期刊文献+
共找到238,907篇文章
< 1 2 250 >
每页显示 20 50 100
Effects of counter-current driven by electron cyclotron waves on neoclassical tearing mode suppression
1
作者 高钦 郑平卫 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期501-509,共9页
Through theoretical analysis,we construct a physical model that includes the influence of counter-external driven current opposite to the plasma current direction in the neoclassical tearing mode(NTM).The equation is ... Through theoretical analysis,we construct a physical model that includes the influence of counter-external driven current opposite to the plasma current direction in the neoclassical tearing mode(NTM).The equation is used with this model to obtain the modified Rutherford equation with co-current and counter-current contributions.Consistent with the reported experimental results,numerical simulations have shown that the localized counter external current can only partially suppress NTM when it is far from the resonant magnetic surface.Under some circumstances,the Ohkawa mechanism dominated current drive(OKCD)by electron cyclotron waves can concurrently create both co-current and counter-current.In this instance,the minimal electron cyclotron wave power that suppresses a particular NTM was calculated by the Rutherford equation.The result is marginally less than when taking co-current alone into consideration.As a result,to suppress NTM using OKCD,one only needs to align the co-current with a greater OKCD peak well with the resonant magnetic surface.The effect of its lower counter-current does not need to be considered because the location of the counter-current deviates greatly from the resonant magnetic surface. 展开更多
关键词 driven current neoclassical tearing mode modified Rutherford equation electron cyclotron waves
下载PDF
Wave Attenuation and Turbulence Driven by Submerged Vegetation Under Current-Wave Flow
2
作者 HUANG Yu-ming Ding Lei +3 位作者 WANG Yi-fei CHEN Ben YANG Xiao-yu DOU Xi-ping 《China Ocean Engineering》 SCIE EI CSCD 2024年第4期602-611,共10页
A set of laboratory experiments are carried out to investigate the effect of following/opposing currents on wave attenuation.Rigid vegetation canopies with aligned and staggered configurations were tested under the co... A set of laboratory experiments are carried out to investigate the effect of following/opposing currents on wave attenuation.Rigid vegetation canopies with aligned and staggered configurations were tested under the condition of various regular wave heights and current velocities,with the constant water depth being 0.60 m to create the desired submerged scenarios.Results show that the vegetation-induced wave dissipation is enhanced with the increasing incident wave height.A larger velocity magnititude leads to a greater wave height attenuation for both following and opposing current conditions.Moreover,there is a strong positive linear correlation between the damping coefficientβand the relative wave height H_(0)/h,especially for pure wave conditions.For the velocity profile,the distributions of U_(min)and U_(max)show different patterns under combined wave and current.The time-averaged turbulent kinetic energy(TKE)vary little under pure wave and U_(c)=±0.05 m/s conditions.With the increase of flow velocity amplitude,the time-averaged TKE shows a particularly pronounced increase trend at the top of the canopy.The vegetation drag coefficients are obtained by a calibration approach.The empirical relations of drag coefficient with Reynolds and Keulegane-Carpenter numbers are proposed to further understand the wave-current-vegetation interaction mechanism. 展开更多
关键词 wave attenuation rigid vegetation following and opposing currents turbulent kinetic energy
下载PDF
Experimental Investigation of Wave-Current Loads on a Bridge Shuttle-Shaped Cap–Pile Foundation
3
作者 Chenkai Hong Zhongda Lyu +2 位作者 Fei Wang Zhuo Zhao Lei Wang 《Fluid Dynamics & Materials Processing》 EI 2024年第7期1565-1592,共28页
To scrutinize the characteristics of wave-current loads on a bridge shuttle-shaped cap–pile foundation,a 1:125 test model was considered in a laboratory flume.The inline,transverse and vertical wave–current forces a... To scrutinize the characteristics of wave-current loads on a bridge shuttle-shaped cap–pile foundation,a 1:125 test model was considered in a laboratory flume.The inline,transverse and vertical wave–current forces acting on the shuttle-shaped cap-pile group model were measured considering both random waves and a combination of random waves with a current.The experimental results have shown that the wave-current forces can be well correlated with the wave height,the wavelength,the current velocity,the incident direction and the water level in the marine environment.An increase in the current velocity can lead to a sharp increase in the inline and transverse wave-current forces,while the vertical wave-current force decreases.Moreover,the wave-current forces are particularly strong when a combination of high tide,strong wave and strong current is considered. 展开更多
