Target recognition performance can be affected by radar waveform parameters.In this paper,we established rigorous relationship between target recognition efficiency and the parameters of a repeatedly transmitted wavef...Target recognition performance can be affected by radar waveform parameters.In this paper,we established rigorous relationship between target recognition efficiency and the parameters of a repeatedly transmitted waveform.It is based on Kullback-Leibler Information Number of single observation(KLINs),which measures the dissimilarity between targets depicted by a range-velocity double spread density function in frequency domain.We considered two signal models which are different in the coherence of the observations.The method we proposed takes advantage of the methodology of sequential hypothesis test,and then the recognition performance in terms of correct classification rate is expressed by Receiver Operating Characteristic(ROC).Simulation results about the parameters of LFM signal show the validity of the method.展开更多
This paper analyzes the effect of waveform parame- ters on the joint target location and velocity estimation by a non- coherent multiple input multiple output (MIMO) radar transmitting multiple subcarriers signals. ...This paper analyzes the effect of waveform parame- ters on the joint target location and velocity estimation by a non- coherent multiple input multiple output (MIMO) radar transmitting multiple subcarriers signals. How the number of subcarriers in- fluences the estimation accuracy is illustrated by considering the joint Cramer-Rao bound and the mean square error of the maxi- mum likelihood estimate. The non-coherent MIMO radar ambiguity function with multiple subcarriers is developed and investigated by changing the number of subcarriers, the pulse width and the frequency spacing between adjacent subcarriers. The numerical results show that more subcarriers mean more accurate estimates, higher localization resolution, and larger pulse width results in a worse performance of target location estimation, while the fre- quency spacing affects target location estimation little.展开更多
文摘Target recognition performance can be affected by radar waveform parameters.In this paper,we established rigorous relationship between target recognition efficiency and the parameters of a repeatedly transmitted waveform.It is based on Kullback-Leibler Information Number of single observation(KLINs),which measures the dissimilarity between targets depicted by a range-velocity double spread density function in frequency domain.We considered two signal models which are different in the coherence of the observations.The method we proposed takes advantage of the methodology of sequential hypothesis test,and then the recognition performance in terms of correct classification rate is expressed by Receiver Operating Characteristic(ROC).Simulation results about the parameters of LFM signal show the validity of the method.
基金supported by the National Natural Science Foundation of China (60972152 61001153)the Aeronautics Science Foundation of China (2009ZC53031)
文摘This paper analyzes the effect of waveform parame- ters on the joint target location and velocity estimation by a non- coherent multiple input multiple output (MIMO) radar transmitting multiple subcarriers signals. How the number of subcarriers in- fluences the estimation accuracy is illustrated by considering the joint Cramer-Rao bound and the mean square error of the maxi- mum likelihood estimate. The non-coherent MIMO radar ambiguity function with multiple subcarriers is developed and investigated by changing the number of subcarriers, the pulse width and the frequency spacing between adjacent subcarriers. The numerical results show that more subcarriers mean more accurate estimates, higher localization resolution, and larger pulse width results in a worse performance of target location estimation, while the fre- quency spacing affects target location estimation little.