimuli, such as a cold shock, and injurious stimuli, such as local burning, punctures or chemicals, were applied to study electrical wave transmission in black pine (Pinus thunbergii) seedlings. T...Non-injurious local stimuli, such as a cold shock, and injurious stimuli, such as local burning, punctures or chemicals, were applied to study electrical wave transmission in black pine (Pinus thunbergii) seedlings. The results showed that non-injurious stimuli evoked the action potential (AP) transmission and injurious stimulation induced both AP transmission and the more complex variation (VP) transmission in the seedlings. The causes of these phenomena were discussed. Key words Black pine - Pinus thunbergii - Action potential (AP) - Variation potential (VP) - Electrical wave transmission CLC number S791.256 Document code A Foundation item: This paper was supported by the National Nature Science Foundation of China (grant No. 39670613).Biography: GUO Jian (1971-), male, lecturer in Haikou Bureau of Forestry. Hainan, P. R. China.Responsible editor: Song Funan展开更多
In this paper, reflection and transmission coefficients of regular waves from/through perforated thin walls are investigated. Small scale laboratory tests have been performed in a wave flume firstly with single perfor...In this paper, reflection and transmission coefficients of regular waves from/through perforated thin walls are investigated. Small scale laboratory tests have been performed in a wave flume firstly with single perforated thin Plexiglas plates of various porosities. The plate is placed perpendicular to the flume with the height from the flume bottom to the position above water surface. With this thin wall in the flume wave overtopping is prohibited and incident waves are able to transmit. The porosities of the walls are achieved by perforating the plates with circular holes. Model settings with double perforated walls parallel to each other forming so called chamber system, have been also examined. Several parameters have been used for correlating the laboratory tests’ results. Experimental data are also compared with results from the numerical model by applying the multi-domain boundary element method (MDBEM) with linear wave theory. Wave energy dissipation due to the perforations of the thin wall has been represented by a simple yet effective porosity parameter in the model. The numerical model with the MDBEM has been further validated against the previously published data.展开更多
The hydrodynamic efficiency of the vertical porous structures is investigated under regular waves by use of physical models. The hydrodynamic efficiency of the breakwater is presented in terms of the wave transmission...The hydrodynamic efficiency of the vertical porous structures is investigated under regular waves by use of physical models. The hydrodynamic efficiency of the breakwater is presented in terms of the wave transmission (kt), reflection (kr) and energy dissipation (ka) coefficients. Different wave and structural parameters affecting the breakwater efficiency are tested. It is found that, the transmission coefficient (kt) decreases with the increase of the relative water depth (h/L), the wave steepness (Hi^L), the relative breakwater widths (B/L, B/h), the relative breakwater height (D/h), and the breakwater porosity (n). The reflection coefficient (kr) takes the opposite trend of kt when D/h=l.25 and it decreases with the increasing h/L, HJL and B/L when D/h〈1.0. The dissipation coefficient (kd) increases with the increasing h/L, HilL and B/L when D/h〈_l.O and it decreases when D/h=l.25. In which, it is possible to achieve values ofkt smaller than 0.3, k~ larger than 0.5, and kd larger than 0.6 when D/h=1.25, B/h=0.6, h/L〉0.22, B/L〉O. 13, and H/L 〉0.04. Empirical equations are developed for the estimation of the transmission and reflection coefficients. The results of these equations are compared with other experimental and theoretical results and a reasonable agreement is obtained.展开更多
The transmission of seismic waves in a particular region may influence the hydraulic properties of a rock mass, including permeability, which is one of the most important. To determine the effect of a seismic wave on ...The transmission of seismic waves in a particular region may influence the hydraulic properties of a rock mass, including permeability, which is one of the most important. To determine the effect of a seismic wave on the hydraulic behavior of a fractured rock mass, systematic numerical modeling was conducted. A number of discrete fracture network(DFN) models with a size of 20 m × 20 m were used as geometrical bases, and a discrete element method(DEM) was employed as a numerical simulation tool. Three different boundary conditions without(Type Ⅰ) and with static(Type Ⅱ) and dynamic(Type Ⅲ) loading were performed on the models, and then their permeability was calculated. The results showed that permeability in Type Ⅲ models was respectively 62.7% and 44.2% higher than in Type I and Type Ⅱ models. This study indicates that seismic waves can affect deep earth, and, according to the results, seismic waves increase the permeability and change the flow rate patterns in a fractured rock mass.展开更多
