期刊文献+
共找到148,800篇文章
< 1 2 250 >
每页显示 20 50 100
Wave-Induced Loads on Very Large FPSOs at Restricted Water Depth 被引量:12
1
作者 谢永和 许劲松 李润培 《China Ocean Engineering》 SCIE EI 2005年第2期215-224,共10页
The effects of water depth on the wave-induced vertical bending moment and shearing force on a very large FPSO are studied by experiments and computations for regular and irregular waves. The restricted water depth co... The effects of water depth on the wave-induced vertical bending moment and shearing force on a very large FPSO are studied by experiments and computations for regular and irregular waves. The restricted water depth composite Green function is employed to develop a program for the computation of the hydrodynamic coefficients of the very large FPSO at shallow water. A three-segment model with 1∶100 scale is tested in the State Key Laboratory of Ocean Engineering at Shanghai Jiao Tong University for the verification of the numerical method. The experimental and computational results show that the water depth has a substantial effect on wave-induced loads. The wave-induced vertical loads increase with the decrease of water depth for shallow water. Especially, for ultra-shallow water these loads increase very evidently with the decrease of water depth. The long-term prediction values of wave-induced vertical loads increase with the decrease of the ratio of water depth to draught. The long-term prediction values of wave-induced vertical loads are about 8% larger than those for deep water when the ratio of water depth to draught is 3.0. However, water depth hardly affects the long-term prediction values of wave-induced loads when the ratio of water depth to draught is larger than 5.0. 展开更多
关键词 very large FPSO restricted water depth wave-induced loads
下载PDF
Evaluation of Nonbreaking Wave-Induced Mixing Parameterization Schemes Based on a One-Dimensional Ocean Model
2
作者 TANG Ran HUANG Chuanjiang +1 位作者 DAI Dejun WANG Gang 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第3期567-576,共10页
Surface waves have a considerable effect on vertical mixing in the upper ocean.In the past two decades,the vertical mixing induced through nonbreaking surface waves has been used in ocean and climate models to improve... Surface waves have a considerable effect on vertical mixing in the upper ocean.In the past two decades,the vertical mixing induced through nonbreaking surface waves has been used in ocean and climate models to improve the simulation of the upper ocean.Thus far,several nonbreaking wave-induced mixing parameterization schemes have been proposed;however,no quantitative comparison has been performed among them.In this paper,a one-dimensional ocean model was used to compare the performances of five schemes,including those of Qiao et al.(Q),Hu and Wang(HW),Huang and Qiao(HQ),Pleskachevsky et al.(P),and Ghantous and Babanin(GB).Similar to previous studies,all of these schemes can decrease the simulated sea surface temperature(SST),increase the subsurface temperature,and deepen the mixed layer,thereby alleviating the common thermal deviation problem of the ocean model for upper ocean simulation.Among these schemes,the HQ scheme exhibited the weakest wave-induced mixing effect,and the HW scheme exhibited the strongest effect;the other three schemes exhibited roughly the same effect.In particular,the Q and P schemes exhibited nearly the same effect.In the simulation based on observations from the Ocean Weather Station Papa,the HQ scheme exhibited the best performance,followed by the Q scheme.In the experiment with the HQ scheme,the root-mean-square deviation of the simulated SST from the observations was 0.43℃,and the mixed layer depth(MLD)was 2.0 m.As a contrast,the deviations of the SST and MLD reached 1.25℃ and 8.4 m,respectively,in the experiment without wave-induced mixing. 展开更多
关键词 wave-induced mixing surface waves sea surface temperature mixed layer depth General Ocean Turbulence Model
下载PDF
A novel approach to the dynamic response analysis of Euler-Bernoulli beams resting on a Winkler soil model and subjected to impact loads
3
作者 Adolfo Foriero Filippo Santucci de Magistris Giovanni Fabbrocino 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第2期389-401,共13页
This work presents a novel approach to the dynamic response analysis of a Euler-Bernoulli beam resting on a Winkler soil model and subjected to an impact loading.The approach considers that damping has much less impor... This work presents a novel approach to the dynamic response analysis of a Euler-Bernoulli beam resting on a Winkler soil model and subjected to an impact loading.The approach considers that damping has much less importance in controlling the maximum response to impulsive loadings because the maximum response is reached in a very short time,before the damping forces can dissipate a significant portion of the energy input into the system.The development of two sine series solutions,relating to different types of impulsive loadings,one involving a single concentrated force and the other a distributed line load,are presented.This study revealed that when a simply supported Euler-Bernoulli beam,resting on a Winkler soil model,is subject to an impact load,the resulting vertical displacements,bending moments and shear forces produced along the span of the beam are considerably affected.In particular,the quantification of this effect is best observed,relative to the corresponding static solution,via an amplification factor.The computed impact amplification factors,for the sub-grade moduli used in this study,were in magnitude greater than 2,thus confirming the multiple-degree-of-freedom nature of the problem. 展开更多
