A series of physical tests are conducted to examine the characteristics of the wave loading exerted on circular-front breakwaters by regular waves. It is found that the wave trough instead of wave crest plays a major ...A series of physical tests are conducted to examine the characteristics of the wave loading exerted on circular-front breakwaters by regular waves. It is found that the wave trough instead of wave crest plays a major role in the failure of submerged circular caissons due to seaward sliding. The difference in the behavior of seaward and shoreward horizontal wave forces is explained based on the variations of dynamic pressure with wave parameters. A wave load model is proposed based on a modified first-order solution for the dynamic pressure on submerged circular-front caissons under a wave trough. This wave loading model is very useful for engineering design. Further studies are needed to include model uncertainties in the reliability assessment of the breakwater.展开更多
This paper concerns the calculation of the wave trough exceedance probabilities in a nonlinear sea. The calculations have been carried out by incorporating a second order nonlinear wave model into an asymptotic method...This paper concerns the calculation of the wave trough exceedance probabilities in a nonlinear sea. The calculations have been carried out by incorporating a second order nonlinear wave model into an asymptotic method. This is a new approach for the calculation of the wave trough exceedance probabilities, and, as all of the calculations are performed in the probability domain, avoids the need for long time-domain simulations. The proposed asymptotic method has been applied to calculate the wave trough depth exceedance probabilities of a sea state with the surface elevation data measured at the coast of Yura in the Japan Sea. It is demonstrated that the proposed new method can offer better predictions than the theoretical Rayleigh wave trough depth distribution model. The calculated results by using the proposed new method have been further compared with those obtained by using the Arhan and Plaisted nonlinear distribution model and the Toffoli et al.’s wave trough depth distribution model, and its accuracy has been once again substantiated. The research findings obtained from this study demonstrate that the proposed asymptotic method can be readily utilized in the process of designing various kinds of ocean engineering structures.展开更多
This paper first proposes a new approach for predicting the nonlinear wave trough distributions by utilizing a transformed linear simulation method. The linear simulation method is transformed based on a Hermite trans...This paper first proposes a new approach for predicting the nonlinear wave trough distributions by utilizing a transformed linear simulation method. The linear simulation method is transformed based on a Hermite transformation model where the transformation is chosen to be a monotonic cubic polynomial and calibrated such that the first four moments of the transformed model match the moments of the true process. The proposed new approach is applied for calculating the wave trough distributions of a nonlinear sea state with the surface elevation data measured at the coast of Yura in the Japan Sea, and its accuracy and efficiency are convincingly validated by comparisons with the results from two theoretical distribution models, from a linear simulation model and a secondorder nonlinear simulation model. Finally, it is further demonstrated in this paper that the new approach can be applied to all the situations characterized by similar nondimensional spectrum.展开更多
An extreme rainstorm hit southern China during 13–17 December 2013, with a record-breaking daily rainfall rate, large spatial extent, and unusually long persistence. We examined what induced this heavy rainfall proce...An extreme rainstorm hit southern China during 13–17 December 2013, with a record-breaking daily rainfall rate, large spatial extent, and unusually long persistence. We examined what induced this heavy rainfall process, based on observed rainfall data and NCEP–NCAR reanalysis data through composite and diagnostic methods. The results showed that a Rossby waveguide within the subtropical westerly jet caused the event. The Rossby wave originated from strong cold air intrusion into the subtropical westerly jet over the eastern Mediterranean. With the enhancement and northward shift of the Middle East westerly jet, the Rossby wave propagated slowly eastward and deepened the India–Burma trough, which transported a large amount of moisture from the Bay of Bengal and South China Sea to southern China. Strong divergence in the upper troposphere, caused by the enhancement of the East Asian westerly jet, also favored the heavy rainfall process over Southeast China. In addition, the Rossby wave was associated with a negative-to-positive phase shift and enhancement of the North Atlantic Oscillation, but convergence in the eastern Mediterranean played the key role in the eastward propagation of the Rossby wave within the subtropical westerly jet.展开更多