A linear viscoporoelastic model is developed to describe the problem of reflection and transmission of an obliquely incident plane P-wave at the interface between an elastic solid and an unsaturated poroelastic medium...A linear viscoporoelastic model is developed to describe the problem of reflection and transmission of an obliquely incident plane P-wave at the interface between an elastic solid and an unsaturated poroelastic medium, in which the solid matrix is filled with two weakly coupled fluids (liquid and gas). The expressions for the amplitude reflection coefficients and the amplitude transmission coefficients are derived by using the potential method. The present derivation is subsequently applied to study the energy conversions among the incident, reflected, and transmitted wave modes. It is found that the reflection and transmission coefficients in the forms of amplitude ratios and energy ratios are functions of the incident angle, the liquid saturation, the frequency of the incident wave, and the elastic constants of the upper and lower media. Numerical results are presented graphically. The effects of the incident angle, the frequency, and the liquid saturation on the amplitude and the energy reflection and transmission coefficients are discussed. It is verified that in the transmission process, there is no energy dissipation at the interface.展开更多
This paper discusses some previous, and presents some new experimental results on wave transmission over submerged breakwaters. The objective of this study is to evaluate wave transmission coefficient and develop a tw...This paper discusses some previous, and presents some new experimental results on wave transmission over submerged breakwaters. The objective of this study is to evaluate wave transmission coefficient and develop a two-dimensional (2D) model as an improvement to the existing wave transmission coefficient models. Factors which affect wave transmission over stbmerged breakwaters are discussed through a series of laboratory experiments. Basic recommendations for evaluation and design of submerged rubble-monud breakwaters are presented. From the test results, a calculation formula of wave transmission coefficient is proposed.展开更多
Currently, scant attention has been paid to the theoretical analysis on dynamic response mechanism of the "Dualistic" structure roek slope. The analysis presented here provides insight into the dynamic response of t...Currently, scant attention has been paid to the theoretical analysis on dynamic response mechanism of the "Dualistic" structure roek slope. The analysis presented here provides insight into the dynamic response of the "Dualistie" structure rock slope. By investigating the principle of energy distribution, it is shown that the effect of a joint plays a significant role in slope stability analysis. A dynamic reflection and transmission model (RTM) for the "Dualistic" structure rock slope and explicit dynamic equations are established to analyze the dynamic response of a slope, based on the theory of elastic mechanics and the principle of seismic wave propagation. The theoretical simulation solutions show that the dynamic response of the "Dualistic" structure rock slope (soft-hard) model is greater than that of the "Dualistic" strueture rock slope (hard-soft) model, especially in the slope crest. The magnifying effect of rigid foundation on the dynamic response is more obvious than that of soft foundation. With the amplitude increasing, the cracks could be found in the right slope (soft-hard) crest. The crest failure is firstly observed in the right slope (soft-hard) during the experimental process. The reliability of theoretical model is also investigated by experiment analysis. The conclusions derived in this paper could also be used in future evaluations of Multi-layer rock slopes.展开更多
Fifteen formulae of wave transmission coefficient for submerged breakwaters obtained during last 3 decades are presented, compared, and analyzed in this paper. The dimensionless parameters mainly involved in this disc...Fifteen formulae of wave transmission coefficient for submerged breakwaters obtained during last 3 decades are presented, compared, and analyzed in this paper. The dimensionless parameters mainly involved in this discussion are the relative submerged depth Re/h, relative wave height Rc/Hi, relative rubble size B/D50, relative breakwater width B√ HiL0 and wave breaker index ξ. It indicates that there exist notable differences among the computed results, which mainly originate from the limited experimental conditions and different analytical methods, even though the major tendency keeps similar. It is necessary to conduct more systematic studies to obtain better understanding about the mechanism of wave transmission over submerged breakwaters.展开更多
Transmissions of oblique incident wave from a row of rectangular piles are analyzed theoretically. The incident angle of plane wave is taken as g = 90° , there then is the transmission coefficient |T| = 1 (Thi...Transmissions of oblique incident wave from a row of rectangular piles are analyzed theoretically. The incident angle of plane wave is taken as g = 90° , there then is the transmission coefficient |T| = 1 (This is a paradox). In this paper, by means of the approximate relation between the transmitted and incident wave angle found from the shape of a slit, the paradoxical phenomenon is removed. On the basis of the continuality of the pressure and flux and the analysis of flow resistance at the row of rectangular piles, formulas of reflection and transmission coefficients are obtained. The transmission and reflection coefficients predicted by the present model quite agree with those of laboratory experiments in previous references展开更多
