Rechargeable magnesium batteries(RMBs),as a low-cost,high-safety and high-energy storage technology,have attracted tremendous attention in large-scale energy storage applications.However,the key anode/electrolyte inte...Rechargeable magnesium batteries(RMBs),as a low-cost,high-safety and high-energy storage technology,have attracted tremendous attention in large-scale energy storage applications.However,the key anode/electrolyte interfacial issues,including surface passivation,uneven Mg plating/stripping,and pulverization after cycling still result in a large overpotential,short cycling life,poor power density,and possible safety hazards of cells,severely impeding the commercial development of RMBs.In this review,a concise overview of recently advanced strategies to address these anode/electroyte interfacial issues is systematically classified and summarized.The design of magnesiophilic substrates,construction of artificial SEI layers,and modification of electrolyte are important and effective strategies to improve the uniformity/kinetics of Mg plating/stripping and achieve the stable anode/electrolyte interface.The key opportunities and challenges in this field are advisedly put forward,and the insights into future directions for stabilizing Mg metal anodes and the anode/electrolyte interface are highlighted.This review provides important references fordeveloping the high-performance and high-safety RMBs.展开更多
The catalytic performance of two oxides coated anodes (OCSs) meshes and one OCA plate was investigated in a zinc electrowinning electrolyte at 38 ℃. Their electrochemical behaviors were compared with that of a conv...The catalytic performance of two oxides coated anodes (OCSs) meshes and one OCA plate was investigated in a zinc electrowinning electrolyte at 38 ℃. Their electrochemical behaviors were compared with that of a conventional Pb-0.7%Ag alloy anode. Electrochemical measurements such as cyclic voltammetric, galvanostatic, potentiodynamic, open-circuit potential (OCP) and in situ electrochemical noise measurements were considered. After 2 h of OCP test, the linear polarization shows that the corrosion current density of the Ti/(IrO2-Ta2O5) mesh electrode is the lowest (3.37μA/cm^2) among the three OCAs and shows excellent performance. Additionally, after 24 h of galvanostatic polarization at 50 mA/cm^2and 38 ℃, the Ti/MnO2mesh anode has the highest potential (1.799 V), followed by the Ti/(IrO2-Ta2O5) plate (1.775 V) and Ti/(IrO2-Ta2O5) mesh (1.705 V) anodes. After 24 h of galvanostatic polarization followed by 16 h of decay, the linear polarization method confirms the sequence obtained after 2 h of OCP test, and the Ti/(IrO2-Ta2O5) mesh attains the lowest corrosion current density. The Ti/(IrO2-Ta2O5) mesh anode also shows better performance after 24 h of galvanostatic polarization with the overpotential lower than that of the conventional Pb-Ag anode by about 245 mV.展开更多
The uncontrollable Li electrostripping and plating process that results in dendritic Li growth and huge volume change of Li anode limits the practicality of Li metal batteries(LMBs).To simultaneously address these iss...The uncontrollable Li electrostripping and plating process that results in dendritic Li growth and huge volume change of Li anode limits the practicality of Li metal batteries(LMBs).To simultaneously address these issues,designing three-dimensional(3D),lithiophilic and mechanically robust electrodes seems to be one of the cost-effective strategies.Herein,a new 3D Li-B-C-Al alloy anode is designed and fabricated.The prepared 3D alloy anode exhibits not only superior lithiophilicity that facilitates uniform Li nucleation and growth but also sufficient mechanical stability that maintains its structural integrity.Superior performance of the prepared 3D alloy is demonstrated through comprehensive electrochemical tests.In addition,non-destructive and 3D synchrotron X-ray computed tomography(SX-CT)technique is employed to investigate the underlying working mechanisms of the prepared alloy anode.A unique twofold Li electrostripping and plating mechanism under different electrochemical cycling conditions is revealed.Lastly,improved performance of the full cells built with the 3D alloy anode and LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)cathode corroborate its potential application capability.Overall,the current work not only showcases the superiority of the 3D alloy as potential anode material for LMBs but also provides fundamental insights into its underlying working mechanisms that may further propel its research and development.展开更多