This paper presents a theoretical study of a non-linear rheological fluid transport in an axisymmetric tube by cilia. An attempt has been made to explain the role of cilia motion in the transport of fluid through the ...This paper presents a theoretical study of a non-linear rheological fluid transport in an axisymmetric tube by cilia. An attempt has been made to explain the role of cilia motion in the transport of fluid through the ductus efferent of the male reproductive tract. The Ostwald-de Waele power-law viscous fluid is considered to represent the rheological fluid. We analyze pumping by means of a sequence of cilia beats from rowto-row of cilia in a given row of cells and from one row of cells to the next(metachronal wave movement). For this purpose, we consider the conditions that the corresponding Reynolds number is small enough for inertial effects to be negligible, and the wavelengthto-diameter ratio is large enough so that the pressure can be considered uniform over the cross section. Analyses and computations of the fluid motion reveal that the time-average flow rate depends on ε, a non-dimensional measure involving the mean radius a of the tube and the cilia length. Thus, the flow rate significantly varies with the cilia length.Moreover, the flow rate has been reported to be close to the estimated value 6 × 10ml/h for human efferent ducts if ε is near 0.4. The estimated value was suggested by Lardner and Shack(Lardner, T. J. and Shack, W. J. Cilia transport. Bulletin of Mathematical Biology, 34, 325–335(1972)) for human based on the experimental observations of flow rates in efferent ducts of other animals, e.g., rat, ram, and bull. In addition, the nature of the rheological fluid, i.e., the value of the fluid index n strongly influences various flow-governed characteristics. An interesting feature of this paper is that the pumping improves the thickening behavior for small values of ε or in free pumping(?P = 0) and pumping(?P > 0) regions.展开更多
This paper studies a heavy snowfall in Beijing that took place on 1 November 2009. The date of the snowfall was about one month earlier than the average. The National Centers for Environmental Prediction (NCEP) reanal...This paper studies a heavy snowfall in Beijing that took place on 1 November 2009. The date of the snowfall was about one month earlier than the average. The National Centers for Environmental Prediction (NCEP) reanalysis data, conventional data, and Automatic Weather Station (AWS) data are utilized to explore the reasons for the snowfall and the influencing systems. The main conclusions are as follows: (1) It is revealed from the average geopotential height and average temperature fields at 500 hPa that the large scale circulation in November 2009 was favorable to snowfall. The cold-dry air from West Siberia and the warm-moist air from the Bay of Bengal converged in North China. In addition, it was found from the average moisture flux field at 700 hPa that the main water vapor source was in the Bay of Bengal. (2) Not only the "return current", as usually accepted, but also the inverted trough on the current had an important contribution to the snowfall. The inverted trough could produce the obvious upward motion that is an important environmental condition of snowfalls. (3) More attention should be paid to mesoscale systems such as mesolows during the cold season because of their importance, though they do not occur as frequently as in the warm season. It should be pointed out that AWS data are very useful in mesoscale system analysis during both warm and cold seasons.展开更多
基金financially supported by the Open Fund of the State Key Laboratory of Hydraulic Engineering Simulation and Safety from Tianjin University(Gtant No.HESS-1310)the Natural Science Foundation of Tianjin,China(Gtant No.14JCYBJC22100)+5 种基金the National Natural Science Foundation of China(Gtant No.51509178)supported by the State Scholarship Fund of China Scholarship Council(Gtant No.201308120008)supported by the Physical Oceanography Program of National Science Foundation(Grant No.1436642)the Maine Sea Grant and NOAA for Grant No.NA10OAR4170072part of EFRaCC project funded by the British Council under its Global Innovation Initiativethe open fund research at the State Key Laboratory of Hydraulics and Mountain River at Sichuan University(Grant No.SKHL1311)
文摘A series of physical tests are conducted to examine the characteristics of the wave loading exerted on circular-front breakwaters by regular waves. It is found that the wave trough instead of wave crest plays a major role in the failure of submerged circular caissons due to seaward sliding. The difference in the behavior of seaward and shoreward horizontal wave forces is explained based on the variations of dynamic pressure with wave parameters. A wave load model is proposed based on a modified first-order solution for the dynamic pressure on submerged circular-front caissons under a wave trough. This wave loading model is very useful for engineering design. Further studies are needed to include model uncertainties in the reliability assessment of the breakwater.
基金financially supported by the funding of an independent research project from the Chinese State Key Laboratory of Ocean Engineering(Grant No.GKZD010038)
文摘This paper concerns the calculation of the wave trough exceedance probabilities in a nonlinear sea. The calculations have been carried out by incorporating a second order nonlinear wave model into an asymptotic method. This is a new approach for the calculation of the wave trough exceedance probabilities, and, as all of the calculations are performed in the probability domain, avoids the need for long time-domain simulations. The proposed asymptotic method has been applied to calculate the wave trough depth exceedance probabilities of a sea state with the surface elevation data measured at the coast of Yura in the Japan Sea. It is demonstrated that the proposed new method can offer better predictions than the theoretical Rayleigh wave trough depth distribution model. The calculated results by using the proposed new method have been further compared with those obtained by using the Arhan and Plaisted nonlinear distribution model and the Toffoli et al.’s wave trough depth distribution model, and its accuracy has been once again substantiated. The research findings obtained from this study demonstrate that the proposed asymptotic method can be readily utilized in the process of designing various kinds of ocean engineering structures.