This investigation examines long wave reflection and transmission induced by a sloping step. Bellman and Kalaba's (1959) invariant imbedding is introduced to find wave reflection. An alternative method matching bo...This investigation examines long wave reflection and transmission induced by a sloping step. Bellman and Kalaba's (1959) invariant imbedding is introduced to find wave reflection. An alternative method matching both the surface elevation and its surface slope of each region at the junction is applied to the determination of wave reflection and transmission. The proposed methods are compared with the accurate numerical results of Porter and Porter (2000) and those of Mei (1983) for a vertical step. The wave reflection obtained for a mildly sloping step differs significantly from the result of Mei. The wave reflection is found to fluctuate owing to wave trapping for the mild sloping step. The height and the face slope of the step are important for determining wave reflection and transmission coefficients.展开更多
A theoretical model which couples the oscillation of cavitation bubbles with the equation of an acoustic wave is utilized to describe the sound fields in double-layer liquids, which can be used to realize the asymmetr...A theoretical model which couples the oscillation of cavitation bubbles with the equation of an acoustic wave is utilized to describe the sound fields in double-layer liquids, which can be used to realize the asymmetric transmission of acoustic waves. Numerical simulations show that the asymmetry is related to the properties of the host liquids and the input acoustic wave. Asymmetry can be enhanced if the maximum number density or the ambient radius of the cavitation bubbles in the low cavitation threshold liquid increases. Moreover, the direction of rectification will be reversed if the amplitude of the input acoustic wave becomes high enough.展开更多
A novel concept of wave attenuator is proposed for the defense of long waves,through integrating a flexible tail to the lee-side surface of a pile breakwater.The flexible tail works as a floating blanket made up of hi...A novel concept of wave attenuator is proposed for the defense of long waves,through integrating a flexible tail to the lee-side surface of a pile breakwater.The flexible tail works as a floating blanket made up of hinged blocks,whose scale and stiffness can be easily adjusted.A two-phase-flow numerical model is established based on the open-source computational fluid dynamics(CFD)code OpenFOAM to investigate its wave attenuation performance.Incompressible Navier−Stokes equations are solved in the fluid domain,where an additional computational solid mechanics(CSM)solver is embedded to describe the elastic deformation of the floating tail.The coupling of fluid dynamics and structural mechanics is solved in a full manner to allow assess of wave variation along the deforming body.The accuracy of the numerical model is validated through comparison with experimental data.Effects of the flexible tail on performance of the pile breakwater are investigated systematically.Dynamic behaviours of the tail are examined,and characteristics of its natural frequency are identified.For safety reasons,the wave loads impacting on the main body of the pile breakwater and the stress distribution over the tail are specially examined.It is found that both the length and stiffness of the tail can affect the wave-attenuation performance of the breakwater.A proper choice of the length and stiffness of the tail can greatly improve the long-wave defending capability of the pile breakwater.The maximum stress over the flexible tail can be restrained through optimising the deformation and stiffness of the tail.展开更多
Just like an electronic diode that allows the electrical current to flow in one direction only, a kind of chiral metamaterial structure with a similar functionality for the electromagnetic wave is proposed. The design...Just like an electronic diode that allows the electrical current to flow in one direction only, a kind of chiral metamaterial structure with a similar functionality for the electromagnetic wave is proposed. The designed nanostructure that consists of twisted metallic split-ring resonators on both sides of a dielectric substrate achieves asymmetric transmission for a forward and backward propagating linearly polarized wave by numerical simulation in near-infrared band. Difference in transmission efficiency of the optimized structure between the same polarized waves incident from opposite directions can reach a maximum at the communication wavelength (1.55 μm). Moreover, the simulation results of this structure also exhibit strong optical activity and circular dichroism.展开更多
Rayleigh expansion is used to study the water-wave interaction with a row of pile breakwater in finite water depth. Evanescent waves, the wave energy dissipated on the fluid resistance and the thickness of the breakwa...Rayleigh expansion is used to study the water-wave interaction with a row of pile breakwater in finite water depth. Evanescent waves, the wave energy dissipated on the fluid resistance and the thickness of the breakwater are totally included in the model. The formulae of wave reflection and transmission coefficients are obtained. The accuracy of the present model is verified by a comparison with existing results. It is found that the predicted wave reflection and transmission coefficients for the zero order are all highly consistent with the experimental data (Hagiwara, 1984; Isaacson et al., 1998) and plane wave solutions (Zhu, 2011). The losses of the wave energy for the fluid passing through slits play an important role, which removes the phenomena of enhanced wave transmission.展开更多
