The effects of water depth on the wave-induced vertical bending moment and shearing force on a very large FPSO are studied by experiments and computations for regular and irregular waves. The restricted water depth co...The effects of water depth on the wave-induced vertical bending moment and shearing force on a very large FPSO are studied by experiments and computations for regular and irregular waves. The restricted water depth composite Green function is employed to develop a program for the computation of the hydrodynamic coefficients of the very large FPSO at shallow water. A three-segment model with 1∶100 scale is tested in the State Key Laboratory of Ocean Engineering at Shanghai Jiao Tong University for the verification of the numerical method. The experimental and computational results show that the water depth has a substantial effect on wave-induced loads. The wave-induced vertical loads increase with the decrease of water depth for shallow water. Especially, for ultra-shallow water these loads increase very evidently with the decrease of water depth. The long-term prediction values of wave-induced vertical loads increase with the decrease of the ratio of water depth to draught. The long-term prediction values of wave-induced vertical loads are about 8% larger than those for deep water when the ratio of water depth to draught is 3.0. However, water depth hardly affects the long-term prediction values of wave-induced loads when the ratio of water depth to draught is larger than 5.0.展开更多
Wave-induced seepage and its possible contribution to the formation of pockmarks in the Huanghe(Yellow) River delta were investigated experimentally and numerically. Laboratory experiments were carried out to explore ...Wave-induced seepage and its possible contribution to the formation of pockmarks in the Huanghe(Yellow) River delta were investigated experimentally and numerically. Laboratory experiments were carried out to explore the response of a layered silty seabed with various saturation conditions under cyclic wave loads,in which the pore pressure and seepage-related phenomena were particularly monitored. Numerical models to simulate wave-induced seepage in the seabed were presented and evaluated,then applied to the Huanghe River delta. The experimental results show that the excess pore pressure decreases more rapidly at the surface layer,while the seepage-related phenomena are more pronounced when large cyclic loads are applied and the underlying layer is less saturated. The proposed numerical models were verified by comparing with the experiments. The calculated seepage depth agreed well with the depth of the pockmarks in the Huanghe River delta. The experimental and numerical results and the existing insitu investigations indicate that the wave-induced seepage may be a direct cause of the pockmarks in the Huanghe River delta. Extreme storm waves and the dual-layered structure of hard surface layer and weak underlying layer are essential external and internal factors,respectively. Wave- or current-induced scour and transport are possible contributors to the reformation of pockmarks at a later stage.展开更多
Under the effect of eccentric loads,when the suction pressure of the composite bucket foundation is leveled,the seepage failure is very easy to occur.The seepage failure occurrence causes the foundation to settle unev...Under the effect of eccentric loads,when the suction pressure of the composite bucket foundation is leveled,the seepage failure is very easy to occur.The seepage failure occurrence causes the foundation to settle unevenly and impairs the bearing performance.This study uses ABAQUS finite element software to establish a composite bucket foundation model for finite element analysis.The model simulates the seepage of the foundation penetrating process under eccentric load to reveal the induced seepage characteristics of the bucket foundation.The most vulnerable position of seepage failure under the eccentric loading is elucidated.Critical suction formulas for different offset eccentric moment strategies are derived and compared with existing literature formulas.Then the derived formula is supplemented and corrected according to the pressure difference between adjacent cabins.Conclusions can be drawn:(1)Under eccentric loads,the critical suction decreases about 7%−10%.(2)The pressure difference between adjacent cabins impacts significantly on the seepage field,and the critical suction,at most,can be reduced by 17.56%.(3)the offset strategies have little effect on the seepage field.Efficient and appropriate strategies can be selected to meet the requirement of leveling in engineering project.展开更多
To reveal the water inrush mechanics of underground deep rock mass subjected to dynamic disturbance such as blasting, compression-shear rock crack initiation rule and the evolution of crack tip stress intensity factor...To reveal the water inrush mechanics of underground deep rock mass subjected to dynamic disturbance such as blasting, compression-shear rock crack initiation rule and the evolution of crack tip stress intensity factor are analyzed under static-dynamic loading and seepage water pressure on the basis of theoretical deduction and experimental research. It is shown that the major influence factors of the crack tip stress intensity factor are seepage pressure, dynamic load, static stress and crack angle. The existence of seepage water pressure aggravates propagation of branch cracks. With the seepage pressure increasing, the branch crack experiences unstable extension from stable propagation. The dynamic load in the direction of maximum main stress increases type I crack tip stress intensity factor and its influence on type II crack intensity factor is related with crack angle and material property. Crack initiation angle changes with the dynamic load. The initial crack initiation angle of type I dynamic crack fracture is 70.5°. The compression-shear crack initial strength is related to seepage pressure, confining pressure, and dynamic load. Experimental results verify that the initial crack strength increases with the confining pressure increasing, and decreases with the seepage pressure increasing.展开更多