关键词 Shuttle-shaped cap-pile foundation wave-current force wave flume experiment sea-crossing bridge
下载PDF
Numerical Modeling of the Dynamic Response of an Elastoplastic Seabed Under Wave-Current Interactions 被引量:1
4
作者 SHAN Zhigang ZHU Zhipeng +1 位作者 WANG Dong YE Guanlin 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第1期43-52,共10页
Wave-induced liquefaction of the seabed is a geohazard frequently encountered in shallow waters.Although widely discussed,most studies paid attention to the seabed response under a single sequence of wave loading.Howe... Wave-induced liquefaction of the seabed is a geohazard frequently encountered in shallow waters.Although widely discussed,most studies paid attention to the seabed response under a single sequence of wave loading.However,the seabed suffers from repeated‘wave loading–dissipation’phases in a real ocean environment.In this study,a homogeneous sandy seabed model is established to investigate the mechanism of wave-induced liquefaction by considering the existence of currents.Finite element analyses are conducted by incorporating a kinematic hardening elastoplastic model into the commercial package Abaqus.The constitutive model is validated against centrifugal wave tests.Parametric studies are conducted to demonstrate the effects of relative densities,current,and wave-loading history on the seabed response.The predicted excess pore pressure,effective stress paths,and associated variation of relative density are discussed in detail.The results show that the densification of soils significantly enhances the resistance against liquefaction,which provides new insight into the mechanism of residual liquefaction during wave sequences. 展开更多
关键词 SEABED LIQUEFACTION wave current finite element methods cyclic loading
下载PDF
An Innovative Approach to Predicting Scour Depth Around Foundations Under Combined Waves and Currents in Large-Scale Tests Based on Small-Scale Tests 被引量:1
5
作者 HU Ruigeng LIU Hongjun +2 位作者 LU Yao WANG Xiuhai SHI Wei 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第3期637-648,共12页
This study presents an innovative theoretical approach to predicting the scour depth around a foundation in large-scale model tests based on small-scale model tests under combined waves and currents.In the present app... This study presents an innovative theoretical approach to predicting the scour depth around a foundation in large-scale model tests based on small-scale model tests under combined waves and currents.In the present approach,the hydrodynamic parameters were designed based on the Froude similitude criteria.To avoid the cohesive behavior,we scaled the sediment size based on the settling velocity similarity,i.e.,the suspended load similarity.Then,a series of different scale model tests was conducted to obtain the scour depth around the pile in combined waves and currents.The fitting formula of scour depth from the small-scale model tests was used to predict the results of large-scale tests.The accuracy of the present approach was validated by comparing the prediction values with experimental data of large-scale tests.Moreover,the correctness and accuracy of the present approach for foundations with complex shapes,e.g.,the tripod foundation,was further checked.The results indicated that the fitting line from small-scale model tests slightly overestimated the experimental data of large-scale model tests,and the errors can be accepted.In general,the present approach was applied to predict the maximum or equilibrium scour depth of the large-scale model tests around single piles and tripods. 展开更多
关键词 SCOUR scour depth prediction Froude similarity scale effects combined waves and currents
下载PDF
WavewatchⅢ模拟和统计方法在最大波高预报方面的评测分析
6
作者 王娟娟 侯放 +1 位作者 吴淑萍 王久珂 《海洋预报》 CSCD 北大核心 2024年第1期1-9,共9页
为了研究WavewatchⅢ(WWⅢ)海浪模型对最大波高的模拟能力及其与传统统计关系方法的差异,通过对两次台风浪过程的后报模拟和半年的业务化预报,分析了WWⅢ数值模拟的准确度及其与统计关系方法的精度差异。研究结果表明:WWⅢ数值模拟的最... 为了研究WavewatchⅢ(WWⅢ)海浪模型对最大波高的模拟能力及其与传统统计关系方法的差异,通过对两次台风浪过程的后报模拟和半年的业务化预报,分析了WWⅢ数值模拟的准确度及其与统计关系方法的精度差异。研究结果表明:WWⅢ数值模拟的最大波高(Hmax)的精度略低于有效波高(Hs),但也达到了24 h预报相对误差(H_(max)≥1 m)低于18%、相关系数高于0.94的水平,模拟精度可靠,可以用于业务化预报;与两种统计关系方法(H_(max)和H_(s)分别为1.42和1.52)计算的最大波高相比,数值模拟的精度总体与其相当,但在H_(max)和H_(s)比值大于1.65这种易出现危险的海况下,数值模拟具有更高的准确性,更适合应用于海浪预警报服务。 展开更多
关键词 最大波高 wavewatchⅢ模型 数值模拟 统计关系 预报精度
下载PDF