We consider a discrete model that describes a linear chain of particles coupled to an isolated ring composed of N defects. This simple system can be regarded as a generalization of the familiar Fano Anderson model. It...We consider a discrete model that describes a linear chain of particles coupled to an isolated ring composed of N defects. This simple system can be regarded as a generalization of the familiar Fano Anderson model. It can be used to model discrete networks of coupled defect modes in photonic crystals and simple waveguide arrays in two-dimensional lattices. The analytical result of the transmission coefficient is obtained, along with the conditions for perfect reflections and transmissions due to either destructive or constructive interferences. Using a simple example, we further investigate the relationship between the resonant frequencies and the number of defects N, and study how to affect the numbers of perfect reflections and transmissions. In addition, we demonstrate how these resonance transmissions and refections can be tuned by one nonlinear defect of the network that possesses a nonlinear Kerr-like response.展开更多
Traditional breakwater takes the advantage of high protection performance and has been widely used.However,it contributes to high wave reflection in the seaside direction and poor water exchange capacity between open ...Traditional breakwater takes the advantage of high protection performance and has been widely used.However,it contributes to high wave reflection in the seaside direction and poor water exchange capacity between open seawater and an inside harbor.Consequently,a partially permeable stepped breakwater(PPSB)is proposed to ensure safety and good water exchange capacity for an inside harbor,and a 3-D computational fluid dynamics(CFD)mathematical model was used to investigate the hydrodynamic coefficients using Reynolds-Averaged Navier-Stokes equations,Re-Normalization Group(RNG)k-εequations,and the VOF technique.A series of experiments are conducted to measure the wave heights for validating the mathematical model,and a series of dimensionless parameters considering wave and PPSB effects were presented to assess their relationships with hydrodynamic coefficients,respectively.With the increase in the reciprocal value of PPSB slope,incident wave steepness and permeable ratio below still water level(SWL),the wave reflection coefficient decreases.The wave transmission coefficient decreases with an increase in the reciprocal value of the PPSB slope and incident wave steepness;however,it increases with the increase in the permeable ratio below SWL.With increases in the reciprocal value of the PPSB slope,permeable ratio below SWL and incident wave steepness for relatively high wave period scenarios,the wave energy dissipation coefficient increases;however,it decreases slightly with increases in the incident wave steepness for the smallest wave period scenarios.Furthermore,simple prediction formulas are conducted for predicting the hydrodynamic coefficients and they are well validated with the related data.展开更多
The wave transmission character of helical spring is applied to establish 2-DOF model of impacted vehicle on the wave impact theory. Considering the concrete structure of helical spring, corresponding responses under ...The wave transmission character of helical spring is applied to establish 2-DOF model of impacted vehicle on the wave impact theory. Considering the concrete structure of helical spring, corresponding responses under different impact frequency of the vehicle are imitated. The reason why the vehicle floor overresponds in some special frequency fields is explored based on analyzing the responses. When the impactions are in low frequency, the change of the spring has not been considered, but this does not affect the results. Because the transmission characters of velocity and acceleration are unanimous in helical spring, the responses characters of velocity and acceleration arc also unanimous, the only difference is the magnitude, which can make use of acceleration responses to analyse velocity responses.展开更多
Two-dimensional physical models of low crested breakwaters were tested to establish the effect of water depth, crest width, slope, stone size, core permeability and incident wave characteristics on the wave transforma...Two-dimensional physical models of low crested breakwaters were tested to establish the effect of water depth, crest width, slope, stone size, core permeability and incident wave characteristics on the wave transformation processes. The structure of the breakwaters can be used as coastal protection system by reducing the amount of incoming wave energy. Effect of slope, core permeability, water depth and incident wave characteristics on the stability was also studied. The breakwater model consisted of a core and two armour layers attacked by irregular waves. This paper discusses and compares the test results with the existing design equations. In general, the existing design equations do not seem to predict the wave transmission and reflection accurately for the range of test data. In the range of variable tested, it was observed that the water depth, crest width and wave period have a significant influence on wave transmission process. Further, results show strong influence of the water depth and wave period on the wave reflection process. The structural stability of low crested breakwaters is very much affected by the water depth and wave period.展开更多