Lithium(Li) metal anode has received extensive attentions due to its ultrahigh theoretical capacity and the most negative electrode potential. However, dendrite growth severely impedes the practical applications of th...Lithium(Li) metal anode has received extensive attentions due to its ultrahigh theoretical capacity and the most negative electrode potential. However, dendrite growth severely impedes the practical applications of the Li metal anode in rechargeable batteries. In this contribution, a mesoporous graphene with a high specific surface area was synthesized to host the Li metal anode. The mesoporous graphene host(MGH) has a high specific surface area(2090 m^2/g), which affords free space and an interconnected conductive pathway for Li plating and stripping, thus alleviating the volume variation and reducing the generation of dead Li during repeated cycles. More importantly, the high specific surface area of MGH efficiently reduces the local current density of the electrode, which favors a uniform Li nucleation and plating behavior, rendering a dendritefree deposition morphology at a low overpotential. These factors synergistically boost the Li utilization(90.1% vs. 70.1% for Cu foil) and life span(150 cycles vs. 100 cycles for Cu foil) with a low polarization of MGH electrode at an ultrahigh current of 15.0 mA/cm^2. The as-prepared MGH can provide fresh insights into the electrode design of the Li metal anode operating at high rates.展开更多
Aluminum-metal batteries show great potential as next-generation energy storage due to their abundant resources and intrinsic safety.However,the crucial limitations of metallic Al anodes,such as dendrite and corrosion...Aluminum-metal batteries show great potential as next-generation energy storage due to their abundant resources and intrinsic safety.However,the crucial limitations of metallic Al anodes,such as dendrite and corrosion problems in conventional aluminum-metal batteries,remain challenging and elusive.Here,we report a novel electrodeposition strategy to prepare an optimized 3D Al anode on carbon cloth with an uniform deposition morphology,low local current density,and mitigatory volume change.The symmetrical cells with the 3D Al anode show superior stable cycling(>450 h)and low-voltage hysteresis(~170 mV)at 0.5 mA cm^(−2).High reversibility(~99.7%)is achieved for the Al plating/stripping.The graphite||Al‐4/CC full batteries show a long lifespan of 800 cycles with 54 mAh g^(−1) capacity at a high current density of 1000 mA g^(−1),benefiting from the high capacitive-controlled distribution.This study proposes a novel strategy to design 3D Al anodes for metallic-Al-based batteries by eliminating the problems of planar Al anodes and realizing the potential applications of aluminum-graphite batteries.展开更多
The interfacial stability of lithium metal anodes dictated by solid electrolyte interphase(SEI) is essential for long-cycling high-energy-density lithium–sulfur batteries. Nevertheless, critical components of SEI for...The interfacial stability of lithium metal anodes dictated by solid electrolyte interphase(SEI) is essential for long-cycling high-energy-density lithium–sulfur batteries. Nevertheless, critical components of SEI for interfacial stabilization are particularly indistinct. Herein, the effect of various sulfur-containing components in SEI for stabilizing lithium metal anodes is disclosed in lithium–sulfur batteries. High-valence sulfur-containing species(Li_(2)SO_(3) and Li_(2)SO_(4)) in SEI are conducive to uniform lithium deposition and stabilizing lithium metal anodes. In contrast, low-valence sulfur-containing species(Li_(2)S_(3) and Li_(2)S_(4)) in SEI result in aggressive lithium dendrites and dead lithium. This work identifies the role of sulfurcontaining components in SEI for stabilizing lithium metal anodes and provides rational design principles of SEI for protecting lithium metal anodes in practical lithium–sulfur batteries.展开更多