Research on the Dynamic Response of Submerged Floating Tunnels to Wave Currents and Traffic Load 被引量:1
7
作者 Bolin Jiang Shanshan Wu +1 位作者 Min Ji Bo Liang 《Fluid Dynamics & Materials Processing》 EI 2023年第1期159-173,共15页
Submerged floating tunnel(SFTs)are typically subjected to complex external environmental and internal loads such as wave currents and traffic load.In this study,this problem is investigated through a finite element me... Submerged floating tunnel(SFTs)are typically subjected to complex external environmental and internal loads such as wave currents and traffic load.In this study,this problem is investigated through a finite element method able to account for fluid-structure interaction.The obtained results show that increasing the number of vehicles per unit length enhances the transverse vibrational displacements of the SFT cross sections.Under ultimate traffic load condition,one-way and two-way syntropic distributions can promote the dynamic responses of SFTs whereas two-way reverse distributions have the opposite effect. 展开更多
关键词 Submerged floating tunnel vehicle load dynamic response wave and current loads fluid-structure interaction
下载PDF
Modeling wave attenuation by vegetation with accompanying currents in SWAN 被引量:1
8
作者 Hong Wang Zhan Hu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第12期63-76,共14页
Coastal wetlands such as salt marshes and mangroves provide important protection against stormy waves.Accurate assessments of wetlands’capacity in wave attenuation are required to safely utilize their protection serv... Coastal wetlands such as salt marshes and mangroves provide important protection against stormy waves.Accurate assessments of wetlands’capacity in wave attenuation are required to safely utilize their protection services.Recent studies have shown that tidal currents have a significant impact on wetlands’wave attenuation capacity,but such impact has been rarely considered in numerical models,which may lead to overestimation of wave attenuation in wetlands.This study modified the SWAN(Simulating Waves Nearshore)model to account for the effect of accompanying currents on vegetation-induced wave dissipation.Furthermore,this model was extended to include automatically derived vegetation drag coefficients,spatially varying vegetation height,and Doppler Effect in combined current-wave flows.Model evaluation against an analytical model and flume data shows that the modified model can accurately simulate wave height change in combined current-wave flows.Subsequently,we applied the new model to a mangrove wetland on Hailing Island in China with a special focus on the effect of currents on wave dissipation.It is found that the currents can either increase or decrease wave attenuation depending on the ratio of current velocity to the amplitude of the horizontal wave orbital velocity,which is in good agreement with field observations.Lastly,we used Hailing Island site as an example to simulate wave attenuation by vegetation under hypothetical storm surge conditions.Model results indicate that when currents are 0.08–0.15 m/s and the incident wave height is 0.75–0.90 m,wetlands’wave attenuation capacity can be reduced by nearly 10%compared with pure wave conditions,which provides implications for critical design conditions for coastal safety.The obtained results and the developed model are valuable for the design and implementation of wetland-based coastal defense.The code of the developed model has been made open source,in the hope to assist further research and coastal management. 展开更多
关键词 wave attenuation by vegetation wave-current interaction SWAN model storm waves drag coefficient
下载PDF
Investigation of electron cyclotron wave absorption and current drive in CFETR hybrid scenario plasmas 被引量:1
9
作者 王瀚林 王晓洁 +2 位作者 张超 汤允迎 刘甫坤 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第9期17-25,共9页
The investigation of electron cyclotron(EC)wave absorption and current drive has been performed for the China Fusion Engineering Test Reactor(CFETR)hybrid scenarios using the TORAY code.To achieve the physics goal of ... The investigation of electron cyclotron(EC)wave absorption and current drive has been performed for the China Fusion Engineering Test Reactor(CFETR)hybrid scenarios using the TORAY code.To achieve the physics goal of the EC system in CFETR,a total of four wave frequency values and nine locations of launching antennas have been considered,and the injection poloidal and toroidal angles have been scanned systematically.The electron cyclotron current drive(ECCD)efficiency of the 170 GHz EC system is quite low due to the wave-particle interactions being located at the low-field side.To optimize the ECCD efficiency,the wave frequency is increased up to 221–250 GHz,which leads to the power being deposited at the high-field side.The off-axis ECCD efficiency can be significantly enhanced by launching EC waves from the top window and injecting them towards the high-field side.The optimized ECCD efficiency atρ=0.32 and atρ=0.4 is 2.9 and 2.2 times that of 170 GHz,respectively. 展开更多