关键词 beam-Winkler-soil model sub-grade moduli impact load impact distributed line load dynamic solution impact amplification factor
下载PDF
Mechanical behavior and failure mechanisms of rock bolts subjected to static-dynamic loads
4
作者 Hongpu Kang Guiyang Yuan +4 位作者 Linpo Si Fuqiang Gao Jinfu Lou Jinghe Yang Shuangyong Dong 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期281-288,共8页
This study explores the effects of dynamic and static loading on rock bolt performance a key factor in maintaining the structural safety of coal mine roadways susceptible to coal bursts.Employing a housemade load fram... This study explores the effects of dynamic and static loading on rock bolt performance a key factor in maintaining the structural safety of coal mine roadways susceptible to coal bursts.Employing a housemade load frame to simulate various failure scenarios,pretension-impact-pull tests on rock bolts were conducted to scrutinize their dynamic responses under varied static load conditions and their failure traits under combined loads.The experimental results denote that with increased impact energy,maximum and average impact loads on rock bolts escalate significantly under pretension,initiating plastic deformation beyond a certain threshold.Despite minor reductions in the yield load due to impactinduced damage,pretension aids in constraining post-impact deformation rate and fluctuation degree of rock bolts.Moreover,impact-induced plastic deformation causes internal microstructure dislocation,fortifying the stiffness of the rock bolt support system.The magnitude of this fortification is directly related to the plastic deformation induced by the impact.These findings provide crucial guidance for designing rock bolt support in coal mine roadway excavation,emphasizing the necessity to consider both static and dynamic loads for improved safety and efficiency. 展开更多
关键词 Rock bolt PRETENSION Static and dynamic load IMPACT
下载PDF
Numerical analysis of geosynthetic-reinforced embankment performance under moving loads
5
作者 Xuanming Ding Jinqiao Zhao +1 位作者 Qiang Ou Jianfei Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期682-696,共15页
The performance of geosynthetic-reinforced embankments under traffic moving loads is always a hotspot in the geotechnical engineering field.A three-dimensional(3D)model of a geosynthetic-reinforced embankment without ... The performance of geosynthetic-reinforced embankments under traffic moving loads is always a hotspot in the geotechnical engineering field.A three-dimensional(3D)model of a geosynthetic-reinforced embankment without drainage consolidation was established using the finite element software ABAQUS.In this model,the traffic loads were simulated by two moving loads of rectangular pattern,and their amplitude,range,and moving speed were realized by a Fortran subroutine.The embankment fill was simulated by an equivalent linear viscoelastic model,which can reflect its viscoelasticity.The geogrid was simulated by the truss element,and the geocell was simulated by the membrane element.Infinite elements were utilized to weaken the boundary effect caused by the model geometry at the boundaries.Validation of the established numerical model was conducted by comparing the predicted deformations in the cross-section of the geosynthetic-reinforced embankment with those from the existing literature.On this basis,the dynamic stress and strain distribution in the pavement structure layer of the geosynthetic-reinforced embankment under a moving load was also analyzed.Finally,a parametric study was conducted to examine the influences of the different types of reinforcement,overload,and the moving load velocity on the geosynthetic-reinforced embankment. 展开更多
关键词 Geosynthetic-reinforced layer Numerical model Moving load EMBANKMENT DEFORMATION Stress
下载PDF
Energy mechanism of bolt supporting effect to fissured rock under static and dynamic loads in deep coal mines
6
作者 Deyuan Fan Xuesheng Liu +2 位作者 Yunliang Tan Xuebin Li Shenglong Yang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期371-384,共14页