The lithium(Li) metal anode is an integral component in an emerging high-energy-density rechargeable battery.A composite Li anode with a three-dimensional(3 D) host exhibits unique advantages in suppressing Li dendrit...The lithium(Li) metal anode is an integral component in an emerging high-energy-density rechargeable battery.A composite Li anode with a three-dimensional(3 D) host exhibits unique advantages in suppressing Li dendrites and maintaining dimensional stability.However,the fundamental understanding and regulation of solid electrolyte interphase(SEI),which directly dictates the behavior of Li plating/stripping,are rarely researched in composite Li metal anodes.Herein,the interaction between a polar polymer host and solvent molecules was proposed as an emerging but effective strategy to enable a stable SEI and a uniform Li deposition in a working battery.Fluoroethylene carbonate molecules in electrolytes are enriched in the vicinity of a polar polyacrylonitrile(PAN) host due to a strong dipole-dipole interaction,resulting in a LiF-rich SEI on Li metal to improve the uniformity of Li deposition.A composite Li anode with a PAN host delivers 145 cycles compared with 90 cycles when a non-polar host is employed.Moreover,60 cycles are demonstrated in a 1:0 Ah pouch cell without external pressure.This work provides a fresh guidance for designing practical composite Li anodes by unraveling the vital role of the synergy between a 3 D host and solvent molecules for regulating a robust SEI.展开更多
Lithium(Li)metal is regarded as a promising anode material to render the Li batteries with high energy density and therefore satisfy the ever-growing energy demands of high-end storage devices[1].Unfortunately,the den...Lithium(Li)metal is regarded as a promising anode material to render the Li batteries with high energy density and therefore satisfy the ever-growing energy demands of high-end storage devices[1].Unfortunately,the dendrite growth accompanied with accumulation of"dead Li"leads to low Coulombic efficiency,poor cycling lifespan,and even severe safety hazards,critically hindering the practical implementation of Li metal batteries[2,3].展开更多
The electrochemical mechanism of anode oxidation of HCHO in electroless copper plating solution with N, N, N′, N′-tetrakis(2-hydroxypropyl)ethylenediamine (THPED) was investigated by measuring cyclic voltammetry cur...The electrochemical mechanism of anode oxidation of HCHO in electroless copper plating solution with N, N, N′, N′-tetrakis(2-hydroxypropyl)ethylenediamine (THPED) was investigated by measuring cyclic voltammetry curves and anodic polarization curves. Three different oxidation peaks occur at the potentials of -0.62 V (Peak 1), -0.40 V (Peak 2) and -0.17 V (Peak 3) in the anode oxidation process of THPED-containing solution. The reaction at Peak 1, a main oxidation reaction, is the irreversible reaction of adsorbed HCHO with hydrogen evolution. The reaction at Peak 2, a secondary oxidation reaction, is the quasi-reversible reaction of adsorbed HCHO without hydrogen evolution. The reaction at Peak 3 is the irreversible oxidation of anode copper. The current density of Peak 1 increases gradually, that of Peak 2 remains constant and that of Peak 3 decreases with the increase of HCHO concentration. The current density of Peak 3 increases with the increase of THPED concentration and the complexation of THPED promotes the dissolution of anode copper.展开更多
We prepared Pb-0.3wt%Ag/Pb-WC(WC stands for tungsten carbide,the same below) composite inert anodes by double-pulse electrodeposition on the surface of Pb-0.3wt%Ag substrates,and investigated the electrochemical pro...We prepared Pb-0.3wt%Ag/Pb-WC(WC stands for tungsten carbide,the same below) composite inert anodes by double-pulse electrodeposition on the surface of Pb-0.3wt%Ag substrates,and investigated the electrochemical properties of the composite inert anodes,which were obtained under different forward pulse average current densities from 2 A/dm2 to 5 A/dm2 and WC concentrations from 0 g/L to 40 g/L in bath.The kinetic parameters of oxygen evolution,corrosion potential and corrosion current of the composite inert anodes were obtained in a synthetic zinc electrowinning electrolyte of 50 g/L Zn2+ and 150 g/L H2SO4 at 35 ℃,by measuring the anodic polarization curves,Tafel polarization curves and cyclic voltammetry curves.The results show that Pb-0.3wt% Ag/Pb-WC composite inert anodes obtained under forward pulse average current density of 3 A/dm2 and WC concentration of 30 g/L in an original acid plating bath,possess higher electrocatalytic activity of oxygen evolution,lower overpotential of oxygen evolution,better reversibility of electrode reaction and corrosion resistance in [ZnSO4+H2SO4] solution.The overpotential of oxygen evolution of the composite inert anode is 0.926 V under 500 A/m2 in [ZnSO4+H2SO4] solution,and 245 mV lower than that of Pb-1% Ag alloy;the corrosion current of the composite inert anode is 0.95×10-4A which is distinctly lower than that of Pb-1%Ag alloy,showing the excellent corrosion resistance.展开更多