This paper describes the design of a permeable caisson breakwater with slanting slabs (Types I and II) and presents some preliminary experimental results, together with relevant figures and tables. Analysis is made of...This paper describes the design of a permeable caisson breakwater with slanting slabs (Types I and II) and presents some preliminary experimental results, together with relevant figures and tables. Analysis is made of the reflection coefficient, transmission coefficient, acting wave pressures, water jetting at the crest of the breakwater, and wave overtopping. Experiments show conclusively that this type of breakwater has the advantages of light dead weight, good wave-absorbing performance, low coefficients of reflection and transmission, and small wave overtopping.展开更多
文摘In this paper,layered periodic foundations(LPFs)are numerically examined for their responses to longitudinal and transverse modes in the time and frequency domains.Three different unit-cells,i.e.,2-layer,4-layer,and 6-layer unit-cells,comprising concrete/rubber,concrete/rubber/steel/rubber,and concrete/rubber/steel/rubber/lead/rubber materials,respectively,are taken into account.Also,the viscoelasticity behavior of the rubber is modeled with two factors,i.e.,a frequency-independent(FI)loss factor and a linear frequency-dependent(FD)loss factor.Following the extraction of the complex dispersion curves and the identification of the band gaps(BGs),the simulations of wave transmission in the time and frequency domains are performed using the COMSOL software.Subsequent parametric studies evaluate the effects of the rubber viscoelasticity models on the dispersion curves and the wave transmission for the longitudinal and transverse modes.The results show that considering the rubber viscoelasticity enhances the wave attenuation performance.Moreover,the transverse-mode damping is more sensitive to the viscoelasticity model than its longitudinal counterpart.The 6-layer unit-cell LPF exhibits the lowest BG,ranging from 4.8 Hz to 6.5 Hz.
基金This paper was supported by the National Nature Science Foundation of China (grant No. 39670613).
文摘Non-injurious local stimuli, such as a cold shock, and injurious stimuli, such as local burning, punctures or chemicals, were applied to study electrical wave transmission in black pine (Pinus thunbergii) seedlings. The results showed that non-injurious stimuli evoked the action potential (AP) transmission and injurious stimulation induced both AP transmission and the more complex variation (VP) transmission in the seedlings. The causes of these phenomena were discussed. Key words Black pine - Pinus thunbergii - Action potential (AP) - Variation potential (VP) - Electrical wave transmission CLC number S791.256 Document code A Foundation item: This paper was supported by the National Nature Science Foundation of China (grant No. 39670613).Biography: GUO Jian (1971-), male, lecturer in Haikou Bureau of Forestry. Hainan, P. R. China.Responsible editor: Song Funan
基金the Yildiz Technical University Research Fund for financially supporting this work
文摘In this paper, reflection and transmission coefficients of regular waves from/through perforated thin walls are investigated. Small scale laboratory tests have been performed in a wave flume firstly with single perforated thin Plexiglas plates of various porosities. The plate is placed perpendicular to the flume with the height from the flume bottom to the position above water surface. With this thin wall in the flume wave overtopping is prohibited and incident waves are able to transmit. The porosities of the walls are achieved by perforating the plates with circular holes. Model settings with double perforated walls parallel to each other forming so called chamber system, have been also examined. Several parameters have been used for correlating the laboratory tests’ results. Experimental data are also compared with results from the numerical model by applying the multi-domain boundary element method (MDBEM) with linear wave theory. Wave energy dissipation due to the perforations of the thin wall has been represented by a simple yet effective porosity parameter in the model. The numerical model with the MDBEM has been further validated against the previously published data.
文摘The hydrodynamic efficiency of the vertical porous structures is investigated under regular waves by use of physical models. The hydrodynamic efficiency of the breakwater is presented in terms of the wave transmission (kt), reflection (kr) and energy dissipation (ka) coefficients. Different wave and structural parameters affecting the breakwater efficiency are tested. It is found that, the transmission coefficient (kt) decreases with the increase of the relative water depth (h/L), the wave steepness (Hi^L), the relative breakwater widths (B/L, B/h), the relative breakwater height (D/h), and the breakwater porosity (n). The reflection coefficient (kr) takes the opposite trend of kt when D/h=l.25 and it decreases with the increasing h/L, HJL and B/L when D/h〈1.0. The dissipation coefficient (kd) increases with the increasing h/L, HilL and B/L when D/h〈_l.O and it decreases when D/h=l.25. In which, it is possible to achieve values ofkt smaller than 0.3, k~ larger than 0.5, and kd larger than 0.6 when D/h=1.25, B/h=0.6, h/L〉0.22, B/L〉O. 13, and H/L 〉0.04. Empirical equations are developed for the estimation of the transmission and reflection coefficients. The results of these equations are compared with other experimental and theoretical results and a reasonable agreement is obtained.