基金financially supported by the Major Project of the Ministry of Education and the Ministry of Finance of China(Grant No.GKZY010004)
文摘This paper first proposes a new approach for predicting the nonlinear wave trough distributions by utilizing a transformed linear simulation method. The linear simulation method is transformed based on a Hermite transformation model where the transformation is chosen to be a monotonic cubic polynomial and calibrated such that the first four moments of the transformed model match the moments of the true process. The proposed new approach is applied for calculating the wave trough distributions of a nonlinear sea state with the surface elevation data measured at the coast of Yura in the Japan Sea, and its accuracy and efficiency are convincingly validated by comparisons with the results from two theoretical distribution models, from a linear simulation model and a secondorder nonlinear simulation model. Finally, it is further demonstrated in this paper that the new approach can be applied to all the situations characterized by similar nondimensional spectrum.
基金supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 41276002 and 41130859)the National Basic Research Program of China (Grant Nos. 2012CB955603 and 2013CB956201)+1 种基金the NSFC–Shandong Joint Fund for Marine Science Research Centers (Grant No. U1406401)the Fund for Open Research Programs of the Key Laboratory of Meteorological Disaster (Nanjing University of Information Science and Technology), Ministry of Education (KLME1301)
文摘An extreme rainstorm hit southern China during 13–17 December 2013, with a record-breaking daily rainfall rate, large spatial extent, and unusually long persistence. We examined what induced this heavy rainfall process, based on observed rainfall data and NCEP–NCAR reanalysis data through composite and diagnostic methods. The results showed that a Rossby waveguide within the subtropical westerly jet caused the event. The Rossby wave originated from strong cold air intrusion into the subtropical westerly jet over the eastern Mediterranean. With the enhancement and northward shift of the Middle East westerly jet, the Rossby wave propagated slowly eastward and deepened the India–Burma trough, which transported a large amount of moisture from the Bay of Bengal and South China Sea to southern China. Strong divergence in the upper troposphere, caused by the enhancement of the East Asian westerly jet, also favored the heavy rainfall process over Southeast China. In addition, the Rossby wave was associated with a negative-to-positive phase shift and enhancement of the North Atlantic Oscillation, but convergence in the eastern Mediterranean played the key role in the eastward propagation of the Rossby wave within the subtropical westerly jet.
文摘This paper presents a theoretical study of a non-linear rheological fluid transport in an axisymmetric tube by cilia. An attempt has been made to explain the role of cilia motion in the transport of fluid through the ductus efferent of the male reproductive tract. The Ostwald-de Waele power-law viscous fluid is considered to represent the rheological fluid. We analyze pumping by means of a sequence of cilia beats from rowto-row of cilia in a given row of cells and from one row of cells to the next(metachronal wave movement). For this purpose, we consider the conditions that the corresponding Reynolds number is small enough for inertial effects to be negligible, and the wavelengthto-diameter ratio is large enough so that the pressure can be considered uniform over the cross section. Analyses and computations of the fluid motion reveal that the time-average flow rate depends on ε, a non-dimensional measure involving the mean radius a of the tube and the cilia length. Thus, the flow rate significantly varies with the cilia length.Moreover, the flow rate has been reported to be close to the estimated value 6 × 10ml/h for human efferent ducts if ε is near 0.4. The estimated value was suggested by Lardner and Shack(Lardner, T. J. and Shack, W. J. Cilia transport. Bulletin of Mathematical Biology, 34, 325–335(1972)) for human based on the experimental observations of flow rates in efferent ducts of other animals, e.g., rat, ram, and bull. In addition, the nature of the rheological fluid, i.e., the value of the fluid index n strongly influences various flow-governed characteristics. An interesting feature of this paper is that the pumping improves the thickening behavior for small values of ε or in free pumping(?P = 0) and pumping(?P > 0) regions.
基金supported by the National Basic Research Program of China (Grant No. 2009CB421401)the National Natural Science Foundation of China (Grant No. 40930951)
文摘This paper studies a heavy snowfall in Beijing that took place on 1 November 2009. The date of the snowfall was about one month earlier than the average. The National Centers for Environmental Prediction (NCEP) reanalysis data, conventional data, and Automatic Weather Station (AWS) data are utilized to explore the reasons for the snowfall and the influencing systems. The main conclusions are as follows: (1) It is revealed from the average geopotential height and average temperature fields at 500 hPa that the large scale circulation in November 2009 was favorable to snowfall. The cold-dry air from West Siberia and the warm-moist air from the Bay of Bengal converged in North China. In addition, it was found from the average moisture flux field at 700 hPa that the main water vapor source was in the Bay of Bengal. (2) Not only the "return current", as usually accepted, but also the inverted trough on the current had an important contribution to the snowfall. The inverted trough could produce the obvious upward motion that is an important environmental condition of snowfalls. (3) More attention should be paid to mesoscale systems such as mesolows during the cold season because of their importance, though they do not occur as frequently as in the warm season. It should be pointed out that AWS data are very useful in mesoscale system analysis during both warm and cold seasons.