Cyclic triaxial tests and numerical analyses were undertaken, in order to evaluate the wave-induced pore water pressure in seabed sediments in the Hangzhou Bay. The cyclic triaxial tests indicate that the rate of pore...Cyclic triaxial tests and numerical analyses were undertaken, in order to evaluate the wave-induced pore water pressure in seabed sediments in the Hangzhou Bay. The cyclic triaxial tests indicate that the rate of pore water pressure generation in cohesive soils decreases with time, and the development of the pore water pressure can be represented by a hyperbolic curve. Numerical analyses, taking into account the generation and dissipation of pore water pressure simultaneously, suggest that the pore water pressure buildup in cohesive soils may increase with time continuously until the pore water pressure ratio approaches to 1, or it may decrease after a certain time, which is controlled by drain conditions. These phenomena are different from those in sands. For waves with a retum period of 100 a in the Hangzhou Bay, if the wave duration is more than 60 h, then the pore water pressure ratio will be close to 1 and soil fabric failure will take place.展开更多
In underground engineering,such as geological CO2 sequestration,unconventional oil and gas exploration,and radioactive waste storage,permeability of rock is important to evaluate the potential CO2 storage capacity,imp...In underground engineering,such as geological CO2 sequestration,unconventional oil and gas exploration,and radioactive waste storage,permeability of rock is important to evaluate the potential CO2 storage capacity,improve oil and gas production,and prevent leakage of radioactive waste.In this study,hydrostatic stress tests and triaxial compression tests with gas permeability measurements were carried out on intact and damaged sandstone specimens.Three series of experiment were designed to evaluate the permeability evolution laws of sandstone under different testing conditions.They included triaxial seepage tests on intact specimens under different confining pressures,triaxial seepage tests on damaged specimens with different extents of damage,and hydrostatic seepage tests on damaged specimens under increasing and decreasing gas pressures.Based on the experimental results,the effects of effective confining pressure,extent of damage and increasing and decreasing gas pressure on permeability of sandstone were investigated.It shows that the permeability of the intact sandstone specimens first decreased and then increased,followed by a constant value with increase in axial strain.The permeability of the sandstone specimens was observed to decrease with increase in effective confining pressure.The extent of damage affects the permeability evolution,but does not influence the failure patterns of damaged sandstone.As the gas pressure increased,the permeability of the damaged sandstone specimen increased.Under the same gas pressure condition,the permeability during the decreasing process is generally higher than that during the increasing process.These experiments are expected to enhance our understanding of seepage behavior in underground rock masses.展开更多
A mixture of fault gouge and rubble taken out from a fault zone is used to prepare a S-RM(Soil-Rock Mixture)sample with rock block proportions of 20%,30%,40%,50%,60%and 70%,respectively.A GDS triaxial test system is u...A mixture of fault gouge and rubble taken out from a fault zone is used to prepare a S-RM(Soil-Rock Mixture)sample with rock block proportions of 20%,30%,40%,50%,60%and 70%,respectively.A GDS triaxial test system is used accordingly to measure the seepage characteristics of such samples under different loading and unloading confining pressures in order to determine the variation law of the permeability coefficient.The test results show that:(1)The permeability coefficient of the S-RM samples decreases as the pressure increases,and the decrease rate of this coefficient in the initial stage of confining pressure loading is obviously higher than in the semi-late period;(2)The permeability coefficient at different confining pressure levels presents a common trend as the rock block proportion is increased,i.e.,it decreases first then it increases(the permeability coefficient of the sample with rock block proportion 40%being the smallest,70%the largest);(3)In the stage of confining pressure unloading,the recovery degree of the permeability coefficient grows with the increase of rock block proportion(the recovery rate of S-RM sample with rock block proportion 70%reaches 50.2%);(4)In the stage of confining pressure loading and unloading,the sensitivity of the permeability coefficient to the rock block proportion displays the inverse“Z”variation rule(when rock block proportion reaches 60%,the sensitivity is highest);(5)In the stage of confining pressure loading,the relationship between the permeability coefficient and confining pressure can be described by an exponential relationship.展开更多