文摘The transmission of seismic waves in a particular region may influence the hydraulic properties of a rock mass, including permeability, which is one of the most important. To determine the effect of a seismic wave on the hydraulic behavior of a fractured rock mass, systematic numerical modeling was conducted. A number of discrete fracture network(DFN) models with a size of 20 m × 20 m were used as geometrical bases, and a discrete element method(DEM) was employed as a numerical simulation tool. Three different boundary conditions without(Type Ⅰ) and with static(Type Ⅱ) and dynamic(Type Ⅲ) loading were performed on the models, and then their permeability was calculated. The results showed that permeability in Type Ⅲ models was respectively 62.7% and 44.2% higher than in Type I and Type Ⅱ models. This study indicates that seismic waves can affect deep earth, and, according to the results, seismic waves increase the permeability and change the flow rate patterns in a fractured rock mass.
文摘A linear viscoporoelastic model is developed to describe the problem of reflection and transmission of an obliquely incident plane P-wave at the interface between an elastic solid and an unsaturated poroelastic medium, in which the solid matrix is filled with two weakly coupled fluids (liquid and gas). The expressions for the amplitude reflection coefficients and the amplitude transmission coefficients are derived by using the potential method. The present derivation is subsequently applied to study the energy conversions among the incident, reflected, and transmitted wave modes. It is found that the reflection and transmission coefficients in the forms of amplitude ratios and energy ratios are functions of the incident angle, the liquid saturation, the frequency of the incident wave, and the elastic constants of the upper and lower media. Numerical results are presented graphically. The effects of the incident angle, the frequency, and the liquid saturation on the amplitude and the energy reflection and transmission coefficients are discussed. It is verified that in the transmission process, there is no energy dissipation at the interface.
文摘This paper discusses some previous, and presents some new experimental results on wave transmission over submerged breakwaters. The objective of this study is to evaluate wave transmission coefficient and develop a two-dimensional (2D) model as an improvement to the existing wave transmission coefficient models. Factors which affect wave transmission over stbmerged breakwaters are discussed through a series of laboratory experiments. Basic recommendations for evaluation and design of submerged rubble-monud breakwaters are presented. From the test results, a calculation formula of wave transmission coefficient is proposed.
基金financially supported by Project of the National Natural Science Foundation of China (Grant No. 41002126)Project of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Grant No. SKLGP2009Z010)
文摘Currently, scant attention has been paid to the theoretical analysis on dynamic response mechanism of the "Dualistic" structure roek slope. The analysis presented here provides insight into the dynamic response of the "Dualistie" structure rock slope. By investigating the principle of energy distribution, it is shown that the effect of a joint plays a significant role in slope stability analysis. A dynamic reflection and transmission model (RTM) for the "Dualistic" structure rock slope and explicit dynamic equations are established to analyze the dynamic response of a slope, based on the theory of elastic mechanics and the principle of seismic wave propagation. The theoretical simulation solutions show that the dynamic response of the "Dualistic" structure rock slope (soft-hard) model is greater than that of the "Dualistic" strueture rock slope (hard-soft) model, especially in the slope crest. The magnifying effect of rigid foundation on the dynamic response is more obvious than that of soft foundation. With the amplitude increasing, the cracks could be found in the right slope (soft-hard) crest. The crest failure is firstly observed in the right slope (soft-hard) during the experimental process. The reliability of theoretical model is also investigated by experiment analysis. The conclusions derived in this paper could also be used in future evaluations of Multi-layer rock slopes.
文摘Fifteen formulae of wave transmission coefficient for submerged breakwaters obtained during last 3 decades are presented, compared, and analyzed in this paper. The dimensionless parameters mainly involved in this discussion are the relative submerged depth Re/h, relative wave height Rc/Hi, relative rubble size B/D50, relative breakwater width B√ HiL0 and wave breaker index ξ. It indicates that there exist notable differences among the computed results, which mainly originate from the limited experimental conditions and different analytical methods, even though the major tendency keeps similar. It is necessary to conduct more systematic studies to obtain better understanding about the mechanism of wave transmission over submerged breakwaters.