Solid-state electrolytes(SSEs)are a solution to safety issues related to flammable organic electrolytes for Li batteries.Insufficient contact between the anode and SSE results in high interface resistance,thus causing...Solid-state electrolytes(SSEs)are a solution to safety issues related to flammable organic electrolytes for Li batteries.Insufficient contact between the anode and SSE results in high interface resistance,thus causing the batteries to exhibit high charging and discharging overpotentials.Recently,we reduced the overpotential of Li stripping and plating by introducing a high proportion of dual-conductive phases into a composite anode.The current study investigates the interface resistance and stability of a composite electrode modified with Zn and a lower proportion of dual-conductive phases.Zn-cation-adsorbed Prussian blue is synthesized as an intermediate component for a Zn-modified composite electrode(Li-FeZnNC).The Li-FeZnNC symmetric cell presents a lower interface resistance and overpotential compared with Li-FeNC(without Zn modification)and Li-symmetric cells.The Li-FeZnNC symmetric cell shows high electrochemical stability during Li stripping and plating at different current densities and high stability for 200 h.Full batteries with a Li-FeZnNC composite anode,garnet-type SSE,and LiFePO4 cathode show low charging and discharging overpotentials,a capacity of 152 mAh g^(−1),and high stability for 200 cycles.展开更多
基金supported by the National Key R&D Program of China(No.2023YFB3809500)the National Natural Science Foundation of China(No.U23A20555,52202211)+3 种基金the Ninth Young Elite Scientists Sponsorship Program by CAST(2023QNRC001)the Chongqing Technology Innovation and Application Development Project(No.CSTB2022TIAD-KPX0028)the Fundamental Research Funds for the Central Universities(2023CDJXY-018)the Venture&Innovation Support Program for Chongqing Overseas Returnees(cx2022119,cx2023087).
文摘Rechargeable magnesium batteries(RMBs),as a low-cost,high-safety and high-energy storage technology,have attracted tremendous attention in large-scale energy storage applications.However,the key anode/electrolyte interfacial issues,including surface passivation,uneven Mg plating/stripping,and pulverization after cycling still result in a large overpotential,short cycling life,poor power density,and possible safety hazards of cells,severely impeding the commercial development of RMBs.In this review,a concise overview of recently advanced strategies to address these anode/electroyte interfacial issues is systematically classified and summarized.The design of magnesiophilic substrates,construction of artificial SEI layers,and modification of electrolyte are important and effective strategies to improve the uniformity/kinetics of Mg plating/stripping and achieve the stable anode/electrolyte interface.The key opportunities and challenges in this field are advisedly put forward,and the insights into future directions for stabilizing Mg metal anodes and the anode/electrolyte interface are highlighted.This review provides important references fordeveloping the high-performance and high-safety RMBs.
基金Project(RDCPJ 428402)supported by the Natural Sciences and Engineering Research Council of Canada
文摘The catalytic performance of two oxides coated anodes (OCSs) meshes and one OCA plate was investigated in a zinc electrowinning electrolyte at 38 ℃. Their electrochemical behaviors were compared with that of a conventional Pb-0.7%Ag alloy anode. Electrochemical measurements such as cyclic voltammetric, galvanostatic, potentiodynamic, open-circuit potential (OCP) and in situ electrochemical noise measurements were considered. After 2 h of OCP test, the linear polarization shows that the corrosion current density of the Ti/(IrO2-Ta2O5) mesh electrode is the lowest (3.37μA/cm^2) among the three OCAs and shows excellent performance. Additionally, after 24 h of galvanostatic polarization at 50 mA/cm^2and 38 ℃, the Ti/MnO2mesh anode has the highest potential (1.799 V), followed by the Ti/(IrO2-Ta2O5) plate (1.775 V) and Ti/(IrO2-Ta2O5) mesh (1.705 V) anodes. After 24 h of galvanostatic polarization followed by 16 h of decay, the linear polarization method confirms the sequence obtained after 2 h of OCP test, and the Ti/(IrO2-Ta2O5) mesh attains the lowest corrosion current density. The Ti/(IrO2-Ta2O5) mesh anode also shows better performance after 24 h of galvanostatic polarization with the overpotential lower than that of the conventional Pb-Ag anode by about 245 mV.