关键词 current drive ECCD efficiency CFETR
下载PDF
基于D-Wave Advantage的量子退火公钥密码攻击算法研究
10
作者 王潮 王启迪 +2 位作者 洪春雷 胡巧云 裴植 《计算机学报》 EI CAS CSCD 北大核心 2024年第5期1030-1044,共15页
D-Wave专用量子计算机的原理量子退火凭借独特的量子隧穿效应可跳出传统智能算法极易陷入的局部极值,可视为一类具有全局寻优能力的人工智能算法.本文研究了两类基于量子退火的RSA公钥密码攻击算法(分解大整数N=pq):一是将密码攻击数学... D-Wave专用量子计算机的原理量子退火凭借独特的量子隧穿效应可跳出传统智能算法极易陷入的局部极值,可视为一类具有全局寻优能力的人工智能算法.本文研究了两类基于量子退火的RSA公钥密码攻击算法(分解大整数N=pq):一是将密码攻击数学方法转为组合优化问题或指数级空间搜索问题,通过Ising模型或QUBO模型求解,提出了乘法表的高位优化模型,建立新的降维公式,使用D-Wave Advantage分解了 200万整数2269753.大幅度超过普渡大学、Lockheed Martin和富士通等实验指标,且Ising模型系数h范围缩小了 84%,系数J范围缩小了 80%,极大地提高了分解成功率,这是一类完全基于D-Wave量子计算机的攻击算法;二是基于量子退火算法融合密码攻击数学方法优化密码部件的攻击,采用量子退火优化CVP问题求解,通过量子隧穿效应获得比Babai算法更近的向量,提高了 CVP问题中光滑对的搜索效率,在D-Wave Advantage上实现首次50比特RSA整数分解.实验表明,在通用量子计算机器件进展缓慢情况下,D-Wave表现出更好的现实攻击能力,且量子退火不存在NISQ量子计算机VQA算法的致命缺陷贫瘠高原问题:算法会无法收敛且无法扩展到大规模攻击. 展开更多
关键词 RSA D-wave 量子退火 CVP 量子隧穿 整数分解 量子计算
下载PDF
Nitrogen‑Doped Magnetic‑Dielectric‑Carbon Aerogel for High‑Efficiency Electromagnetic Wave Absorption 被引量:2
11
作者 Shijie Wang Xue Zhang +5 位作者 Shuyan Hao Jing Qiao Zhou Wang Lili Wu Jiurong Liu Fenglong Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期313-327,共15页
Carbonbased aerogels derived from biomass chitosan are encountering a flourishing moment in electromagnetic protection on account of lightweight,controllable fabrication and versatility.Nevertheless,developing a facil... Carbonbased aerogels derived from biomass chitosan are encountering a flourishing moment in electromagnetic protection on account of lightweight,controllable fabrication and versatility.Nevertheless,developing a facile construction method of component design with carbon-based aerogels for high-efficiency electromagnetic wave absorption(EWA)materials with a broad effective absorption bandwidth(EAB)and strong absorption yet hits some snags.Herein,the nitrogen-doped magnetic-dielectric-carbon aerogel was obtained via ice template method followed by carbonization treatment,homogeneous and abundant nickel(Ni)and manganese oxide(MnO)particles in situ grew on the carbon aerogels.Thanks to the optimization of impedance matching of dielectric/magnetic components to carbon aerogels,the nitrogen-doped magnetic-dielectric-carbon aerogel(Ni/MnO-CA)suggests a praiseworthy EWA performance,with an ultra-wide EAB of 7.36 GHz and a minimum reflection loss(RLmin)of−64.09 dB,while achieving a specific reflection loss of−253.32 dB mm−1.Furthermore,the aerogel reveals excellent radar stealth,infrared stealth,and thermal management capabilities.Hence,the high-performance,easy fabricated and multifunctional nickel/manganese oxide/carbon aerogels have broad application aspects for electromagnetic protection,electronic devices and aerospace. 展开更多
关键词 Electromagnetic wave absorption Wide bandwidth Dielectric-magnetic synergy MULTIFUNCTION
下载PDF
Interface Engineering of Titanium Nitride Nanotube Composites for Excellent Microwave Absorption at Elevated Temperature 被引量:3
12
作者 Cuiping Li Dan Li +4 位作者 Shuai Zhang Long Ma Lei Zhang Jingwei Zhang Chunhong Gong 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期147-160,共14页
Currently,the microwave absorbers usually suffer dreadful electromagnetic wave absorption(EMWA)performance damping at elevated temperature due to impedance mismatching induced by increased conduction loss.Consequently... Currently,the microwave absorbers usually suffer dreadful electromagnetic wave absorption(EMWA)performance damping at elevated temperature due to impedance mismatching induced by increased conduction loss.Consequently,the development of high-performance EMWA materials with good impedance matching and strong loss ability in wide temperature spectrum has emerged as a top priority.Herein,due to the high melting point,good electrical conductivity,excellent environmental stability,EM coupling effect,and abundant interfaces of titanium nitride(TiN)nanotubes,they were designed based on the controlling kinetic diffusion procedure and Ostwald ripening process.Benefiting from boosted heterogeneous interfaces between TiN nanotubes and polydimethylsiloxane(PDMS),enhanced polarization loss relaxations were created,which could not only improve the depletion efficiency of EMWA,but also contribute to the optimized impedance matching at elevated temperature.Therefore,the TiN nanotubes/PDMS composite showed excellent EMWA performances at varied temperature(298-573 K),while achieved an effective absorption bandwidth(EAB)value of 3.23 GHz and a minimum reflection loss(RLmin)value of−44.15 dB at 423 K.This study not only clarifies the relationship between dielectric loss capacity(conduction loss and polarization loss)and temperature,but also breaks new ground for EM absorbers in wide temperature spectrum based on interface engineering. 展开更多