文摘Transmissions of oblique incident wave from a row of rectangular piles are analyzed theoretically. The incident angle of plane wave is taken as g = 90° , there then is the transmission coefficient |T| = 1 (This is a paradox). In this paper, by means of the approximate relation between the transmitted and incident wave angle found from the shape of a slit, the paradoxical phenomenon is removed. On the basis of the continuality of the pressure and flux and the analysis of flow resistance at the row of rectangular piles, formulas of reflection and transmission coefficients are obtained. The transmission and reflection coefficients predicted by the present model quite agree with those of laboratory experiments in previous references
文摘This investigation examines long wave reflection and transmission induced by a sloping step. Bellman and Kalaba's (1959) invariant imbedding is introduced to find wave reflection. An alternative method matching both the surface elevation and its surface slope of each region at the junction is applied to the determination of wave reflection and transmission. The proposed methods are compared with the accurate numerical results of Porter and Porter (2000) and those of Mei (1983) for a vertical step. The wave reflection obtained for a mildly sloping step differs significantly from the result of Mei. The wave reflection is found to fluctuate owing to wave trapping for the mild sloping step. The height and the face slope of the step are important for determining wave reflection and transmission coefficients.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11334005,11574150 and 11564006
文摘A theoretical model which couples the oscillation of cavitation bubbles with the equation of an acoustic wave is utilized to describe the sound fields in double-layer liquids, which can be used to realize the asymmetric transmission of acoustic waves. Numerical simulations show that the asymmetry is related to the properties of the host liquids and the input acoustic wave. Asymmetry can be enhanced if the maximum number density or the ambient radius of the cavitation bubbles in the low cavitation threshold liquid increases. Moreover, the direction of rectification will be reversed if the amplitude of the input acoustic wave becomes high enough.
基金financially supported by the National Natural Science Foundation of China(Grant No.51739010)the Natural Science Foundation of Liaoning Province(Grant No.2021-MS-122)+2 种基金the Special Project of Guangdong Science and Technology Department(Grant No.2021A05227)the Dalian Science and Technology Project(Grant No.2020RQ004)the Fundamental Research Funds for the Central Universities(Grant No.DUT22LAB128).
文摘A novel concept of wave attenuator is proposed for the defense of long waves,through integrating a flexible tail to the lee-side surface of a pile breakwater.The flexible tail works as a floating blanket made up of hinged blocks,whose scale and stiffness can be easily adjusted.A two-phase-flow numerical model is established based on the open-source computational fluid dynamics(CFD)code OpenFOAM to investigate its wave attenuation performance.Incompressible Navier−Stokes equations are solved in the fluid domain,where an additional computational solid mechanics(CSM)solver is embedded to describe the elastic deformation of the floating tail.The coupling of fluid dynamics and structural mechanics is solved in a full manner to allow assess of wave variation along the deforming body.The accuracy of the numerical model is validated through comparison with experimental data.Effects of the flexible tail on performance of the pile breakwater are investigated systematically.Dynamic behaviours of the tail are examined,and characteristics of its natural frequency are identified.For safety reasons,the wave loads impacting on the main body of the pile breakwater and the stress distribution over the tail are specially examined.It is found that both the length and stiffness of the tail can affect the wave-attenuation performance of the breakwater.A proper choice of the length and stiffness of the tail can greatly improve the long-wave defending capability of the pile breakwater.The maximum stress over the flexible tail can be restrained through optimising the deformation and stiffness of the tail.
基金Project supported by the National Natural Science Foundation of China(Grant No.61078060)the Fund from the Ningbo Optoelectronic Materials and Devices Creative Team,China(Grant No.2009B21007)partially sponsored by K.C.Wong Magna Fund in Ningbo University
文摘Just like an electronic diode that allows the electrical current to flow in one direction only, a kind of chiral metamaterial structure with a similar functionality for the electromagnetic wave is proposed. The designed nanostructure that consists of twisted metallic split-ring resonators on both sides of a dielectric substrate achieves asymmetric transmission for a forward and backward propagating linearly polarized wave by numerical simulation in near-infrared band. Difference in transmission efficiency of the optimized structure between the same polarized waves incident from opposite directions can reach a maximum at the communication wavelength (1.55 μm). Moreover, the simulation results of this structure also exhibit strong optical activity and circular dichroism.