The stability control of fissured rock is difficult,especially under static and dynamic loads in deep coal mines.In this paper,the dynamic mechanical properties,strain rate evolution and energy dissipation of fissured... The stability control of fissured rock is difficult,especially under static and dynamic loads in deep coal mines.In this paper,the dynamic mechanical properties,strain rate evolution and energy dissipation of fissured and anchored rocks were respectively obtained by SHPB tests.It was found that bolt can provide supporting efficiency-improving effect for fissured rock against dynamic disturbance,and this effect increased quadratically with decrease in anchoring angles.Then,the energy dissipation mechanism of anchored rock was obtained by slipping model.Furthermore,bolt energy-absorbing mechanism by instantaneous tensile-shear deformation was expressed based on material mechanics,which was the larger the anchoring angle,the smaller the energy absorption,and the less the contribution to supporting efficiency improvement.On this basis,the functional relationship between energy dissipation of anchored rock and energy absorption of bolt was established.Taking the coal-gangue separation system of Longgu coal mine as an example,the optimal anchoring angle can be determined as 57.5°–67.5°.Field monitoring showed fissured rock with the optimal anchoring angle,can not only effectively control the deformation,but also fully exert the energy-absorbing and efficiency-improving effect of bolt itself.This study provides guidance to the stability control and supporting design for deep engineering under the same or similar conditions. 展开更多
关键词 Static and dynamic loads Anchored rock Energy absorption Anchoring angle Engineering verification
下载PDF
Evaluation of the dynamic sealing performance of cap rocks of underground gas storage under multi-cycle alternating loads
7
作者 Lidong Mi Yandong Guo +3 位作者 Yanfeng Li Daqian Zeng Chunhua Lu Guangquan Zhang 《Energy Geoscience》 EI 2024年第4期125-132,共8页
The static sealing of underground gas storage(UGS),including the integrity of cap rocks and the stability of faults,is analyzed from a macro perspective using a comprehensive geological evaluation method.Changes in po... The static sealing of underground gas storage(UGS),including the integrity of cap rocks and the stability of faults,is analyzed from a macro perspective using a comprehensive geological evaluation method.Changes in pore structure,permeability,and mechanical strength of cap rocks under cyclic loads may impact the rock sealing integrity during the injection and recovery phases of UGS.In this work,the mechanical deformation and failure tests of rocks,as well as rock damage tests under alternating loads,are conducted to analyze the changes in the strength and permeability of rocks under multiple-cycle intense injection and recovery of UGS.Additionally,this study proposes an evaluation method for the dynamic sealing performance of UGS cap rocks under multi-cycle alternating loads.The findings suggest that the failure strength(70%)can be used as the critical value for rock failure,thus providing theoretical support for determining the upper limit of operating pressure and the number of injection-recovery cycles for the safe operation of a UGS system. 展开更多
关键词 Alternating load Cap rock Dynamic sealing performance Underground gas storage
下载PDF
Modelling dynamic pantograph loads with combined numerical analysis
8
作者 F.F.Jackson R.Mishra +6 位作者 J.M.Rebelo J.Santos P.Antunes J.Pombo H.Magalhaes L.Wills M.Askill 《Railway Engineering Science》 EI 2024年第1期81-94,共14页
Appropriate interaction between pantograph and catenary is imperative for smooth operation of electric trains.Changing heights of overhead lines to accommodate level crossings,overbridges,and tunnels pose significant ... Appropriate interaction between pantograph and catenary is imperative for smooth operation of electric trains.Changing heights of overhead lines to accommodate level crossings,overbridges,and tunnels pose significant challenges in maintaining consistent current collection performance as the pantograph aerodynamic profile,and thus aerodynamic load changes significantly with operational height.This research aims to analyse the global flow characteristics and aerodynamic forces acting on individual components of an HSX pantograph operating in different configurations and orientations,such that the results can be combined with multibody simulations to obtain accurate dynamic insight into contact forces.Specifically,computational fluid dynamics simulations are used to investigate the pantograph component loads in a representative setting,such as that of the recessed cavity on a Class 800 train.From an aerodynamic perspective,this study indicates that the total drag force acting on non-fixed components of the pantograph is larger for the knuckle-leading orientation rather than the knuckle-trailing,although the difference between the two is found to reduce with increasing pantograph extension.Combining the aerodynamic loads acting on individual components with multibody tools allows for realistic dynamic insight into the pantograph behaviour.The results obtained show how considering aerodynamic forces enhance the realism of the models,leading to behaviour of the pantograph-catenary contact forces closely matching that seen in experimental tests. 展开更多
关键词 Pantograph-catenary interaction Pantograph aerodynamics Computational fluid dynamics Pantograph loads Current collection performance