In this paper, the irregular wave-induced seepage action on cylinders resting on rubble mound foundatoin (RMF) is studied by means of finite element method (FEM). The hydraulic resistance inside RMF is assumed to sati...In this paper, the irregular wave-induced seepage action on cylinders resting on rubble mound foundatoin (RMF) is studied by means of finite element method (FEM). The hydraulic resistance inside RMF is assumed to satisfy the nonlinear Forchheimer's equation and the seepage in the scabed is also considered. Model tests show good agreementwith the numerical results. The influence of several main parameters is discussed on the basis of vast calculations. In addition, the ratio of seepage forces, induced by regular and irregular waves respectively, is analyzed and thus a computaional method is put forward for practical engineering application to simplify the calculation of irregular wave-induced seepage forces.展开更多
The penetration of the composite bucket foundation(CBF)is crucial in its construction process.In actual projects,the foundation is inevitably subjected to eccentric load caused by towers and turbines,as well as wind,w...The penetration of the composite bucket foundation(CBF)is crucial in its construction process.In actual projects,the foundation is inevitably subjected to eccentric load caused by towers and turbines,as well as wind,wave,and flow,during the one-step installation.Moreover,the eccentric load is bound to affect the penetration method and penetration resistance of the foundation.To examine the above-mentioned issues,the penetration resistance of CBF with eccentric load was calculated and analyzed based on model tests,and the seepage field of the CBF under eccentric load was analyzed using ABAQUS.The influence of different magnitudes of eccentric load and various offset strategies on penetration resistance was analyzed,and the theoretical and measured values were compared.The result indicated that the negative pressure of the offset room was found to be smaller than that of other rooms when the CBF penetrated the soil under eccentric load.The penetration resistance of CBF under eccentric load was larger than that without eccentricity,and the larger the eccentric load is,the greater the penetration resistance.The influence of different eccentric load offset strategies on penetration resistance was found to be negligible.The calculated penetration resistance under eccentric load was in good agreement with the measured value.展开更多
文摘The effects of water depth on the wave-induced vertical bending moment and shearing force on a very large FPSO are studied by experiments and computations for regular and irregular waves. The restricted water depth composite Green function is employed to develop a program for the computation of the hydrodynamic coefficients of the very large FPSO at shallow water. A three-segment model with 1∶100 scale is tested in the State Key Laboratory of Ocean Engineering at Shanghai Jiao Tong University for the verification of the numerical method. The experimental and computational results show that the water depth has a substantial effect on wave-induced loads. The wave-induced vertical loads increase with the decrease of water depth for shallow water. Especially, for ultra-shallow water these loads increase very evidently with the decrease of water depth. The long-term prediction values of wave-induced vertical loads increase with the decrease of the ratio of water depth to draught. The long-term prediction values of wave-induced vertical loads are about 8% larger than those for deep water when the ratio of water depth to draught is 3.0. However, water depth hardly affects the long-term prediction values of wave-induced loads when the ratio of water depth to draught is larger than 5.0.
基金Supported by the National Natural Science Foundation of China(No.41072216)the Science and Technology Development Program of Shandong Province(No.2014GGX104007)
文摘Wave-induced seepage and its possible contribution to the formation of pockmarks in the Huanghe(Yellow) River delta were investigated experimentally and numerically. Laboratory experiments were carried out to explore the response of a layered silty seabed with various saturation conditions under cyclic wave loads,in which the pore pressure and seepage-related phenomena were particularly monitored. Numerical models to simulate wave-induced seepage in the seabed were presented and evaluated,then applied to the Huanghe River delta. The experimental results show that the excess pore pressure decreases more rapidly at the surface layer,while the seepage-related phenomena are more pronounced when large cyclic loads are applied and the underlying layer is less saturated. The proposed numerical models were verified by comparing with the experiments. The calculated seepage depth agreed well with the depth of the pockmarks in the Huanghe River delta. The experimental and numerical results and the existing insitu investigations indicate that the wave-induced seepage may be a direct cause of the pockmarks in the Huanghe River delta. Extreme storm waves and the dual-layered structure of hard surface layer and weak underlying layer are essential external and internal factors,respectively. Wave- or current-induced scour and transport are possible contributors to the reformation of pockmarks at a later stage.
