In this paper, a dynamic optical arbitrary waveform generator(OAWG) based on cross phase modulation(XPM) is proposed. According to the characteristics of XPM, the nonlinear phase shift of signal can be changed along w...In this paper, a dynamic optical arbitrary waveform generator(OAWG) based on cross phase modulation(XPM) is proposed. According to the characteristics of XPM, the nonlinear phase shift of signal can be changed along with the pump power. The amplitude of signal can be changed by controlling the phase shift at one arm of a Mach-Zehnder interferometer(MZI) using XPM effect between signal and pump. Therefore, the phase and amplitude of the optical frequency comb(OFC) can be controlled by two pump arrays. As a result, different kinds of waveforms can be synthesized. Due to the ultrafast response of XPM, the generated waveform could be dynamically updated with an ultrafast frequency. The waveform fidelity is affected by the updating frequency.展开更多
基金supported by the National Natural Science Foundation of China(No.61377075)Program for New Century Excellent Talents in University(No.NCET-07-0611)
文摘In this paper, a dynamic optical arbitrary waveform generator(OAWG) based on cross phase modulation(XPM) is proposed. According to the characteristics of XPM, the nonlinear phase shift of signal can be changed along with the pump power. The amplitude of signal can be changed by controlling the phase shift at one arm of a Mach-Zehnder interferometer(MZI) using XPM effect between signal and pump. Therefore, the phase and amplitude of the optical frequency comb(OFC) can be controlled by two pump arrays. As a result, different kinds of waveforms can be synthesized. Due to the ultrafast response of XPM, the generated waveform could be dynamically updated with an ultrafast frequency. The waveform fidelity is affected by the updating frequency.