下载PDF
Influence of railway wheel tread damage on wheel-rail impact loads and the durability of wheelsets
9
作者 Michele Maglio Tore Vernersson +2 位作者 Jens C.O.Nielsen Anders Ekberg Elena Kabo 《Railway Engineering Science》 EI 2024年第1期20-35,共16页
Dynamic wheel-rail contact forces induced by a severe form of wheel tread damage have been measured by a wheel impact load detector during full-scale field tests at different vehicle speeds.Based on laser scanning,the... Dynamic wheel-rail contact forces induced by a severe form of wheel tread damage have been measured by a wheel impact load detector during full-scale field tests at different vehicle speeds.Based on laser scanning,the measured three-dimensional damage geometry is employed in simulations of dynamic vehicle-track interaction to calibrate and verify a simulation model.The relation between the magnitude of the impact load and various operational parameters,such as vehicle speed,lateral position of wheel-rail contact,track stiffness and position of impact within a sleeper bay,is investigated.The calibrated model is later employed in simulations featuring other forms of tread damage;their effects on impact load and subsequent fatigue impact on bearings,wheel webs and subsurface initiated rolling contact fatigue of the wheel tread are assessed.The results quantify the effects of wheel tread defects and are valuable in a shift towards condition-based maintenance of running gear,and for general assessment of the severity of different types of railway wheel tread damage. 展开更多
关键词 Wheel tread damage Rolling contact fatigue cluster Field measurements Dynamic vehicle-track interaction Wheel-rail impact load Wheelset durability
下载PDF
Research on Demand Response Potential of Adjustable Loads in Demand Response Scenarios
10
作者 Zhishuo Zhang Xinhui Du +3 位作者 Yaoke Shang Jingshu Zhang Wei Zhao Jia Su 《Energy Engineering》 EI 2024年第6期1577-1605,共29页
To address the issues of limited demand response data,low generalization of demand response potential evaluation,and poor demand response effect,the article proposes a demand response potential feature extraction and ... To address the issues of limited demand response data,low generalization of demand response potential evaluation,and poor demand response effect,the article proposes a demand response potential feature extraction and prediction model based on data mining and a demand response potential assessment model for adjustable loads in demand response scenarios based on subjective and objective weight analysis.Firstly,based on the demand response process and demand response behavior,obtain demand response characteristics that characterize the process and behavior.Secondly,establish a feature extraction and prediction model based on data mining,including similar day clustering,time series decomposition,redundancy processing,and data prediction.The predicted values of each demand response feature on the response day are obtained.Thirdly,the predicted data of various characteristics on the response day are used as demand response potential evaluation indicators to represent different demand response scenarios and adjustable loads,and a demand response potential evaluation model based on subjective and objective weight allocation is established to calculate the demand response potential of different adjustable loads in different demand response scenarios.Finally,the effectiveness of the method proposed in the article is verified through examples,providing a reference for load aggregators to formulate demand response schemes. 展开更多
关键词 Demand response potential demand response scenarios data mining adjustable load evaluation system subjective and objective weight allocation
下载PDF
Operational Wave Now- and Forecast in the German Bight as a Basis for the Assessment of Wave-Induced Hydrodynamic Loads on Coastal Dikes
11
作者 DREIER Norman FROHLE Peter 《Journal of Ocean University of China》 SCIE CAS CSCD 2017年第6期991-997,共7页
The knowledge of the wave-induced hydrodynamic loads on coastal dikes including their temporal and spatial resolution on the dike in combination with actual water levels is of crucial importance of any risk-based earl... The knowledge of the wave-induced hydrodynamic loads on coastal dikes including their temporal and spatial resolution on the dike in combination with actual water levels is of crucial importance of any risk-based early warning system. As a basis for the assessment of the wave-induced hydrodynamic loads, an operational wave now-and forecast system is set up that consists of i) available field measurements from the federal and local authorities and ii) data from numerical simulation of waves in the German Bight using the SWAN wave model. In this study, results of the hindcast of deep water wave conditions during the winter storm on 5–6 December, 2013(German name ‘Xaver') are shown and compared with available measurements. Moreover field measurements of wave run-up from the local authorities at a sea dike on the German North Sea Island of Pellworm are presented and compared against calculated wave run-up using the Eur Otop(2016) approach. 展开更多