基金supported by the National Natural Science Foundation of China(Grant No.51779171)the Tianjin Municipal Natural Science Foundation(Grant No.18JCYBJC22800).
文摘Under the effect of eccentric loads,when the suction pressure of the composite bucket foundation is leveled,the seepage failure is very easy to occur.The seepage failure occurrence causes the foundation to settle unevenly and impairs the bearing performance.This study uses ABAQUS finite element software to establish a composite bucket foundation model for finite element analysis.The model simulates the seepage of the foundation penetrating process under eccentric load to reveal the induced seepage characteristics of the bucket foundation.The most vulnerable position of seepage failure under the eccentric loading is elucidated.Critical suction formulas for different offset eccentric moment strategies are derived and compared with existing literature formulas.Then the derived formula is supplemented and corrected according to the pressure difference between adjacent cabins.Conclusions can be drawn:(1)Under eccentric loads,the critical suction decreases about 7%−10%.(2)The pressure difference between adjacent cabins impacts significantly on the seepage field,and the critical suction,at most,can be reduced by 17.56%.(3)the offset strategies have little effect on the seepage field.Efficient and appropriate strategies can be selected to meet the requirement of leveling in engineering project.
基金Projects(51174228,51174088,51204068,51274097)supported by the National Natural Science Foundation of China
文摘To reveal the water inrush mechanics of underground deep rock mass subjected to dynamic disturbance such as blasting, compression-shear rock crack initiation rule and the evolution of crack tip stress intensity factor are analyzed under static-dynamic loading and seepage water pressure on the basis of theoretical deduction and experimental research. It is shown that the major influence factors of the crack tip stress intensity factor are seepage pressure, dynamic load, static stress and crack angle. The existence of seepage water pressure aggravates propagation of branch cracks. With the seepage pressure increasing, the branch crack experiences unstable extension from stable propagation. The dynamic load in the direction of maximum main stress increases type I crack tip stress intensity factor and its influence on type II crack intensity factor is related with crack angle and material property. Crack initiation angle changes with the dynamic load. The initial crack initiation angle of type I dynamic crack fracture is 70.5°. The compression-shear crack initial strength is related to seepage pressure, confining pressure, and dynamic load. Experimental results verify that the initial crack strength increases with the confining pressure increasing, and decreases with the seepage pressure increasing.
基金This work was supported by the National Natural Science Foundation of China under the contract Nos 10372089 and 40476032.
文摘Cyclic triaxial tests and numerical analyses were undertaken, in order to evaluate the wave-induced pore water pressure in seabed sediments in the Hangzhou Bay. The cyclic triaxial tests indicate that the rate of pore water pressure generation in cohesive soils decreases with time, and the development of the pore water pressure can be represented by a hyperbolic curve. Numerical analyses, taking into account the generation and dissipation of pore water pressure simultaneously, suggest that the pore water pressure buildup in cohesive soils may increase with time continuously until the pore water pressure ratio approaches to 1, or it may decrease after a certain time, which is controlled by drain conditions. These phenomena are different from those in sands. For waves with a retum period of 100 a in the Hangzhou Bay, if the wave duration is more than 60 h, then the pore water pressure ratio will be close to 1 and soil fabric failure will take place.