基金supported by the National Natural Science Foundation of China(U1904216).
文摘The uncontrollable Li electrostripping and plating process that results in dendritic Li growth and huge volume change of Li anode limits the practicality of Li metal batteries(LMBs).To simultaneously address these issues,designing three-dimensional(3D),lithiophilic and mechanically robust electrodes seems to be one of the cost-effective strategies.Herein,a new 3D Li-B-C-Al alloy anode is designed and fabricated.The prepared 3D alloy anode exhibits not only superior lithiophilicity that facilitates uniform Li nucleation and growth but also sufficient mechanical stability that maintains its structural integrity.Superior performance of the prepared 3D alloy is demonstrated through comprehensive electrochemical tests.In addition,non-destructive and 3D synchrotron X-ray computed tomography(SX-CT)technique is employed to investigate the underlying working mechanisms of the prepared alloy anode.A unique twofold Li electrostripping and plating mechanism under different electrochemical cycling conditions is revealed.Lastly,improved performance of the full cells built with the 3D alloy anode and LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)cathode corroborate its potential application capability.Overall,the current work not only showcases the superiority of the 3D alloy as potential anode material for LMBs but also provides fundamental insights into its underlying working mechanisms that may further propel its research and development.
基金supported by the National Key Research and Development Program (Nos. 2016YFA0202500 and 2016YFA0200102)National Natural Science Foundation of China (Nos. 21676160, 21825501, 21805161, 21808121, and U1801257)the Tsinghua University Initiative Scientific Research Program.
文摘Lithium(Li) metal anode has received extensive attentions due to its ultrahigh theoretical capacity and the most negative electrode potential. However, dendrite growth severely impedes the practical applications of the Li metal anode in rechargeable batteries. In this contribution, a mesoporous graphene with a high specific surface area was synthesized to host the Li metal anode. The mesoporous graphene host(MGH) has a high specific surface area(2090 m^2/g), which affords free space and an interconnected conductive pathway for Li plating and stripping, thus alleviating the volume variation and reducing the generation of dead Li during repeated cycles. More importantly, the high specific surface area of MGH efficiently reduces the local current density of the electrode, which favors a uniform Li nucleation and plating behavior, rendering a dendritefree deposition morphology at a low overpotential. These factors synergistically boost the Li utilization(90.1% vs. 70.1% for Cu foil) and life span(150 cycles vs. 100 cycles for Cu foil) with a low polarization of MGH electrode at an ultrahigh current of 15.0 mA/cm^2. The as-prepared MGH can provide fresh insights into the electrode design of the Li metal anode operating at high rates.
基金This study was funded by the Science and Technology Development Fund,Macao SAR(File no.0191/2017/A3,0041/2019/A1,0046/2019/AFJ,0021/2019/AIR)the University of Macao(File no.MYRG2017-00216-FST and MYRG2018-00192-IAPME)+2 种基金the UEA funding,Science and Technology Program of Guangzhou(2019050001)the National Key Research and Development Program of China(2019YFE0198000)Fuming Chen acknowledges the Pearl River Talent Program(2019QN01L951).