关键词 German Bight North Sea WAVE FORECAST Cosmo-Model SWAN hydrodynamic loads WAVE RUN-UP EurOtop
下载PDF
Efficacy of incremental loads of cow's milk as a treatment for lactose malabsorption in Japan 被引量:2
12
作者 Matsuri Hasegawa Kazuko Okada +1 位作者 Satoru Nagata Shigetaka Sugihara 《World Journal of Clinical Cases》 SCIE 2023年第4期797-808,共12页
BACKGROUND Lactose intolerance(LI)is commonly seen in East Asian countries.Several studies showed that lactose or milk loading has been used as a treatment for lactose malabsorption(LM)in Western countries,but there h... BACKGROUND Lactose intolerance(LI)is commonly seen in East Asian countries.Several studies showed that lactose or milk loading has been used as a treatment for lactose malabsorption(LM)in Western countries,but there have been no reports regarding this type of treatment in Japan.As lactose or milk loading requires ingestion of large amounts of lactose within a short period,this is considered to be too harsh for Japanese people because of their less habitual milk consumption(175 mL per day in average)than Western people.In this study,we demonstrated lactose tolerance acquisition in a suitable way for Japanese.AIM To examine the efficacy of lactose(cow’s milk)loading treatment in patients with LM.METHODS Individuals with abdominal symptoms induced by milk or dairy products(LI symptoms)were identified with a questionnaire.A 20 g lactose hydrogen breath test(LHBT)was carried out to confirm LM diagnosis and to evaluate co-existence of small intestinal bacterial overgrowth(SIBO).Respondents diagnosed with LM were selected as study subjects and were treated with incremental loads of cow’s milk,starting from 30 mL and increasing up to 200 mL at 4-7 d intervals.After the treatment,changes in symptoms and LM diagnostic value of 20 g LHBT were investigated.Stool samples pre-and post-treatment were examined for changes in intestinal microbiota using 16S rRNA sequencing.Informed consent was obtained prior to each stage of the study.RESULTS In 46 subjects with LI symptoms(10-68 years old,mean age 34 years old)identified with the questionnaire,35(76.1%)were diagnosed with LM by 20 g LHBT,and 6 had co-existing SIBO.The treatment with incremental cow’s milk was carried out in 32 subjects diagnosed with LM(14-68 years old,median age 38.5 years old).The mean period of the treatment was 41±8.6 d.Improvement of symptoms was observed in 29(90.6%;95%confidence interval:75.0%-98.0%)subjects.Although 20 g LHBT indicated that 10(34.5%)subjects had improved diagnostic value of LM,no change was observed in 16(55.2%)subjects.Analysis of the fecal intestinal microbiota showed a significant increase in Blautia in 7 subjects who became symptom-free after the treatment(P=0.0313).CONCLUSION LM was diagnosed in approximately 75%of the subjects who had LI.Incremental loads of cow’s milk is regarded as a useful treatment for LM without affecting everyday life. 展开更多
关键词 Lactose Intolerance Lactose Malabsorption lactose loading treatment Intestinal bacterial flora Fecal microbiota
下载PDF
Numerical simulation of fatigue crack propagation in heterogeneous geomaterials under varied loads using displacement discontinuity method 被引量:1
13
作者 Rezvan Alizadeh Mohammad Fatehi Marji +1 位作者 Abolfazl Abdollahipour Mehdi Pourghasemi Sagand 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第3期702-716,共15页
Heterogeneous brittle geomaterials are highly susceptible to cyclic loads.They contain inherent flaws and cracks that grow under fatigue loads and lead to failure.This study presents a numerical model for analyzing fa... Heterogeneous brittle geomaterials are highly susceptible to cyclic loads.They contain inherent flaws and cracks that grow under fatigue loads and lead to failure.This study presents a numerical model for analyzing fatigue in these materials based on the two-dimensional(2D)boundary element method and linear elastic fracture mechanics.The process is formulated by coupling the displacement discontinuity method with the incorporation technique of dissimilar regions and the governing equations of fatigue.The heterogeneous media are assumed to consist of materials with different properties,and the interfaces are assumed to be completely bonded.In addition,the domains include multiple cracks exposed to constant and variable amplitude cyclic loads.The stress intensity factor is a crucial parameter in fatigue analysis,which is determined using the displacement field around crack tips.An incremental crack growth scheme is applied to calculating the fatigue life.The growth rate values are employed to estimate the length of crack extension when there are multiple cracks.The interaction between cracks is considered,which also includes the coalescence phenomenon.Finally,various structures under different cyclic loads are examined to evaluate the accuracy of this method.The results demonstrate the efficiency of the proposed approach in modeling fatigue crack growth and life estimation.The behavior of life curves for the heterogeneous domain was as expected.These curves illustrate the breakpoints caused by utilizing discrete incremental life equations.At these points,the trend of the curves changed with the material properties and fatigue characteristics of the new material around the crack tips. 展开更多