基金supported by the National Natural Science Foundation of China(Grant Nos.41272344 and 51909260)the Fundamental Research Funds for the Central Universities(Grant No.2020ZDPYMS34)。
文摘In underground engineering,such as geological CO2 sequestration,unconventional oil and gas exploration,and radioactive waste storage,permeability of rock is important to evaluate the potential CO2 storage capacity,improve oil and gas production,and prevent leakage of radioactive waste.In this study,hydrostatic stress tests and triaxial compression tests with gas permeability measurements were carried out on intact and damaged sandstone specimens.Three series of experiment were designed to evaluate the permeability evolution laws of sandstone under different testing conditions.They included triaxial seepage tests on intact specimens under different confining pressures,triaxial seepage tests on damaged specimens with different extents of damage,and hydrostatic seepage tests on damaged specimens under increasing and decreasing gas pressures.Based on the experimental results,the effects of effective confining pressure,extent of damage and increasing and decreasing gas pressure on permeability of sandstone were investigated.It shows that the permeability of the intact sandstone specimens first decreased and then increased,followed by a constant value with increase in axial strain.The permeability of the sandstone specimens was observed to decrease with increase in effective confining pressure.The extent of damage affects the permeability evolution,but does not influence the failure patterns of damaged sandstone.As the gas pressure increased,the permeability of the damaged sandstone specimen increased.Under the same gas pressure condition,the permeability during the decreasing process is generally higher than that during the increasing process.These experiments are expected to enhance our understanding of seepage behavior in underground rock masses.
基金This work was supported by the Key Laboratory of Safety and High-Efficiency Coal Mining,Ministry of Education,Anhui University of Science and Technology(JYBSYS2020209)the Natural Science Research Project of Anhui Provincial Department of Education(KJHS2020B13)the Huangshan University School Level Talent Launch Project(No.2020XKJQ001).
文摘A mixture of fault gouge and rubble taken out from a fault zone is used to prepare a S-RM(Soil-Rock Mixture)sample with rock block proportions of 20%,30%,40%,50%,60%and 70%,respectively.A GDS triaxial test system is used accordingly to measure the seepage characteristics of such samples under different loading and unloading confining pressures in order to determine the variation law of the permeability coefficient.The test results show that:(1)The permeability coefficient of the S-RM samples decreases as the pressure increases,and the decrease rate of this coefficient in the initial stage of confining pressure loading is obviously higher than in the semi-late period;(2)The permeability coefficient at different confining pressure levels presents a common trend as the rock block proportion is increased,i.e.,it decreases first then it increases(the permeability coefficient of the sample with rock block proportion 40%being the smallest,70%the largest);(3)In the stage of confining pressure unloading,the recovery degree of the permeability coefficient grows with the increase of rock block proportion(the recovery rate of S-RM sample with rock block proportion 70%reaches 50.2%);(4)In the stage of confining pressure loading and unloading,the sensitivity of the permeability coefficient to the rock block proportion displays the inverse“Z”variation rule(when rock block proportion reaches 60%,the sensitivity is highest);(5)In the stage of confining pressure loading,the relationship between the permeability coefficient and confining pressure can be described by an exponential relationship.
文摘In this paper, the irregular wave-induced seepage action on cylinders resting on rubble mound foundatoin (RMF) is studied by means of finite element method (FEM). The hydraulic resistance inside RMF is assumed to satisfy the nonlinear Forchheimer's equation and the seepage in the scabed is also considered. Model tests show good agreementwith the numerical results. The influence of several main parameters is discussed on the basis of vast calculations. In addition, the ratio of seepage forces, induced by regular and irregular waves respectively, is analyzed and thus a computaional method is put forward for practical engineering application to simplify the calculation of irregular wave-induced seepage forces.
基金support from the National Natural Science Foundation of China(No.52171274).
文摘The penetration of the composite bucket foundation(CBF)is crucial in its construction process.In actual projects,the foundation is inevitably subjected to eccentric load caused by towers and turbines,as well as wind,wave,and flow,during the one-step installation.Moreover,the eccentric load is bound to affect the penetration method and penetration resistance of the foundation.To examine the above-mentioned issues,the penetration resistance of CBF with eccentric load was calculated and analyzed based on model tests,and the seepage field of the CBF under eccentric load was analyzed using ABAQUS.The influence of different magnitudes of eccentric load and various offset strategies on penetration resistance was analyzed,and the theoretical and measured values were compared.The result indicated that the negative pressure of the offset room was found to be smaller than that of other rooms when the CBF penetrated the soil under eccentric load.The penetration resistance of CBF under eccentric load was larger than that without eccentricity,and the larger the eccentric load is,the greater the penetration resistance.The influence of different eccentric load offset strategies on penetration resistance was found to be negligible.The calculated penetration resistance under eccentric load was in good agreement with the measured value.