关键词 TiN nanotubes Interface engineering Polarization loss Impedance matching Electromagnetic wave absorption performance
下载PDF
Absorption properties and mechanism of lightweight and broadband electromagnetic wave-absorbing porous carbon by the swelling treatment 被引量:2
13
作者 Jianghao Wen Di Lan +4 位作者 Yiqun Wang Lianggui Ren Ailing Feng Zirui Jia Guanglei Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1701-1712,共12页
Bioderived carbon materials have garnered considerable interest in the fields of microwave absorption and shielding due to their reproducibility and environmental friendliness.In this study,KOH was evenly distributed ... Bioderived carbon materials have garnered considerable interest in the fields of microwave absorption and shielding due to their reproducibility and environmental friendliness.In this study,KOH was evenly distributed on biomass Tremella using the swelling induction method,leading to the preparation of a three-dimensional network-structured hierarchical porous carbon(HPC)through carbonization.The achieved microwave absorption intensity is robust at-47.34 dB with a thin thickness of 2.1 mm.Notably,the widest effective absorption bandwidth,reaching 7.0 GHz(11–18 GHz),is attained at a matching thickness of 2.2 mm.The exceptional broadband and reflection loss performance are attributed to the 3D porous networks,interface effects,carbon network defects,and dipole relaxation.HPC has outstanding absorption characteristics due to its excellent impedance matching and high attenuation constant.The uniform pore structures considerably optimize the impedance-matching performance of the material,while the abundance of interfaces and defects enhances the dielectric loss,thereby improving the attenuation constant.Furthermore,the impact of carbonization temperature and swelling rate on microwave absorption performance was systematically investigated.This research presents a strategy for preparing absorbing materials using biomass-derived HPC,showcasing considerable potential in the field of electromagnetic wave absorption. 展开更多
关键词 BIOMASS hierarchical porous carbon dielectric loss electromagnetic wave absorption
下载PDF
Tracking Regulatory Mechanism of Trace Fe on Graphene Electromagnetic Wave Absorption 被引量:2
14
作者 Kaili Zhang Yuhao Liu +5 位作者 Yanan Liu Yuefeng Yan Guansheng Ma Bo Zhong Renchao Che Xiaoxiao Huang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期79-96,共18页
Polarization and conductance losses are the fundamental dielectric attenuation mechanisms for graphene-based absorbers, but it is not fully understood in revealing the loss mechanism of affect graphene itself. For the... Polarization and conductance losses are the fundamental dielectric attenuation mechanisms for graphene-based absorbers, but it is not fully understood in revealing the loss mechanism of affect graphene itself. For the first time, the reduced graphene oxide(RGO) based absorbers are developed with regulatory absorption properties and the absorption mechanism of RGO is mainly originated from the carrier injection behavior of trace metal Fe nanosheets on graphene. Accordingly, the minimum reflection loss(RLmin) of Fe/RGO-2composite reaches-53.38 dB(2.45 mm), and the effective absorption bandwidth achieves 7.52 GHz(2.62 mm) with lower filling loading of 2 wt%. Using off-axis electron hologram testing combined with simulation calculation and carrier transport property experiments, we demonstrate here the carrier injection behavior from Fe to graphene at the interface and the induced charge accumulation and rearrangement, resulting in the increased interfacial and dipole polarization and the conductance loss. This work has confirmed that regulating the dielectric property of graphene itself by adding trace metals can not only ensure good impedance matching, but also fully exploit the dielectric loss ability of graphene at low filler content,which opens up an efficient way for designing lightweight absorbers and may be extended to other types materials. 展开更多
关键词 Reduced graphene oxide Fe nanosheets Dielectric loss Electromagnetic wave absorption
下载PDF