文摘Aluminum-metal batteries show great potential as next-generation energy storage due to their abundant resources and intrinsic safety.However,the crucial limitations of metallic Al anodes,such as dendrite and corrosion problems in conventional aluminum-metal batteries,remain challenging and elusive.Here,we report a novel electrodeposition strategy to prepare an optimized 3D Al anode on carbon cloth with an uniform deposition morphology,low local current density,and mitigatory volume change.The symmetrical cells with the 3D Al anode show superior stable cycling(>450 h)and low-voltage hysteresis(~170 mV)at 0.5 mA cm^(−2).High reversibility(~99.7%)is achieved for the Al plating/stripping.The graphite||Al‐4/CC full batteries show a long lifespan of 800 cycles with 54 mAh g^(−1) capacity at a high current density of 1000 mA g^(−1),benefiting from the high capacitive-controlled distribution.This study proposes a novel strategy to design 3D Al anodes for metallic-Al-based batteries by eliminating the problems of planar Al anodes and realizing the potential applications of aluminum-graphite batteries.
基金supported by the Beijing Municipal Natural Science Foundation (Z20J00043)the National Natural Science Foundation of China (22061132002, 21825501)+4 种基金the China Postdoctoral Science Foundation (2021M700404)the Seed Fund of Shanxi Research Institute for Clean Energy (SXKYJF015)the Beijing Municipal Natural Science Foundation (JQ20004, L182021)the Beijing Institute of Technology Research Fund Program for Young Scholarsthe Tsinghua University Initiative Scientific Research Program。
文摘The interfacial stability of lithium metal anodes dictated by solid electrolyte interphase(SEI) is essential for long-cycling high-energy-density lithium–sulfur batteries. Nevertheless, critical components of SEI for interfacial stabilization are particularly indistinct. Herein, the effect of various sulfur-containing components in SEI for stabilizing lithium metal anodes is disclosed in lithium–sulfur batteries. High-valence sulfur-containing species(Li_(2)SO_(3) and Li_(2)SO_(4)) in SEI are conducive to uniform lithium deposition and stabilizing lithium metal anodes. In contrast, low-valence sulfur-containing species(Li_(2)S_(3) and Li_(2)S_(4)) in SEI result in aggressive lithium dendrites and dead lithium. This work identifies the role of sulfurcontaining components in SEI for stabilizing lithium metal anodes and provides rational design principles of SEI for protecting lithium metal anodes in practical lithium–sulfur batteries.
基金supported by the National Natural Science Foundation of China (21825501 and U1932220)the National Key Research and Development Program (2016YFA0202500)+2 种基金the Seed Fund of Shanxi Research Institute for Clean Energy (SXKYJF015)the Scientific and technological Key Project of Shanxi Province (20191102003)the Tsinghua University Initiative Scientific Research Program.
文摘The lithium(Li) metal anode is an integral component in an emerging high-energy-density rechargeable battery.A composite Li anode with a three-dimensional(3 D) host exhibits unique advantages in suppressing Li dendrites and maintaining dimensional stability.However,the fundamental understanding and regulation of solid electrolyte interphase(SEI),which directly dictates the behavior of Li plating/stripping,are rarely researched in composite Li metal anodes.Herein,the interaction between a polar polymer host and solvent molecules was proposed as an emerging but effective strategy to enable a stable SEI and a uniform Li deposition in a working battery.Fluoroethylene carbonate molecules in electrolytes are enriched in the vicinity of a polar polyacrylonitrile(PAN) host due to a strong dipole-dipole interaction,resulting in a LiF-rich SEI on Li metal to improve the uniformity of Li deposition.A composite Li anode with a PAN host delivers 145 cycles compared with 90 cycles when a non-polar host is employed.Moreover,60 cycles are demonstrated in a 1:0 Ah pouch cell without external pressure.This work provides a fresh guidance for designing practical composite Li anodes by unraveling the vital role of the synergy between a 3 D host and solvent molecules for regulating a robust SEI.
基金supported by the Fundamental Research Funds for the Central Universities(BLX201823)the National Natural Science Foundation of China(21808124)China Postdoctoral Science Foundation(2019M650515 and 2019T120098)。
文摘Lithium(Li)metal is regarded as a promising anode material to render the Li batteries with high energy density and therefore satisfy the ever-growing energy demands of high-end storage devices[1].Unfortunately,the dendrite growth accompanied with accumulation of"dead Li"leads to low Coulombic efficiency,poor cycling lifespan,and even severe safety hazards,critically hindering the practical implementation of Li metal batteries[2,3].