关键词 Fatigue life Crack coalescence INTERFACE Incorporation technique Variable amplitude loading
下载PDF
An investigation on the strain accumulation of the lightly EICP-cemented sands under cyclic traffic loads 被引量:2
14
作者 Emad Maleki Tabrizi Hamid Reza Tohidvand +2 位作者 Masoud Hajialilue-Bonab Elham Mousavi Saba Ghassemi 《Journal of Road Engineering》 2023年第2期203-217,共15页
Industrial production of chemical cement leads to extreme emissions of greenhouse gases.Biological or bioinspired sustainable materials for soil treatment projects can be employed instead of chemical cement to heal th... Industrial production of chemical cement leads to extreme emissions of greenhouse gases.Biological or bioinspired sustainable materials for soil treatment projects can be employed instead of chemical cement to heal the carbon cycle in the ecosystem.The enzyme-induced calcite precipitation(EICP)method is one of the novel bio-inspired technologies that can be employed in soil treatment projects to increase desired properties of soils.While the monotonic and cyclic behavior of the enzymatically treated sands has been investigated comprehensively,the strain accumulation pattern in these improved soils under cyclic traffic loads has not been evaluated yet.In this paper,confined and unconfined cyclic compression tests are applied to the enzymatically lightly cemented sands,and the effects of the different parameters on their strain accumulation pattern are investigated for the first time in the literature.This study uses two types of specimens with unconfined compression strengths(UCS)equal to 42 kPa and 266 kPa.It is shown that the treated specimens have a rate-dependent behavior where cyclic loads with low frequencies lead to more resilient and plastic strains in the specimens.The results show that by approaching the maximum applied stresses to the UCS of the specimens(by breaking more calcite bonds between sand particles),the rate dependency behavior of specimens will reduce.Investigation of the effects of the cementation level demonstrated that by increasing the amount of the precipitated calcite from 0.38%to 0.83%,accumulated plastic strains are reduced almost 95%under the same loading condition.Effects of the initial static loads,confining pressures,the number of cycles,and amplitudes of the cyclic loads are also evaluated. 展开更多
关键词 Traffic load EICP method Bio-inspired treatment Unconfined compression Confined compression
下载PDF
Mechanical responses of anchoring structure under triaxial cyclic loading 被引量:2
15
作者 Peng Wang Nong Zhang +5 位作者 Qun Wei Xingliang Xu Guangzhen Cui Aoran Li Sen Yang Jiaguang Kan 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期545-560,共16页
Dynamic load on anchoring structures(AS)within deep roadways can result in cumulative damage and failure.This study develops an experimental device designed to test AS under triaxial loads.The device enables the inves... Dynamic load on anchoring structures(AS)within deep roadways can result in cumulative damage and failure.This study develops an experimental device designed to test AS under triaxial loads.The device enables the investigation of the mechanical response,failure mode,instability assessment criteria,and anchorage effect of AS subjected to combined cyclic dynamic-static triaxial stress paths.The results show that the peak bearing strength is positively correlated with the anchoring matrix strength,anchorage length,and edgewise compressive strength.The bearing capacity decreases significantly when the anchorage direction is severely inclined.The free face failure modes are typically transverse cracking,concave fracturing,V-shaped slipping and detachment,and spallation detachment.Besides,when the anchoring matrix strength and the anchorage length decrease while the edgewise compressive strength,loading rate,and anchorage inclination angle increase,the failure intensity rises.Instability is determined by a negative tangent modulus of the displacement-strength curve or the continued deformation increase against the general downward trend.Under cyclic loads,the driving force that breaks the rock mass along the normal vector and the rigidity of the AS are the two factors that determine roadway stability.Finally,a control measure for surrounding rock stability is proposed to reduce the internal driving force via a pressure relief method and improve the rigidity of the AS by full-length anchorage and grouting modification. 展开更多
关键词 Triaxial stress Dynamic-static combination load Cyclic loading Anchoring structure(AS) Cumulative damage
下载PDF
A Method for Reducing Ocean Wave-Induced Magnetic Noises in Shallow-Water MT Data Using a Complex Adaptive Filter
16