文摘Rayleigh expansion is used to study the water-wave interaction with a row of pile breakwater in finite water depth. Evanescent waves, the wave energy dissipated on the fluid resistance and the thickness of the breakwater are totally included in the model. The formulae of wave reflection and transmission coefficients are obtained. The accuracy of the present model is verified by a comparison with existing results. It is found that the predicted wave reflection and transmission coefficients for the zero order are all highly consistent with the experimental data (Hagiwara, 1984; Isaacson et al., 1998) and plane wave solutions (Zhu, 2011). The losses of the wave energy for the fluid passing through slits play an important role, which removes the phenomena of enhanced wave transmission.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11147173 and 61106052)the Zhejiang Education Department, China (Grant No. Y201018926 and Y200908466)+2 种基金the Basic Research Foundation of Jilin University,China (Grant No. 93K172011K02)the Basic Research Foundation of Zhejiang Ocean University, the Nature Science Foundation of Zhejiang Province, China (Grant No. 1047172)the Open Foundation from Ocean Fishery Science and Technology in the Most Important Subjects of Zhejiang, China (No. 20110105)
文摘We consider a discrete model that describes a linear chain of particles coupled to an isolated ring composed of N defects. This simple system can be regarded as a generalization of the familiar Fano Anderson model. It can be used to model discrete networks of coupled defect modes in photonic crystals and simple waveguide arrays in two-dimensional lattices. The analytical result of the transmission coefficient is obtained, along with the conditions for perfect reflections and transmissions due to either destructive or constructive interferences. Using a simple example, we further investigate the relationship between the resonant frequencies and the number of defects N, and study how to affect the numbers of perfect reflections and transmissions. In addition, we demonstrate how these resonance transmissions and refections can be tuned by one nonlinear defect of the network that possesses a nonlinear Kerr-like response.
基金the National Natural Science Foundation of China(Nos.51879251 and 51579229)the Shandong Province Science and Technology Development Plan(No.2017GHY15103)the State Key Laboratory of Ocean Engineering,China(No.1602).
文摘Traditional breakwater takes the advantage of high protection performance and has been widely used.However,it contributes to high wave reflection in the seaside direction and poor water exchange capacity between open seawater and an inside harbor.Consequently,a partially permeable stepped breakwater(PPSB)is proposed to ensure safety and good water exchange capacity for an inside harbor,and a 3-D computational fluid dynamics(CFD)mathematical model was used to investigate the hydrodynamic coefficients using Reynolds-Averaged Navier-Stokes equations,Re-Normalization Group(RNG)k-εequations,and the VOF technique.A series of experiments are conducted to measure the wave heights for validating the mathematical model,and a series of dimensionless parameters considering wave and PPSB effects were presented to assess their relationships with hydrodynamic coefficients,respectively.With the increase in the reciprocal value of PPSB slope,incident wave steepness and permeable ratio below still water level(SWL),the wave reflection coefficient decreases.The wave transmission coefficient decreases with an increase in the reciprocal value of the PPSB slope and incident wave steepness;however,it increases with the increase in the permeable ratio below SWL.With increases in the reciprocal value of the PPSB slope,permeable ratio below SWL and incident wave steepness for relatively high wave period scenarios,the wave energy dissipation coefficient increases;however,it decreases slightly with increases in the incident wave steepness for the smallest wave period scenarios.Furthermore,simple prediction formulas are conducted for predicting the hydrodynamic coefficients and they are well validated with the related data.
文摘The wave transmission character of helical spring is applied to establish 2-DOF model of impacted vehicle on the wave impact theory. Considering the concrete structure of helical spring, corresponding responses under different impact frequency of the vehicle are imitated. The reason why the vehicle floor overresponds in some special frequency fields is explored based on analyzing the responses. When the impactions are in low frequency, the change of the spring has not been considered, but this does not affect the results. Because the transmission characters of velocity and acceleration are unanimous in helical spring, the responses characters of velocity and acceleration arc also unanimous, the only difference is the magnitude, which can make use of acceleration responses to analyse velocity responses.
文摘Two-dimensional physical models of low crested breakwaters were tested to establish the effect of water depth, crest width, slope, stone size, core permeability and incident wave characteristics on the wave transformation processes. The structure of the breakwaters can be used as coastal protection system by reducing the amount of incoming wave energy. Effect of slope, core permeability, water depth and incident wave characteristics on the stability was also studied. The breakwater model consisted of a core and two armour layers attacked by irregular waves. This paper discusses and compares the test results with the existing design equations. In general, the existing design equations do not seem to predict the wave transmission and reflection accurately for the range of test data. In the range of variable tested, it was observed that the water depth, crest width and wave period have a significant influence on wave transmission process. Further, results show strong influence of the water depth and wave period on the wave reflection process. The structural stability of low crested breakwaters is very much affected by the water depth and wave period.
文摘This paper describes the design of a permeable caisson breakwater with slanting slabs (Types I and II) and presents some preliminary experimental results, together with relevant figures and tables. Analysis is made of the reflection coefficient, transmission coefficient, acting wave pressures, water jetting at the crest of the breakwater, and wave overtopping. Experiments show conclusively that this type of breakwater has the advantages of light dead weight, good wave-absorbing performance, low coefficients of reflection and transmission, and small wave overtopping.