基金Project(200501045) supported by Innovation Fund of Guangdong Province of China
文摘The electrochemical mechanism of anode oxidation of HCHO in electroless copper plating solution with N, N, N′, N′-tetrakis(2-hydroxypropyl)ethylenediamine (THPED) was investigated by measuring cyclic voltammetry curves and anodic polarization curves. Three different oxidation peaks occur at the potentials of -0.62 V (Peak 1), -0.40 V (Peak 2) and -0.17 V (Peak 3) in the anode oxidation process of THPED-containing solution. The reaction at Peak 1, a main oxidation reaction, is the irreversible reaction of adsorbed HCHO with hydrogen evolution. The reaction at Peak 2, a secondary oxidation reaction, is the quasi-reversible reaction of adsorbed HCHO without hydrogen evolution. The reaction at Peak 3 is the irreversible oxidation of anode copper. The current density of Peak 1 increases gradually, that of Peak 2 remains constant and that of Peak 3 decreases with the increase of HCHO concentration. The current density of Peak 3 increases with the increase of THPED concentration and the complexation of THPED promotes the dissolution of anode copper.
基金Funded by the Specialized Research Fund for the Doctoral Program of the Ministry of Education of China(No.20125314110011)the Key Project of Yunnan Province Applied Basic Research Plan of China(No.2014FA024)the National Natural Science Foundation of China(No.51564029)
文摘We prepared Pb-0.3wt%Ag/Pb-WC(WC stands for tungsten carbide,the same below) composite inert anodes by double-pulse electrodeposition on the surface of Pb-0.3wt%Ag substrates,and investigated the electrochemical properties of the composite inert anodes,which were obtained under different forward pulse average current densities from 2 A/dm2 to 5 A/dm2 and WC concentrations from 0 g/L to 40 g/L in bath.The kinetic parameters of oxygen evolution,corrosion potential and corrosion current of the composite inert anodes were obtained in a synthetic zinc electrowinning electrolyte of 50 g/L Zn2+ and 150 g/L H2SO4 at 35 ℃,by measuring the anodic polarization curves,Tafel polarization curves and cyclic voltammetry curves.The results show that Pb-0.3wt% Ag/Pb-WC composite inert anodes obtained under forward pulse average current density of 3 A/dm2 and WC concentration of 30 g/L in an original acid plating bath,possess higher electrocatalytic activity of oxygen evolution,lower overpotential of oxygen evolution,better reversibility of electrode reaction and corrosion resistance in [ZnSO4+H2SO4] solution.The overpotential of oxygen evolution of the composite inert anode is 0.926 V under 500 A/m2 in [ZnSO4+H2SO4] solution,and 245 mV lower than that of Pb-1% Ag alloy;the corrosion current of the composite inert anode is 0.95×10-4A which is distinctly lower than that of Pb-1%Ag alloy,showing the excellent corrosion resistance.
基金supported by the Australian Research Council Discovery Projects(grant nos.DP200103315,DP200103332,DP220103669,and DP230100685)Linkage Projects(grant no.LP220200920).
文摘Solid-state electrolytes(SSEs)are a solution to safety issues related to flammable organic electrolytes for Li batteries.Insufficient contact between the anode and SSE results in high interface resistance,thus causing the batteries to exhibit high charging and discharging overpotentials.Recently,we reduced the overpotential of Li stripping and plating by introducing a high proportion of dual-conductive phases into a composite anode.The current study investigates the interface resistance and stability of a composite electrode modified with Zn and a lower proportion of dual-conductive phases.Zn-cation-adsorbed Prussian blue is synthesized as an intermediate component for a Zn-modified composite electrode(Li-FeZnNC).The Li-FeZnNC symmetric cell presents a lower interface resistance and overpotential compared with Li-FeNC(without Zn modification)and Li-symmetric cells.The Li-FeZnNC symmetric cell shows high electrochemical stability during Li stripping and plating at different current densities and high stability for 200 h.Full batteries with a Li-FeZnNC composite anode,garnet-type SSE,and LiFePO4 cathode show low charging and discharging overpotentials,a capacity of 152 mAh g^(−1),and high stability for 200 cycles.