作者 WU Yunju LUO Ming +2 位作者 LI Yuguo GE Jiaqi PAN Lindong 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第1期99-106,共8页
In shallow-water areas,the marine magnetotelluric(MT)method faces a challenge in the investigation of seabed conductivity structures due to electrical and magnetic noises induced by ocean waves,which seriously contami... In shallow-water areas,the marine magnetotelluric(MT)method faces a challenge in the investigation of seabed conductivity structures due to electrical and magnetic noises induced by ocean waves,which seriously contaminate MT data.Ocean waves can affect electric and magnetic fields to different extents.In general,their influence on magnetic fields is considerably greater than that on electric fields.In this paper,a complex adaptive filter is adopted to reduce wave-induced magnetic noises in the frequency domain.The processing results of synthetic and measured MT data indicate that the proposed method can effectively reduce wave-induced magnetic noises and provide reliable apparent resistivity and phase data. 展开更多
关键词 shallow-water areas wave-induced magnetic noises complex adaptive filter MT data processing
下载PDF
A drug-loaded flexible substrate improves the performance of conformal cortical electrodes 被引量:1
17
作者 Rongrong Qin Tian Li +7 位作者 Yifu Tan Fanqi Sun Yuhao Zhou Ronghao Lv Xiaoli You Bowen Ji Peng Li Wei Huang 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第4期399-412,共14页
Cortical electrodes are a powerful tool for the stimulation and/or recording of electrical activity in the nervous system.However,the inevitable wound caused by surgical implantation of electrodes presents bacterial i... Cortical electrodes are a powerful tool for the stimulation and/or recording of electrical activity in the nervous system.However,the inevitable wound caused by surgical implantation of electrodes presents bacterial infection and inflammatory reaction risks associated with foreign body exposure.Moreover,inflammation of the wound area can dramatically worsen in response to bacterial infection.These consequences can not only lead to the failure of cortical electrode implantation but also threaten the lives of patients.Herein,we prepared a hydrogel made of bacterial cellulose(BC),a flexible substrate for cortical electrodes,and further loaded antibiotic tetracycline(TC)and the anti-inflammatory drug dexamethasone(DEX)onto it.The encapsulated drugs can be released from the BC hydrogel and effectively inhibit the growth of Gram-negative and Gram-positive bacteria.Next,therapeutic cortical electrodes were developed by integrating the drug-loaded BC hydrogel and nine-channel serpentine arrays;these were used to record electrocorticography(ECoG)signals in a rat model.Due to the controlled release of TC and DEX from the BC hydrogel substrate,therapeutic cortical electrodes can alleviate or prevent symptoms associated with the bacterial infection and inflammation of brain tissue.This approach facilitates the development of drug delivery electrodes for resolving complications caused by implantable electrodes. 展开更多
关键词 ANTIBACTERIAL ANTI-INFLAMMATORY Drug loading Cortical electrodes Bacterial cellulose hydrogel
下载PDF
Reinforcing effects of polypropylene on energy absorption and fracturing of cement-based tailings backfill under impact loading 被引量:1
18
作者 Jiajian Li Shuai Cao Erol Yilmaz 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期650-664,共15页
Polypropylene(PP)fiber-reinforced cement-based tailings backfill(FRCTB)is a green compound material with superior crack resistance and has good prospects for application in underground mining.However,FRCTB exhibits su... Polypropylene(PP)fiber-reinforced cement-based tailings backfill(FRCTB)is a green compound material with superior crack resistance and has good prospects for application in underground mining.However,FRCTB exhibits susceptibility to dynamic events,such as impact ground pressure and blast vibrations.This paper investigates the energy and crack distribution behavior of FRCTB under dynamic impact,considering the height/diameter(H/D)effect.Split Hopkinson pressure bar,industrial computed tomography scan,and scanning electron microscopy(SEM)experiments were carried out on six types of FRCTB.Laboratory outcomes confirmed fiber aggregation at the bottom of specimens.When H/D was less than 0.8,the proportion of PP fibers distributed along theθangle direction of80°-90°increased.For the total energy,all samples presented similar energy absorption,reflectance,and transmittance.However,a rise in H/D may cause a rise in the energy absorption rate of FRCTB during the peak phase.A positive correlation existed between the average strain rate and absorbed energy per unit volume.The increase in H/D resulted in a decreased crack volume fraction of FRCTB.When the H/D was greater than or equal to 0.7,the maximum crack volume fraction of FRCTB was observed close to the incidence plane.Radial cracks were present only in the FRCTB with an H/D ratio of 0.5.Samples with H/D ratios of 0.5 and 0.6 showed similar distributions of weakly and heavily damaged areas.PP fibers can limit the emergence and expansion of cracks by influencing their path.SEM observations revealed considerable differences in the bonding strengths between fibers and the FRCTB.Fibers that adhered particularly well to the substrate were attracted together with the hydration products adhering to surfaces.These results show that FRCTB is promising as a sustainable and green backfill for determining the design properties of mining with backfill. 展开更多