On the functions of astrocyte-mediated neuronal slow inward currents 被引量:2
15
作者 Balázs Pál 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第12期2602-2612,共11页
Slow inward currents are known as neuronal excitatory currents mediated by glutamate release and activation of neuronal extra synaptic N-met hyl-D-aspartate receptors with the contribution of astrocytes.These events a... Slow inward currents are known as neuronal excitatory currents mediated by glutamate release and activation of neuronal extra synaptic N-met hyl-D-aspartate receptors with the contribution of astrocytes.These events are significantly slower than the excitatory postsynaptic currents.Parameters of slow inward currents are determined by seve ral factors including the mechanisms of astrocytic activation and glutamate release,as well as the diffusion pathways from the release site towards the extra synaptic recepto rs.Astrocytes are stimulated by neuronal network activity,which in turn excite neurons,forming an astrocyte-neuron feedback loop.Mostly as a consequence of brain edema,astrocytic swelling can also induce slow inward currents under pathological conditions.There is a growing body of evidence on the roles of slow inward currents on a single neuron or local network level.These events often occur in synchro ny on neurons located in the same astrocytic domain.Besides synchronization of neuronal excitability,slow inward currents also set synaptic strength via eliciting timing-dependent synaptic plasticity.In addition,slow inward currents are also subject to non-synaptic plasticity triggered by long-la sting stimulation of the excitatory inputs.Of note,there might be important regionspecific differences in the roles and actions triggering slow inward currents.In greater networks,the pathophysiological roles of slow inward currents can be better understood than physiological ones.Slow inward currents are identified in the pathophysiological background of autism,as slow inward currents drive early hypersynchrony of the neural networks.Slow inward currents are significant contributors to paroxysmal depolarizational shifts/interictal spikes.These events are related to epilepsy,but also found in Alzheimer's disease,Parkinson's disease,and stroke,leading to the decline of cognitive functions.Events with features overlapping with slow inward currents(excitatory,N-methyl-Daspartate-receptor mediated currents with astrocytic contribution) as ischemic currents and spreading depolarization also have a well-known pathophysiological role in worsening consequences of stroke,traumatic brain injury,or epilepsy.One might assume that slow inward currents occurring with low frequency under physiological conditions might contribute to synaptic plasticity and memory formation.However,to state this,more experimental evidence from greater neuronal networks or the level of the individual is needed.In this review,I aimed to summarize findings on slow inward currents and to speculate on the potential functions of it. 展开更多
关键词 ASTROCYTE cortical spreading depolarization gliotransmission GLUTAMATE neural synchronization NMDA receptor paroxysmal depolarizational shift slow inward current
下载PDF
Ultra-wide band gap and wave attenuation mechanism of a novel star-shaped chiral metamaterial 被引量:1
16
作者 Shuo WANG Anshuai WANG +7 位作者 Yansen WU Xiaofeng LI Yongtao SUN Zhaozhan ZHANG Qian DING G.D.AYALEW Yunxiang MA Qingyu LIN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第7期1261-1278,共18页
A novel hollow star-shaped chiral metamaterial(SCM)is proposed by incorporating chiral structural properties into the standard hollow star-shaped metamaterial,exhibiting a wide band gap over 1500 Hz.To broaden the ban... A novel hollow star-shaped chiral metamaterial(SCM)is proposed by incorporating chiral structural properties into the standard hollow star-shaped metamaterial,exhibiting a wide band gap over 1500 Hz.To broaden the band gap,solid single-phase and two-phase SCMs are designed and simulated,which produce two ultra-wide band gaps(approximately 5116 Hz and 6027 Hz,respectively).The main reason for the formation of the ultra-wide band gap is that the rotational vibration of the concave star of two novel SCMs drains the energy of an elastic wave.The impacts of the concave angle of a single-phase SCM and the resonator radius of a two-phase SCM on the band gaps are studied.Decreasing the concave angle leads to an increase in the width of the widest band gap,and the width of the widest band gap increases as the resonator radius of the two-phase SCM increases.Additionally,the study on elastic wave propagation characteristics involves analyzing frequency dispersion surfaces,wave propagation directions,group velocities,and phase velocities.Ultimately,the analysis focuses on the transmission properties of finite periodic structures.The solid single-phase SCM achieves a maximum vibration attenuation over 800,while the width of the band gap is smaller than that of the two-phase SCM.Both metamaterials exhibit high vibration attenuation capabilities,which can be used in wideband vibration reduction to satisfy the requirement of ultra-wide frequencies. 展开更多
