The Shenzhou -4 spaceborne (SZ -4) altimeter waveforms were processed, and then the significant wave heights (SWH) was retrieved on the basis of waveform fitting and waveform retracking. Waveforms processing inclu...The Shenzhou -4 spaceborne (SZ -4) altimeter waveforms were processed, and then the significant wave heights (SWH) was retrieved on the basis of waveform fitting and waveform retracking. Waveforms processing includes the waveform ls averaging, the elimination of thermal noise and the waveforms normalization. Double peaks were found on each SZ - 4 waveform, and it was pointed out that the region of waveforms with the second peak is abnormal and its effects on the whole waveform in the waveform fit should be taken into consideration. To obtain the width of the waveform leading-edge, a method was proposed to find the starting point of waveform, and the half-power point of waveform was found by retracking the waveform. The normalized wavefornis were fitted with the Haynes model by using the weighting least square fit method. Then the selections of the weighting coefficients and their effects on significant wave hight retrieving were discussed, and the optimal five-region weighting method was proposed. At last, the SWH data of SZ -4 altimeter retrieved by using the proposed method were compared with those of ERS -2 and Jason - 1 altimeter, and it was concluded that the SZ -4 altimeter can detect significant wave height.展开更多
工作于高频(HF)、甚高频(VHF)和超高频(UHF)拥塞频段的宽频带雷达,面临频带使用限制以及多种无线通讯系统同频窄带干扰的问题.对此,该文以峰均功率比(peak-to-average power ratio,PAR)为约束条件,建立联合优化功率谱密度(power spectru...工作于高频(HF)、甚高频(VHF)和超高频(UHF)拥塞频段的宽频带雷达,面临频带使用限制以及多种无线通讯系统同频窄带干扰的问题.对此,该文以峰均功率比(peak-to-average power ratio,PAR)为约束条件,建立联合优化功率谱密度(power spectrum density,PSD)和积分旁瓣电平(integrated sidelobe level,ISL)的波形设计目标函数,提出了一种基于快速傅里叶变换和子空间分解的循环迭代算法求解目标函数的方法.仿真实验结果表明,经过优化的波形在提高多频段限制中频谱利用率的同时,有效地抑制了窄带干扰且具有较低的旁瓣.展开更多
文摘The Shenzhou -4 spaceborne (SZ -4) altimeter waveforms were processed, and then the significant wave heights (SWH) was retrieved on the basis of waveform fitting and waveform retracking. Waveforms processing includes the waveform ls averaging, the elimination of thermal noise and the waveforms normalization. Double peaks were found on each SZ - 4 waveform, and it was pointed out that the region of waveforms with the second peak is abnormal and its effects on the whole waveform in the waveform fit should be taken into consideration. To obtain the width of the waveform leading-edge, a method was proposed to find the starting point of waveform, and the half-power point of waveform was found by retracking the waveform. The normalized wavefornis were fitted with the Haynes model by using the weighting least square fit method. Then the selections of the weighting coefficients and their effects on significant wave hight retrieving were discussed, and the optimal five-region weighting method was proposed. At last, the SWH data of SZ -4 altimeter retrieved by using the proposed method were compared with those of ERS -2 and Jason - 1 altimeter, and it was concluded that the SZ -4 altimeter can detect significant wave height.