关键词 cement-based tailings fiber-reinforced backfills FRACTURE energy absorption impact loading
下载PDF
Conservation genomic investigation of an endangered conifer,Thuja sutchuenensis,reveals low genetic diversity but also low genetic load 被引量:1
19
作者 Tongzhou Tao Richard IMilne +4 位作者 Jialiang Li Heng Yang Shiyang Wang Sihan Chen Kangshan Mao 《Plant Diversity》 SCIE CAS CSCD 2024年第1期78-90,共13页
Endangered species generally have small populations with low genetic diversity and a high genetic load.Thuja sutchuenensis is an endangered conifer endemic to southwestern China.It was once considered extinct in the w... Endangered species generally have small populations with low genetic diversity and a high genetic load.Thuja sutchuenensis is an endangered conifer endemic to southwestern China.It was once considered extinct in the wild,but in 1999 was rediscovered.However,little is known about its genetic load.We collected 67 individuals from five wild,isolated T.sutchuenensis populations,and used 636,151 SNPs to analyze the level of genetic diversity and genetic load in T.sutchuenensis to delineate the conservation units of T.sutchuenensis,based on whole transcriptome sequencing data,as well as target capture sequencing data.We found that populations of T.sutchuenensis could be divided into three groups.These groups had low levels genetic diversity and were moderately genetically differentiated.Our findings also indicate that T.sutchuenensis suffered two severe bottlenecks around the Last Glaciation Period and Last Glacial Maximum.Among Thuja species,T.sutchuenensis presented the lowest genetic load and hence might have purged deleterious mutations efficiently through purifying selection.However,distribution of fitness effects analysis indicated a high extinction risk for T.sutchuenensis.Multiple lines of evidence identified three management units for T.sutchuenensis.Although T.sutchuenensis possesses a low genetic load,low genetic diversity,suboptimal fitness,and anthropogenic pressures all present an extinction risk for this rare conifer.This might also hold true for many endangered plant species in the mountains all over the world. 展开更多
关键词 Sichuan Arborvitae Genetic load Deleterious mutations Demographic history Conservation genomics
下载PDF
Transient response of doubly-curved bio-inspired composite shells resting on viscoelastic foundation subject to blast load using improved first-order shear theory and isogeometric approach 被引量:1
20
作者 Thuy Tran Thi Thu Tu Nguyen Anh +1 位作者 Hue Nguyen Thi Hong Nguyen Thi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第8期171-193,共23页
Investigating natural-inspired applications is a perennially appealing subject for scientists. The current increase in the speed of natural-origin structure growth may be linked to their superior mechanical properties... Investigating natural-inspired applications is a perennially appealing subject for scientists. The current increase in the speed of natural-origin structure growth may be linked to their superior mechanical properties and environmental resilience. Biological composite structures with helicoidal schemes and designs have remarkable capacities to absorb impact energy and withstand damage. However, there is a dearth of extensive study on the influence of fiber redirection and reorientation inside the matrix of a helicoid structure on its mechanical performance and reactivity. The present study aimed to explore the static and transient responses of a bio-inspired helicoid laminated composite(B-iHLC) shell under the influence of an explosive load using an isomorphic method. The structural integrity of the shell is maintained by a viscoelastic basis known as the Pasternak foundation, which encompasses two coefficients of stiffness and one coefficient of damping. The equilibrium equations governing shell dynamics are obtained by using Hamilton's principle and including the modified first-order shear theory,therefore obviating the need to employ a shear correction factor. The paper's model and approach are validated by doing numerical comparisons with respected publications. The findings of this study may be used in the construction of military and civilian infrastructure in situations when the structure is subjected to severe stresses that might potentially result in catastrophic collapse. The findings of this paper serve as the foundation for several other issues, including geometric optimization and the dynamic response of similar mechanical structures. 展开更多
关键词 Blast load Modified first-order shear theory Biological composite structures
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部