关键词 METAMATERIAL ultra-wide band gap wave propagation vibration suppression
下载PDF
Altered synaptic currents,mitophagy,mitochondrial dynamics in Alzheimer's disease models and therapeutic potential of Dengzhan Shengmai capsules intervention 被引量:1
17
作者 Binbin Zhao Dongfeng Wei +12 位作者 Qinghua Long Qingjie Chen Fushun Wang Linlin Chen Zefei Li Tong Li Tao Ma Wei Liu Linshuang Wang Caishui Yang Xiaxia Zhang Ping Wang Zhanjun Zhang 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2024年第3期348-370,共23页
Emerging research suggests a potential association of progression of Alzheimer's disease(AD)with alterations in synaptic currents and mitochondrial dynamics.However,the specific associations between these patholog... Emerging research suggests a potential association of progression of Alzheimer's disease(AD)with alterations in synaptic currents and mitochondrial dynamics.However,the specific associations between these pathological changes remain unclear.In this study,we utilized Aβ42-induced AD rats and primary neural cells as in vivo and in vitro models.The investigations included behavioural tests,brain magnetic resonance imaging(MRI),liquid chromatography-tandem mass spectrometry(UPLC-MS/MS)analysis,Nissl staining,thioflavin-S staining,enzyme-linked immunosorbent assay,Golgi-Cox staining,transmission electron microscopy(TEM),immunofluorescence staining,proteomics,adenosine triphosphate(ATP)detection,mitochondrial membrane potential(MMP)and reactive oxygen species(ROS)assessment,mitochondrial morphology analysis,electrophysiological studies,Western blotting,and molecular docking.The results revealed changes in synaptic currents,mitophagy,and mitochondrial dynamics in the AD models.Remarkably,intervention with Dengzhan Shengmai(DZSM)capsules emerged as a pivotal element in this investigation.Aβ42-induced synaptic dysfunction was significantly mitigated by DZSM intervention,which notably amplified the frequency and amplitude of synaptic transmission.The cognitive impairment observed in AD rats was ameliorated and accompanied by robust protection against structural damage in key brain regions,including the hippocampal CA3,primary cingular cortex,prelimbic system,and dysgranular insular cortex.DZSM intervention led to increased IDE levels,augmented long-term potential(LTP)amplitude,and enhanced dendritic spine density and length.Moreover,DZSM intervention led to favourable changes in mitochondrial parameters,including ROS expression,MMP and ATP contents,and mitochondrial morphology.In conclusion,our findings delved into the realm of altered synaptic currents,mitophagy,and mitochondrial dynamics in AD,concurrently highlighting the therapeutic potential of DZSM intervention. 展开更多
关键词 Alzheimer's disease Synaptic currents MITOPHAGY Mitochondrial fusion and fission Dengzhan Shengmai capsules
下载PDF
Efficient Electromagnetic Wave Absorption and Thermal Infrared Stealth in PVTMS@MWCNT Nano‑Aerogel via Abundant Nano‑Sized Cavities and Attenuation Interfaces 被引量:1
18
作者 Haoyu Ma Maryam Fashandi +5 位作者 Zeineb Ben Rejeb Xin Ming Yingjun Liu Pengjian Gong Guangxian Li Chul B.Park 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期370-383,共14页
Pre-polymerized vinyl trimethoxy silane(PVTMS)@MWCNT nano-aerogel system was constructed via radical polymerization,sol-gel transition and supercritical CO_(2)drying.The fabricated organic-inorganic hybrid PVTMS@MWCNT... Pre-polymerized vinyl trimethoxy silane(PVTMS)@MWCNT nano-aerogel system was constructed via radical polymerization,sol-gel transition and supercritical CO_(2)drying.The fabricated organic-inorganic hybrid PVTMS@MWCNT aerogel structure shows nano-pore size(30-40 nm),high specific surface area(559 m^(2)g^(−1)),high void fraction(91.7%)and enhanced mechanical property:(1)the nano-pore size is beneficial for efficiently blocking thermal conduction and thermal convection via Knudsen effect(beneficial for infrared(IR)stealth);(2)the heterogeneous interface was beneficial for IR reflection(beneficial for IR stealth)and MWCNT polarization loss(beneficial for electromagnetic wave(EMW)attenuation);(3)the high void fraction was beneficial for enhancing thermal insulation(beneficial for IR stealth)and EMW impedance match(beneficial for EMW attenuation).Guided by the above theoretical design strategy,PVTMS@MWCNT nano-aerogel shows superior EMW absorption property(cover all Ku-band)and thermal IR stealth property(ΔT reached 60.7℃).Followed by a facial combination of the above nano-aerogel with graphene film of high electrical conductivity,an extremely high electromagnetic interference shielding material(66.5 dB,2.06 mm thickness)with superior absorption performance of an average absorption-to-reflection(A/R)coefficient ratio of 25.4 and a low reflection bandwidth of 4.1 GHz(A/R ratio more than 10)was experimentally obtained in this work. 展开更多
关键词 Nano-pore size Heterogeneous interface Electromagnetic wave absorption Thermal infrared stealth Nano-aerogel
下载PDF
From VIB‑to VB‑Group Transition Metal Disulfides:Structure Engineering Modulation for Superior Electromagnetic Wave Absorption 被引量:1
19
作者 Junye Cheng Yongheng Jin +10 位作者 Jinghan Zhao Qi Jing Bailong Gu Jialiang Wei Shenghui Yi Mingming Li Wanli Nie Qinghua Qin Deqing Zhang Guangping Zheng Renchao Che 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期218-257,共40页
The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various field... The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various fields,such as catalysis,energy storage,sensing,etc.In recent years,a lot of research work on TMDs based functional materials in the fields of electromagnetic wave absorption(EMA)has been carried out.Therefore,it is of great significance to elaborate the influence of TMDs on EMA in time to speed up the application.In this review,recent advances in the development of electromagnetic wave(EMW)absorbers based on TMDs,ranging from the VIB group to the VB group are summarized.Their compositions,microstructures,electronic properties,and synthesis methods are presented in detail.Particularly,the modulation of structure engineering from the aspects of heterostructures,defects,morphologies and phases are systematically summarized,focusing on optimizing impedance matching and increasing dielectric and magnetic losses in the EMA materials with tunable EMW absorption performance.Milestones as well as the challenges are also identified to guide the design of new TMDs based dielectric EMA materials with high performance. 展开更多
关键词 Transition metal disulfides Electromagnetic wave absorption Impedance matching Structure engineering modulation
下载PDF
Accurate simulations of pure-viscoacoustic wave propagation in tilted transversely isotropic media 被引量:1
20
作者 Qiang Mao Jian-Ping Huang +2 位作者 Xin-Ru Mu Ji-Dong Yang Yu-Jian Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期866-884,共19页
Forward modeling of seismic wave propagation is crucial for the realization of reverse time migration(RTM) and full waveform inversion(FWI) in attenuating transversely isotropic media. To describe the attenuation and ... Forward modeling of seismic wave propagation is crucial for the realization of reverse time migration(RTM) and full waveform inversion(FWI) in attenuating transversely isotropic media. To describe the attenuation and anisotropy properties of subsurface media, the pure-viscoacoustic anisotropic wave equations are established for wavefield simulations, because they can provide clear and stable wavefields. However, due to the use of several approximations in deriving the wave equation and the introduction of a fractional Laplacian approximation in solving the derived equation, the wavefields simulated by the previous pure-viscoacoustic tilted transversely isotropic(TTI) wave equations has low accuracy. To accurately simulate wavefields in media with velocity anisotropy and attenuation anisotropy, we first derive a new pure-viscoacoustic TTI wave equation from the exact complex-valued dispersion formula in viscoelastic vertical transversely isotropic(VTI) media. Then, we present the hybrid finite-difference and low-rank decomposition(HFDLRD) method to accurately solve our proposed pure-viscoacoustic TTI wave equation. Theoretical analysis and numerical examples suggest that our pure-viscoacoustic TTI wave equation has higher accuracy than previous pure-viscoacoustic TTI wave equations in describing q P-wave kinematic and attenuation characteristics. Additionally, the numerical experiment in a simple two-layer model shows that the HFDLRD technique outperforms the hybrid finite-difference and pseudo-spectral(HFDPS) method in terms of accuracy of wavefield modeling. 展开更多
关键词 Pure-viscoacoustic TTI wave equation Attenuation anisotropy Seismic modeling Low-rank decomposition method
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部